AUTOMORPHISMS OF A FREE ASSOCIATIVE
 A LGEBRA OF RANK 2. II

BY

ANASTASIA J. CZERNIAKIEWICZ

Abstract

Let R be a commutative domain with l. $R(x, y\rangle$ stands for the free associative algebra of rank 2 over $R ; R[\widetilde{x}, \tilde{y}]$ is the polynomial algebra over R in the commuting indeterminates \tilde{x} and \tilde{y}.

We prove that the map $\mathrm{Ab}: \operatorname{Aut}(R(x, y)) \rightarrow \operatorname{Aut}(R[\tilde{x}, \tilde{y}])$ induced by the abelianization functor is a monomorphism. As a corollary to this statement and a theorem of Jung [5], Nagata [7] and van der Kulk [8]* that describes the automorphisms of $F[\tilde{x}, \tilde{y}]$ (F a field) we are able to conclude that every automorphism of $F(x, y)$ is tame (i.e. a product of elementary automorphisms).

R stands for a commutative domain with $1 . R\langle x, y\rangle$ is the free associative algebra of rank 2 over R on the free generators x and $y ; R[\tilde{x}, \tilde{y}]$ is the polynomial algebra over R on the commuting indeterminates \tilde{x} and \tilde{y}.

We will prove here that the answer to the following conjecture [3, p. 197] is in the affirmative:

If F is a field then the group of automorphisms of $F\langle x, y\rangle$ is generated by the elementary automorphisms (defined below) of $F\langle x, y\rangle$ (i.e. every automorphism of $F\langle x, y\rangle$ is tame).

In fact, we are going to prove here that, if R is as above, the map Ab : $\operatorname{Aut}(R\langle x, y\rangle) \rightarrow \operatorname{Aut}(R[\tilde{x}, \tilde{y}])$ induced by the abelianization functor is a monomorphism and as a consequence of this statement and a theorem of Jung, Nagata and van der Kulk* that says that every automorphism of $F[\tilde{x}, \tilde{y}]$ is tame (for F a field) we will be able to give a complete description of Aut ($F\langle x, y\rangle$).

The proof is a generalization of the proof of the main theorem of [4]; in fact the algorithm we use here to solve a system of equations in $R\langle x, y\rangle$ is essentially the same we used in the previous paper. We will refer to [4] for additional details in the proofs.

I am indebted to G. M. Bergman for making the observation that the tameness result is not true in the generality claimed in our previous paper [4] and announced in the Bulletin of the AMS in November 1971 [Automorphisms of a free associative algebra of rank 2, Bull. Amer. Math. Soc. 77(1971), 992-994], since the corresponding tameness theorem for the abelian case (i.e. the theorem of Jung,

[^0]Nagata and van der Kulk*) is only true for a field (and does not apply to a generalized euclidean domain).

Notation and preliminaries. We will write $R\langle x, y\rangle$ as a bigraded algebra:

$$
R\langle x, y\rangle=\bigoplus_{r \geq \rho \geq 0} \mathbb{Q}_{r}^{\rho}
$$

where the subindex stands for the homogeneous degree and the upper index denotes the degree in x.

For every $P \in R\langle x, y\rangle$, we write

$$
P=\sum_{r, \rho} P_{r}^{\rho} \text { uniquely, where } P_{r}^{\rho} \in \mathbb{Q}_{r}^{\rho} .
$$

The elementary automorphisms of $R\langle x, y\rangle$ are by definition the following:
(i) $\sigma \in \operatorname{Aut}(R\langle x, y\rangle), \sigma(x)=y, \sigma(y)=x$,
(ii) $\phi_{a, \beta} \in \operatorname{Aut}(R\langle x, y\rangle), \alpha, \beta$ units of $R, \phi_{a, \beta}(x)=\alpha x, \phi_{a, \beta}(y)=\beta y$,
(iii) $\tau_{f(y)} \in$ Aut $(R\langle x, y\rangle)$, where $f(y)$ is any polynomial that does not depend on $x ; \tau_{f(y)}(x)=x+f(y), \tau_{f(y)}(y)=y$.

The same definitions characterize the elementary automorphisms of $R[\tilde{x}, \tilde{y}]$.
Let $E, P, Q \in R\langle x, y\rangle$. For every E_{m}^{μ} choose ${ }^{*} E_{m}^{\mu}={ }^{*} E_{m}^{\mu}\left(z_{1}, \cdots, z_{m}\right)$ to be a polynomial in m variables, homogeneous of degree 1 in each and such that $E_{m}^{\mu}={ }^{*} E_{m}^{\mu}(x, \cdots, x, y, \cdots, y)$, where we have put $x=z_{i}, 1 \leq i \leq \mu ; y=z_{j}$, $\mu+1 \leq j \leq m$. Even though ${ }^{*} E_{m}^{\mu}$ is not uniquely determined by E_{m}^{μ} we choose it to be zero when the latter is.

