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SEQUENCES OF CONVERGENCE REGIONS FOR

CONTINUED FRACTIONS  K(ajl)(i)

BY

WILLIAM B. JONES AND R. I. SNELL

ABSTRACT.   Sufficient conditions are given for convergence of continued

fractions  K(a /l)  such that  a    e £  ,  71 >_ 1,  where  {En\  is a sequence of

element regions in the complex plane.   The method employed makes essential

use of a nested sequence of circular disks (inclusion regions), such that the

nth disk contains the 77th approximant of the continued fraction.   This sequence

can either shrink to a point, the limit point case, or to a disk, the limit circle

case.   Sufficient conditions are determined for convergence of the continued

fraction in the limit circle case and these conditions are incorporated in the

element regions   £   .   The results provide new criteria for a sequence  ¡£   j

with unbounded regions to be an admissible sequence.   They also yield gener-

alizations of certain twin-convergence regions.

1.   Introduction.   A sequence of nonempty sets  {E  \ in the complex plane

will be called a sequence of convergence regions for continued fractions

ao /a \       a,       a,       a,

(i.i) k(-AL) =-L   _1   -1   ...,
„=i\ 1 /     1 + 1 +  1 +

if the conditions

(1-2) an£En> an^°»   n*l>

insure the convergence of (1.1).   Recent papers concerned with the problem of

finding sequences of convergence regions for (1.1) include:   [l], [2], [4], [5] and

[7].   The purpose of this paper is to give some new results for this problem.   Our

main theorems are related to two special classes of sequences of convergence

regions:   (1) twin-convergence regions and (2) admissible sequences [1].
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If \E î is a periodic sequence of convergence regions with period two, then

E., E2 ate called twin-convergence regions. A summary of the known twin-con-

vergence regions for (1.1) was given recently by [5].   The best result known prior

to [5] was the theorem of Lange and Thron [7] which states that if we set a    = c
° n 72

then the conditions

k2s+/r|<p,        |c2n-zT|<p,

lc2„-l + ¿Cl + 01> p,        Ic^-z'U + m^p,

in <p<|i + r|,

where T is a complex number, are sufficient for convergence of (1.1).   A general-

ization of the Lange-Thron theorem was given by [5, Theorem 5.4], which provides

a class of twin-convergence regions containing (1.3).   In Corollary 3.3, we give

criteria for a sequence of convergence regions, not necessarily periodic, which

contains the Lange-Thron theorem as well as its generalization in [5].   In a sim-

ilar manner, Theorem 3.5 contains as a special case the twin-convergence regions

given by [5, Theorem 5.2] with the exception of one limiting case (see Remark (1)

following Theorem 3.5).

A sequence of nonempty regions |E I in the complex plane is called an ad-

missible sequence [l] provided that:

(i)   For »2 >_ 1,  E     is either a circle with center at the origin plus its interior

(C. + int), or a circle with center at the origin plus its exterior (CQ + ext),  and

(ii)   The continued fraction (1,1) converses if for « >  1, a    e E , a   4- 0.

The collection of all admissible sequences is denoted by AS.   Lane and Wall [6]

completely settled the problem of finding all admissible sequences where each

region of the sequence is bounded, by showing that if \E   } e AS  and  E     is bound-

ed for n >_1,  it is necessary and sufficient that there exist a sequence of posi-

tive numbers  \k  \  such that

(1.4a) 0<kb<1,       22 >0,

and

(1.4b) En~{w: | w\ <(l-«„_ ¿km\,       72 >1.

Hayden [l, Theorem l] proved that if E     and  E     .   are successive elements of

an admissible sequence, then at least one of them must be bounded; he also gave

sufficient conditions [1, Theorem 2] for sequences with unbounded regions to be

admissible (a statement of these conditions is given in remarks preceding Corol-

lary 3.4).   A new set of sufficient conditions for admissible sequences with unbound-

ed regions is given by Corollary 3.4.   It is shown that these new conditions have

an overlapping relation with Hayden's result referred to above.