We can then write

$$
\begin{align*}
E(P, Q) & =\sum_{m, \mu} E_{m}^{\mu}(P, Q) \\
& =\sum_{m, \mu} \sum_{a, a, b, \beta} * E_{m}^{\mu}\left(P_{a_{1}}^{a_{1}}, \ldots, P_{a_{\mu}^{\prime}}^{a_{\mu}}, Q_{b_{1}}^{\beta_{1}}, \cdots, Q_{b_{m-\mu}}^{\beta_{m-\mu}}\right) \tag{1}
\end{align*}
$$

where $a=\left(a_{1}, \cdots, a_{\mu}\right), \alpha=\left(\alpha_{1}, \cdots, \alpha_{\mu}\right), b=\left(b_{1}, \cdots, b_{m-\mu}\right), \quad \beta=\left(\beta_{1}, \cdots\right.$, $\beta_{m-\mu}$).

Lemma 1. Let c, d be nonnegative integers, r, s positive integers. Let $P=P_{r c+1}^{r d+1}$ and $Q=Q_{s i c+1}^{s d}$ be two algebraically dependent elements of $R\langle x, y\rangle$ of bomogeneous degrees $(r c+1)$ and $(s c+1)$ respectively and degrees in x equal to $(r d+1)$ and $(s d)$ respectively. Then either $P=0$ or $Q=0$.

Proof. We simply have to observe that the proofs of Lemmas 1 and 3 of [4] are still valid if instead of assuming that the polynomials commute we allow them to satisfy a nontrivial relation of algebraic dependence.

Main results.
Theorem. Let $P, Q, E \in R(x, y)$ satisfy the following requirements:
(i) $P_{0}^{0}=Q_{0}^{0}=0, E_{0}=E_{1}=0$;
(ii) $P_{n}^{0}=0$ for all $n \geq 1, Q_{m}^{0}=0$ for all $m \geq 2, E_{r}^{0}=0$ for all $r \geq 2$;
(iii) $E(P, Q)=x y-y x$.

[^1]Then we conclude that

$$
P=P_{1}^{1}=\alpha x, \quad Q=Q_{1}^{0}+\sum_{n} Q_{n}^{n}=\beta y+f(x), \quad E=(\alpha \beta)^{-1}(x y-y x)
$$

where α, β are units of R.
Proof. For every rational number $\lambda \geq 0$, define

$$
\begin{aligned}
\mathcal{S}_{\lambda}= & \left\{P_{a}^{a} ; a>1, \alpha \geq 1,(a-1) /(a-1)=\lambda\right\} \cup\left\{Q_{b}^{\beta} ; b>1, \beta \geq 0, \beta /(b-1)=\lambda\right\} \\
& \cup\left\{E_{m}^{\mu} ; m>2, \mu \geq 1,(\mu-1) /(m-2)=\lambda\right\} .
\end{aligned}
$$

To prove the assertion of the theorem we only need to prove that $\mathcal{S}_{\lambda}=\{0\}$ for every λ.

Since δ_{λ} can be different from $\{0\}$ for at most finitely many values of λ we can use the ordering of the rational numbers to prove inductively that $\delta_{\boldsymbol{\lambda}}=\{0\}$ for all λ.

For this purpose let $\mathcal{S}=\left\{P_{1}^{1}, Q_{1}^{0}, E_{2}^{1}\right\}$ and let us set $\delta_{\lambda}^{*}=\delta_{\lambda} \cup \mathcal{S}$. We then must show that $\delta_{\lambda}^{*}=\delta$ for all λ.

Suppose we have proved $\delta_{\lambda^{\prime}}^{*}=\delta$ for every $\lambda^{\prime}<\lambda$ and let us prove (2)

$$
\mathfrak{S}_{\lambda}^{*}=\mathcal{S},
$$

i.e. we have to prove that if $X \in \mathcal{S}_{\lambda}^{*}$ then $X \in \mathcal{S}$. Observe that we include the case $\lambda=0$ in the inductive process.

Write $\lambda=\rho / r$ where ρ and r are relatively prime positive integers if $\lambda>0$ or else $\rho=0, r=1$ if $\lambda=0$.