(1.3a)

(1.3b)

(1.3c)
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The general approach employed in this article is that previously used by [2],

[4], [5] and [8].   By assuming the existence of a sequence of value regions ¡V I

such that  0 £ V    and
n

(1.5) an/(l+Vn)CVn_l    if an£En,

we obtain a nested sequence of closed disks  {S (V  )!  which can either converge

to a point, the limit point case, or to a disk, the limit circle case (see (1.6) for

the meaning of the functions  S  ).   In the limit point case the continued fraction

converges, since  S (O)  is the 72th approximant and  0 e V  .   Thus it suffices to

determine sufficient conditions for convergence of the continued fraction in the

limit circle case and to choose the element regions E     so as to incorporate these

conditions.   The method is elementary in the sense that no deep function-theoretic

results are used and, by virtue of the many applications obtained thus far, it ap-

pears to provide a unified approach to the convergence region problem.

Before stating the theorems, it is helpful to have some additional terminology

and definitions.   An (infinite) continued fraction is an ordered pair of sequences

[{a  \°°   ,,{f \°°   ,], where a,, a., • • •   ate complex numbers, a   4 0, n = 1, 2, • • •,
nnzsi'nn = l l        ¿ » n

and where the /    are elements in the extended complex plane defined as follows:

If s     denotes the linear fractional transformation  (l.f.t.)
77

(1.6a) sn(z) = an/(l + z),       72=1,2,...,

and

(1.6b) SjU)»^*);       Sn(z) = Sn_l(sn(z)),        n=2,3,---,

then

(1.7) f„ = S„{0)'       «=1,2,....

The a     ate called elements of the continued fraction [{a   \, {f \]  and  7    is cal-
n ft        n to

led the 72th approximant.    A continued fraction is said to converge if its sequence

of approximants converges and, in this case,  / = lim /    is called the value of the

continued fraction.   For convenience the continued fraction [{a  }, {f }]  is some-
n n

times denoted by (1.1),   K°°_ Aa /l) or, more simply  K(a  /l).

Finally, if / is a function of k  variables, we mean by f (A ., • • • , A.) the set

{fix y - - - ,  Xk): Xm £ Am,   772 =  1, • • •,  k\.

2.   Sequences of linear fractional transformations.   Thron [8] has shown that

a sequence of l.f.t.'s  ÍT   !  satisfying the conditions

(2.1) 7,(17) Ç T,_ f 17) CÍ/,       77 >1,
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where  U denotes the unit disk \z:   \z\ <  1 !,  can be written in the form

(2-2a) Tiz) = C+Rn -----.,       n>0,
n n " G   Z +  I

n

where

(2.2b) |Pj = r>>0,       \Cn-Cn_x\<rn_x-rn,       \Gj = g„ < 1.

From (2.1) and (2.2) it is clear that \T iu)\ is a nested sequence of closed disks;
zz *

C    and r    are the center and radius, respectively, of T ill).   From (2.2b) we see

that  C - lim C    exists.   If r    \   r = 0,  the limit point case is said to occur, since

\T i\A)\ converges to the point C.   When r   \  r > 0, \T ((/)! converges to the

closed disk with center C and radius  r; this is referred to as the limit circle

case.   This section contains three theorems on convergence of sequences  \T  \

satisfying (2.2) for which the limit circle case holds.   These results will be used

to derive convergence regions for continued fractions in the following section.

Theorems 2.1 and 2.2 are more general than, but parallel to, Lemmas 4.1 and 4.2,

respectively, in [5j.   Corresponding proofs are almost identical and are included

here for completeness.

Theorem 2.1.   Let  \T  }  be a sequence of l.f.t.'s of the form (2.2) with  r > 0

(limit circle case).   Suppose that there exist sequences of points  ff |  aTza" \8  \

in the extended complex plane such that

(Z3) W-VW     I*.!**.     l*_il:Si.     n>-1-

If for some constant e > 0,  either  |f | >_ 1 + e for all n >_ 1   or  \8  _-1 <_ 1 — e

for all 72 >_ 1,  then

(2.4) X(l-z?«)<0°-
77=1

Proof.   From (2.2) and (2.3) we obtain

(2.5) C   + R A   = C     , + R      ,X      ,,^■^•Ji n n    n zz—1 72 — 1   zz — 1

where

¿T   + G 8     , + G
^n n 72-1 7z- 1

(2-6) ^«tftV   W<r-ir-r
71^72 n- 1    7Z-  1

Since the transformation w(z) = (z + G  _-¡)/ÍG  _.z + l) maps the unit disk onto

itself, it follows that  |À     ,| <  1.   That ÍA  i  is a bounded sequence can be seen

from (2.5) and using the fact that  |A _,| < 1, r   \   r>0 and \C   \ converges.
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Equations (2.2b) and (2.5) imply that

^|AJ<7n_1-7n+7„_1|A„_1|.

Thus, letting 77   = (¡A  I — |A     ,|)/(1 + |A  |), we obtain
' °      n '    n'       '   n— I' '    n'

0 < 7 /r      . < 1 - H   < 1
n    n — 1 — n —

and hence

fe=l

Therefore the series  S/7    is convergent, since otherwise the infinite product

n(l - 77, ) would diverge to zero, contradicting the hypothesis r   \   r > 0.   Since

ÍA  }  is bounded, we conclude that S(|A  | — |A      .|) converges and also that both

of the series

oo oo

(2.7) E<ia„i-i),   S(1-iA-iH
n=l n=l

are convergent.

Now we assume that   \8     , \   <  1  - e < 1,  72 >   1.   Tt will suffice to show that1     7Z — 1J     — ' —

(2.8) (1-*„_!>*< l-l\,-ll«       "*lf

fot some positive constant.   It can be seen that for all  K  such that  0 < K < Vi,

(2.8) is equivalent to

(2"9) IVl + G„J <[1 - «d - in-PK- I3«-! + M. »>  I-

Squaring both sides of (2.9), collecting terms, and dividing by  (l - g      .),  we

obtain the equivalent inequality

(2.10) K[2 - K(l - «„.^IC^Az-i + !|2 < (1 - IStz-iI2)(i + «»_!>■

The right side of (2.10) is positive and uniformly bounded away from zero for all

?2 >^ 1,  since   |S_1|<1 — f<l.   On the other hand, the left side of (2.10) is

bounded above by  8K.    Hence (2.10) will hold for all 72 >_ 1,  provided  K  is suf-

ficiently small.   Thus (2.8) and (2.4) are satisfied.   A similar argument can be

used if we assume that  |<f | >^ 1 + e > 1.   This completes the proof.

Theorem 2.2.   Let {T  ]  be a sequence of l.f.t.'s of the form (2.2) with  r> 0

(limit circle case).   Suppose that there exist sequences of points  {r¡  \ and {Ç, \

in the extended complex plane and a constant  e > 0 such that

(2.11) Tn(7?n)=Tn_1(C-i)-       IkJ-M*«.       IICz-il-1'^'       n>~1-
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// 2(1 - g ) < c, then \T (z)\ converges at least for all z such that  \z\ 4 1  a72a"

(2.12)

Proof.   By writing (2.2a) in the form

lim Tn(z) = lim[Cn + R„/Gj,        |z| 4 1.

(2.13) W = c„+r
i

i-
G z+ 1

and noting that g   —» 1,   we see that it suffices to prove that \RnGn\ is a conver-

gent sequence.   From (2.2) and (2.11) we obtain

l-jl

(2.14)
R,

1-8 4-1

k-lGk_i + (l/Ck^)

Summing equations of the form (2.14) for k = m + 1, • ■ . , n gives

(2.15)

R G   - R   G    =:(C
n    n mm r>

Y   R,

czz)"     E      R
1-ri

ir+l feG,+(1v

1 -
'fe-1

Ar*~1GA-l+(1/£*-.l>

It follows, from (2.14) and the bounds given in (2.11) for the sequences  jr/  i  and

\Ç _ jl, that \R G  j is a Cauchy sequence.   This completes the proof.

Theorem 2.3. Let \T ] be a sequence of l.f.t.'s of the form (2.2) with r > 0

(limit circle case). Suppose that there exist sequences of points \j I, \k \ and

\u   i z« the extended complex plane and a constant  0 < e < 1  such that

(2.16a)

and

(2.16b)

and

(2.16c)

T„(/n)=Tn_1(^_1)=Tn_2(z,n_2),       22>2,

l;J>i+i,     |«„| < l -í,     22 > i,

K(p)\~l\>*> p> 1,

for some infinite subsequence \k  ,  A of \k   \.   Then \T (z)\ converges at least

for all z in the extended complex plane such that  \z\ 4 1 and

(2.17) lim Tn(z) = lim[Cn + RjGj,       \z\ 4 I,

Proof.   From Theorems 2.1 and 2.2 we conclude that the two subsequences

\T2n(z)\ and \T 2n_x(z)\ converge at least for all z  such that  |z| 4 1  and
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(2.18a) iim T2n_x(z) = Um[C2n_1+ R2n_¿G2H^\,       \z\ 4 1,

(2.18b) limT2n(z)=lim[C2n+R2n/G2n],        |«| ¿ 1.

Furthermore, the series  S(l — g  ) converges and so g   —► 1,   If we set  R    =

r   exp(î(D )  and  G   = g   exp(z'y ),  then it follows from (2.18) that the two limits
72r7Z 77       ° rz        r      ' ?z

(2.19) lim  exp(i(co2n_l - y2n_1)),        lim    exp(i(co 2n - y2J)

exist.   It suffices to prove that these limits are equal.   We assume that the sub-

sequence {77(p)i of indexes in (2.16c) contains an infinite subsequence l277z(p)S

of even integers (a similar argument will hold with a subsequence of odd integers).

For these even integers (2.16a) gives

7_^)expU2m(i;))'2m(p)      ' 2m{p)

k2m<p)+ G2m(p)

G2m(p)k2m(p)+  !

(2.20)

C2m<p)- 1 + T2m(p)- 1 eXP(zCy 2m(p)- l]

U 2m(p)-\ +  G2m(p)- 1

G277z(/7)-l"277z(p)-l + 1

From (2.20) it can be seen that the two limits in (2.19) will be equal provided

that

hm   exp(iy2mip))
p-,00 G2m(p)k2m(.p)+ 1

(2.21)

lim   exp(zy
p_oo 2m(i>)-l

U2m(p)-1 + G2m(p)-l

G2m(p)-lU2m(p)- 1 +   1

=  1.

But it is easily verified that

(2.22) k2m(p)eXP{iY2m(pr+82m(p)

2m(p)   2m(p)

''2m(p)\ + 1)(1-
■2m(p)

i2m(p)lc?2m(p) "ll

and

(2.23)

U2m(p)-leXP{iY2m(p)-l) + e 2m(.p)- 1

2?7z(f7)- \U2m'p)- 1 +  1

\ui    i*\     tl +  l)(l1    2m(p)— V >2m(p)-V

WU2m(p)- V S2m(p)~ 1      ^

From (2.16b), (2.16c) and g   —» I it follows that the right sides of (2.22) and (2.23)

both tend to zero as p —► «>.    This completes the proof.
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3.   Convergence regions.   This section is used to derive convergence regions

for continued fractions of the form  K(a  /l).
72

Theorem 3.1.   Let  \V   i be a sequence of complex numbers and \p  \ a se-
72 * ' • •   72

quence of positive real numbers such that for n>  0,   \V | 4 U + T  I  a72zi p    lies
1 '    r ' -        '      '       7Z1 ' 7Z1 r72

272 the open interval between   |T  |   and |l + V |.   Let  A   = p   — |1 + F  I     and,r 'ZZ1 ' ZZ1 TZ'ZZ1 Z21

for each n >_ I,  let E     be the region in the complex plane defined as follows:

V|rs.1l<P„.1<|l + rB.1|,  then

(3.1a) En = \w:  \wil + rj + rn_xAJ + pjw\ < pn_x\An\\

and if  11 + T      , | < p      , < IT      . I,  then
i     I n— \\ rn— 1 '     7Z— 1 '

(3.1b) En = \w. \wil + rn) + rn_ XAJ - Pn\w\ > Pn_x\ AJ\.

Let  Kia  /I) be a continued fraction with elements satisfying

(3.2) a   eE ,       a   4 0,       n>l,
72 72

aTzzi with nth approximant denoted by f .   If there exists a positive constant f > 0

such that

(3.3) P,

ir +ir |2--21
> 1 + e, 22 > 0,

P,

then both of the sequences  \f2      A and {f.   \ are convergent.   If, in addition

(3.4) |p„/|rj-l|>e,       72 >0,

then the continued fraction  K(a  /l) converges.

Lemma 3.2.   Let  \Y  \, \p   ! and \E   \ be sequences defined as in Theorem

3.1.    Let  \V  1  be the sequence of closed regions in the extended complex plane

defined by

(3.5)

\z:\z-rn\<Pn\,   if\vn\<pn<\ i + rj,

\z:\z-rn\>pj, ¿/|i + rj<p.<|rj.

Then

(3.6) s(En,V)CVn_x,       72 >1,

where s(w, z) = izz/(l + z).

Proof.   We shall verify (3.6) in the case for which 11 + F     , I < P     , <
f ' 72— 1 ' r7Z— 1

|T      ,|   and  |1 + r  | <p    < IT  I.   The case for which IT      ,1 <p     , <|1 + T     ,|
i     72—l1 < n<       rn       '    n' '    n—1'      r n— 1      ' n—l'
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and   |r | < p   < 11 + T  |  was proven by [4, Lemma 2.1]; proofs for the other two

cases are included in [5, Lemma 5.5].   First, it is readily shown that s(w, V )

consists of the circular disk  {z:   \z + D  \ < q   Î,  where  D    = t¿>(l + T )/A   , q    -
1 n1 — l n n n        n '  * n

p |w|/A  , A   = p   — |1 + r  I   .   It follows immediately that s(w, V ) C V      ,   if
rn[     >'     n        n      rn       ' n' ' n   —     rz-1

and only if  |D   + T  _ ,| >_ <?    + P  _i>  wbich is equivalent to the inequality in

(3.1b).   This completes the proof.

Proof of Theorem 3.1.   Let   {v  i   denote the sequence of l.f.t.'s defined by

P z

(3.7) v  (*)-
r z-\v |2 + p2

rz '     n' ' n

It is easily verified that the image of the region  V    (defined by (3.5)) under the

mapping w = v (z) is the unit disk  U = {z:   \z\ <  1Î;  that is,

(3.8) v (V )= V,       n > 0.
n      n —

Let {t  Î  and  ÍT   Î denote sequences of l.f.t.'s defined by
n n ^ '

(3.9a) tn(z)=   Vn_1{sn[V-Kz)}\, 72>1,

(3.9b) Tl(z)=tl(z);       Tn(z) = Tn_rinU)],       72 > 2,

where s  (z) = s(a , z) = a  /(l + z), a    € E  .   It follows from (3.6) and (3.9) that
■ n n n n n

{T  } satisfies (2.1) and hence can be represented in the form (2.2).   From (3.9)

it also follows that

(3.10) Sn(z) = v-1{Tj_vn(z)]\.

Thus /   = S (O) = v~  [T (0)], and hence the continued fraction K(a /l) will con-
n n u n n

verge if and only if the sequence  ¡T (0)i  converges.   In the limit point case, the

sequence {T (U)} converges to the point C = lim C    and, therefore, the continued

fraction converges.   Hence, it remains to consider what happens if the limit circle

case (r   N  r > 0) occurs.   From (1.6) it follows that

(3-11) Sn{-l) = Sn-l{°°)=Sn-2{0)' ">3>

and so from (3.10) we have

(3-12) Tn[vn(-1)} = Tn_ ,[*;„_ ¿co)] = Tn_2[,n_2(0)],       n>3.

Our next step is to set

(3.13) Jn=Vn(~l), kn=Vn(°°), Un=Vn(0)=   0, 72 >   1.

Then by (3.3) we have \j \ - \v (- 1)| >_ 1 + e and Theorems 2.1 and 2.2 imply

that the two sequences {T2n_l(z)\ and [T (z)} converge for all z such that

|z| 4 L   In particular,  fT^n-/0^ anc'  ^2  ^^ converge so that {f    _A and
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\f2   1 are convergent.   If, in addition, (3.4) holds, then  | |&J - 1| > c and so, by

Theorem 2.3, \T (z)i converges for all z  such that |z| 4 1.   Thus Í7M0)i and

also \f j  are convergent.   This completes the proof.

An important special case of Theorem 3.1 is the following:

Corollary 3.3 (alternating disk—complement of disk  case).   Let \Y  I be a

sequence of complex numbers and \p   ] a sequence of positive real numbers such

that

(3.14) U + r2J<p2n<|r2n|,    |r2n+1|<p2n+1<|i + r2n+1|,    72>o

and let A   = p   — Il + T  I   .   Let K(a /I) be a continued fraction with elements
n     rn      ' zz ' n '

a    satisfying

(3.15) aneEn-        an^°' "-1'

where

(3.16a) E2n + 1 = \w: \w(l + ?.&$ + ^Azz + J ~ P2n + l\M > P2JA2n + l\í   n > °>

(3.16b)     E     =\w. \wil + f7) + r?     .A    \+p, |uz|<p,     ,|A, |},   72 > 1,
2z2 ' 2n in— 1    2tz'       r2zz'     '  — r2zz—1'     2zz'   ' —     '

and with nth approximant denoted by f . // (3.3) holds for some positive constant

e > 0, then both \f. _,} a72cz' \f. \ converge. If, in addition, (3.4) holds, then the

continued fraction  K(a /I) is convergent.

Remarks.  (1)   By taking T2n+ , = rr,p2n + 1 = pv V2n = T2 and p2n . p2

in Corollary 3.3, we obtain part of the result proved by [5, Theorem 5.4].   The

further special case with px = p2 - p and T. = - (1 + VA ~ T is the result of

Lange and Thron [7] stated in the introduction.

(2)   Corollary 3.3 is referred to as the alternating disk-complement of disk

case, since the  V    of (3.5) are alternately disks and complements of disks.

For admissible sequences that contain unbounded regions, Hayden [1, The-

orem 2] gave the following sufficient conditions:

Suppose  ÎE   I is a sequence such that for n >  1,
n * * ~~

(i)   either E   is a Cn + int or E    is a  Cn + ext,
72 0% ^ ZZ 0

(ii)   at least one of E    or E     ,   is a C„ + int,  and
1       n 72 + 1 0 '

(iii)   there exists a number k      ,  and a number r    such that
n-\ n

(a)

(3.17) 0<z<     , < 1.       0<r  <1.
ZZ- 1 ' 72  -       '

(3.18)       E*

and

<^:  i H < ''„(i - %_j)k„È>     A B*  is bounded,

\w:  \w\ >(1 + Kn_x)(2-Kn)\,     if E*   is unbounded,
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*
(b)   if p is an integer such that  E     .   is unbounded, and if M  is the collec-

p + ' %

tion of (ill such integers, then either M  is finite or II, efJ, = 0.    Then {E  \ £ AS.

The following corollary of Theorem 3.1 is comparable with the sufficient con-

ditions of Hayden stated above.

Corollary 3.4. Let {E   \ be a sequence of regions in the complex plane such

that for each n >_ 1  the following conditions are satisfied:

(i)   at least one of the regions  E    or E    ,   is bounded,
' ° to 77+1

(ii)   there exists a sequence of positive numbers  {k  ! 0720" a positive constant

0 < e < 1  such that

(3.19a) 0<c <k      , < 1, if E     is bounded,
—     n—1 ' '       n

(3.19b) 0 < k      , < 1 - e < 1,    if E     is unbounded,
n— 1 — '      '       to

and

\{w.  \w\ < (l — k      ,)k   Î,     if E     is bounded,

(3.20) En =

\{w: \w+(2-Kn)Kn\ -(1 - Kn)\w\ >Kn_lKn(2 ~xn)\,

if E     is unbounded.

If a    £ E , a   4 0, n ~>_l, then the continued fraction  K(a /l) is convergent.

Proof.   First we establish the relationship between the element regions (3.20)

and those defined by (3.1).   Let sequences   |F   ! and  {p   \ he defined as follows:

0,   if E„ + 1 is bounded,
(3.21a) T = '

n

-1, if £„ + ! is unbounded.

(3.21b)
1 - Kn,     if En + l  is bounded,

if  E   . ,   is unbounded.n + 1

Now it is easily checked that when  E     is bounded, (3.1a) reduces to the bounded

set in (3.20) and when  E    is unbounded, (3.1b) reduces to the unbounded set in

(3.20).   Moreover, (3.3) and (3.4) are implied by (3.19).   Hence our corollary is an

immediate consequence of Theorem 3.1.

Remarks.   (1)   When  E     is bounded the expression given by (3.20) is of the

same form as Hayden's expression (3.18) with r   = 1.

(2)   The unbounded region  E    defined by (3.20) contains the unbounded region

E   of (3.18).   E    is connected and symmetric with respect to the real axis.   The

boundary of En is contained in the annular region



494 W. B. JONES AND R. I. SNELL

K  il-K        ,) < \w\   <(2- K   Ml + K        .),

[August

and its real intercepts are at

W = -K   (l  - K
n- 1

)     and -(2-K Ml .)•

An illustration of the unbounded regions £     and  E     is shown in Figure 1, for

the case with  k  _, = 1/V2 and k    = 1 - (l/\/2).

(3)   In view of Remarks (1) and (2), it can be seen that Corollary 3.4 has an

overlapping relation with the sufficient conditions of Hayden stated above.   Con-

ditions (3.19) are more restrictive than  (3.18a). However, when the k     satisfy

(3.19), the element region  E     contains  E     for w >_ 1.   Moreover, Hayden's con-

dition (iiib) is not required in Corollary 3.4.

In proving Theorem 3.1 we have not made use of the results of § 2 in their

greatest generality.   In particular, (2.16c) allows an infinite subsequence of the

k    to be equal to one.   If we set  k   = v (oo) as in (3.13), then  oo must lie on the
n » n n

boundary of the region  V  ,  a situation realized when   V    is a half-plane.   The

following theorem is an example of a result which can be proved when an infinite

subsequence of the  V    ate half-planes.   The case in which all of the  V    ate
* n r n

half-planes leads to element regions  E     with parabolic boundaries; this case has

already been extensively treated (see, for example:   [3], [4] and [9, Theorem 3L3l).

Theorem 3.5.   Let  |T7     A be a sequence of complex numbers such that for

n > 0,   IT,     ,| 4- |1 + T.     ,|.   Let  jp,     A be a sequence of positive numbers
—     '   '     27Z + 11        ' 2n + l' r2n+l J '  r

such that for n > 0,  p,     ,   lies in the open interval between  |T~     ,|   and  |1 +
' —     '   r2rt + l r *     2n+l ' '

T,     , |.   Let  {P7  i be a sequence of complex numbers such that

(3.22)       0<p2n<cos<A2n, 2n 2«1' <!>In afg P2rz' 72 >   0.

FIGURE 1.   Comparison of unbounded region  £     of Corollary 3.4 with unbounded region

E*  of (3.18), with k     , = I/V2", k   = 1 -il/\/f).
n ' n—l v n v
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Let K(a /l) be a continued fraction with elements  a    satisfying

(3.23) aneEn' ün¿°' »21.

where

(3.24a)

E,'277 + 1

lw: \w\ <
^2„lA2„ + ll

495

P27Z + l + (sz?n A2n+l)l1 + r2n + llCOs(ar« W " ar«( *+Tu¿'+Jk
(3.24b)

2tz

= < 227:   jizzl <

cos lit.   - p0 )!<5,      ,|
~ 2zz      c ¿n '    ¿n— l1 _I,

P2n_ i + (sgn zS2n_ A\r2n_ 1|cos(arg w - arg T2n_ , - xfe 2)\

2 2
-Pm-where A   = p2 - \l + T  \¿  and 8   = \T

n      ' n       ' zz' zz       '    zz

Let f    denote the nth approximant of K(a  /T).   // there exist positive con-

stants  c and M such that

Pinn
(3.25) ,        1

277 2
<M<¿,

|r, .. + |r, , ,| - p, .
1     2zz + l       '     2zz +11 r 2zz +

> 1 + e,        72 > 0,

then the sequences  \f2   _.| a72zi \f'    \  both converge.   If, in addition,

(3.26) l(P27z+i/r2z,+i)- M >e-       n> °'

then the continued fraction  K(a /l)  is convergent.

Lemma 3.6.   Let \T',     . î, îp,     . î, ÍP.   î azW ¡E  i èe sequences defined as
27Z+1   '    r2?2+l   ' 2»z zz J '

in Theorem 3.5.   Let \V  \  be the sequence of closed regions in the extended

complex plane defined by

(3.27a) V2n = iz:  Re(zexp(-zi/r2n))>-p2nS,        n > 0,

jlz:   lZ-r2zz + ll ^272 + 1*      lf  Ir2z2 + ll   <P272+1<I   1 + r27z + ll'

(3.27b)    V2n + X=\

\\z: |z-r2n+1| >p2n+1i  if |i + r2n+1|<p^+1.<|r2s+1|,

22 >   0.

Then

(3.28)

where s(w, z) = w/il + z)

s(E   ,   V  ) C  V„     ,, 72 >  1,
ZZ 72—72—1 —
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Proof.   It is readily shown that s(w, V2  ) = i£:   |£- D2„\ <  |D2   |j,  where

£>,   = w exp(- 7 »P.  )/[2(cos^,   - p. )].   Therefore, for s(w, V,  ) C V
/r> r ?n   ' /n L   In ' In     —2rz' 2j7 2«'

It

is necessary and sufficient that (a)   |D2    —Y2   _,| + |D2   | <^ p2      •   if |T2   _,|

<p,   . < |i + r,   ,|, or (b) \d. - r,   ,i > id, i +p,   . if |i + r,   ,|
"2rz-l       I 2n—V '    '    2to 2n-l!  — '     Zrz'       r 2n—\ ' 2n-l>

< p,      , < |Tn      ,|.   In either case, it can be seen that s(w, V,   ) C V,      ,   if
'in — I       >     2n— I1 ' 2n   —      2n—1

and only if w eE,     given by (3.24b).   Similarly,  s(kv, V2   _j) = ÍC:   |£-D2  _j|

<a2n_ji,  where  D 2n_1 = - w(l+T2n_1)/A2n_l,  ?2„_ x = IHp2„_/I A2„_ ,|

and  A,      , = pi      , - |1 + T,      ,|2.  It follows that s(w, V0     ,)cy.     , if and only
2«— I       r2n—1       ' 2n— l1 2tz —1    —     2n — 2 '

if a.     , < p + |D       ,| cos (arg D,      . - *P,     -).   But this condition is equiv-
'2n—I—r2?7—2      '    272—I1 °      2n— I 2tz —2 "»

aient to the statement tf e E,      ,,  where  E,      ,   is given by (3.24a).   This com-
2« — I' 2rz— Io '

pletes the proof.

Proof of Theorem 3.5.   Let {V   ! denote the sequence of l.f.t.'s defined by

(3.29a) v2n(z) = z/(z - 2P2n),       72 > 0,

(3.29b) V2n + l{z)

-P
2*7 + 1

r2n + l2 + P2n+l-|r2rzn|2

if |r2n+1|<P2n+1<U + r2n+1|,

P2n+lZ

2rz + l ?2„ + l

if 11 + r

r     l21    27Z + 11

2f! + l <P2ti + 1
<ir

2rz+ll*

It is readily shown that 77  (V ) = U = {z:   \z\ <  1\,   n >  0.   The remainder of the
' tl » «.1:1—" -

proof is now completely analogous to the proof of Theorem 3.1 and hence is

omitted.

Remarks.  (1)   Theorem 3.5 reduces to a result proved by [5, Theorem 5.2]

in the special case for which  T,     , = Y, p,     , = p,
r 2n + l r2n+l       r

|r| < p < 11 + T|,  except that our theorem does not permit p = 0.

P.    ^ P = pe{t   and

(2)   When   |r
2n+l <p2n+:

<|i + r
2n + P

the boundary of E
2« + l

is an

hyperbola and the boundary of E
2rz+2

is an ellipse.   On the other hand, when

|l + Ti     11 < p2     , < |r,     . |,  the boundary of E,     .   is an ellipse and the

boundary of E 2     2  is an hyperbola.    In each case a focus of the conic is at the

origin and the axes are easily determined from the polar form (3.24).

(3)  Conditions (3.22) imply that

(3.30a) \P2„-1/>\<V,

and the condition that p.     .   lies in the open interval between   |T.     .|

|1 + Tn     ,|   implies that
1 2n+l'       r

and
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(3.30b) p2n+/|r2„+1 + |r2a+1|2 - p2n+1| > 1.

Thus we see that conditions (3.25) uniformly bound the quantities on the left side

of (3.30) away from their limiting values.
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