With this notation we can write

$$
\begin{equation*}
S_{\lambda}^{*}=\left\{P_{b r+1}^{b \rho+1} ; b \geq 0\right\} \cup\left\{Q_{i r+1}^{i \rho} ; i \geq 0\right\} \cup\left\{E_{j r+2}^{j \rho+1} ; j \geq 0\right\} . \tag{3}
\end{equation*}
$$

Since we have a finite collection of polynomials we can assume that the following holds:

$$
\begin{array}{rlrlrl}
E_{e^{\prime} r+2}^{e^{\prime} \rho+1} & =0 & \text { if } e^{\prime}>e, & P_{p^{\prime}}^{p_{r+1}^{\prime} \rho+1}=0 & \text { if } p^{\prime}>p, & Q_{q^{\prime}{ }^{\prime} r_{r+1}^{\prime}=0} \tag{4}\\
& \neq 0 & \text { for } e^{\prime}=e ; & \ldots 0 & \text { if } q^{\prime}>q \\
p^{\prime}=p ; & & \neq 0 & \text { if } q^{\prime}=q .
\end{array}
$$

To obtain assertion (2) it will suffice to show that $e=p=q=0$.
Claim 1. Let $L=e p \rho+e q(r-\rho)+e+q+p$. Then under the inductive hypothesis and conditions (4) the only term of $E(P, Q)$ that lies in $Q_{L_{r+2}}^{L \rho+1}$ is $E_{e r+2}^{e \rho+1}\left(P_{p r+1}^{p \rho+1}, Q_{q r+1}^{q \rho}\right)$.

Proof of Claim 1. In the notation of (1), a typical summand of $[E(P, Q)]_{L_{r+2}}^{L \rho+1}$ is of the following form:
(1') $\quad\left[E_{m}^{\mu}(P, Q)\right]_{L r+2}^{L \rho+1}=\sum_{a, a, b, \beta} * E_{m}^{\mu}\left(P_{a_{1}}^{a_{1}}, \cdots, P_{a_{\mu}}^{a_{\mu}}, Q_{b_{1}}^{\beta_{1}}, \cdots, Q_{b_{m-\mu}}^{\beta_{m-\mu}}\right)$
where

$$
\begin{equation*}
\sum_{j=1}^{\mu} a_{j}+\sum_{k=1}^{m-\mu} b_{k}=L r+2, \quad \sum_{j=1}^{\mu} a_{j}+\sum_{k=1}^{m-\mu} \beta_{k}=L \rho+1 \tag{5}
\end{equation*}
$$

(In (1') ${ }^{*} E_{m}^{\mu}$ is a polynomial in m variables, homogeneous of degree 1 in each and ${ }^{*} E_{m}^{\mu}=0$ whenever $E_{m}^{\mu}=0$.)

By inductive hypothesis we know $\mathcal{S}_{\lambda^{\prime}}^{*}=\mathcal{S}$ if $\lambda^{\prime}<\lambda$, hence we can assume that the following inequalities hold:

$$
r(\mu-1) \geq \rho(m-2)
$$

$$
\begin{align*}
r\left(a_{j}-1\right) & \geq \rho\left(a_{j}-1\right), & & 1 \leq j \leq \mu \tag{6}\\
r \beta_{k} & \geq \rho\left(b_{k}-1\right), & & 1 \leq k \leq m-\mu .
\end{align*}
$$

If we now add the inequalities (6) term by term we obtain
(7) $r\left(\mu-1+\sum_{j=1}^{\mu} a_{j}-\mu+\sum_{k=1}^{m-\mu} \beta_{k}\right) \geq \rho\left(m-2+\sum_{j=1}^{\mu} a_{j}-\mu+\sum_{k=1}^{m-\mu} b_{k}-(m-\mu)\right)$
which is simply

$$
\begin{equation*}
r\left(\sum_{j=1}^{\mu} a_{j}+\sum_{k=1}^{m-\mu} \beta_{k}-1\right) \geq \rho\left(\sum_{j=1}^{\mu} a_{j}+\sum_{k=1}^{m-\mu} b_{k}-2\right) \tag{8}
\end{equation*}
$$

The inequality (8) together with (5) yields

$$
\begin{equation*}
r L \rho \geq \rho L r \tag{9}
\end{equation*}
$$

If any of the inequalities in (6) were strict then (9) will also be a strict inequality and we would have reached a contradiction; hence (6) are all equalities. As a consequence $E_{m}^{\mu} ; P_{a_{j}}^{\alpha_{j}}, 1 \leq j \leq \mu ; Q_{b_{k}, 1 \leq k \leq m-\mu \text {, are all elements }}^{\beta_{k}}$ of S_{λ}^{*} and using (3) we deduce that there are positive integers $e^{\prime} ; p_{j} ; 1 \leq j \leq \mu$; $q_{k}, 1 \leq k \leq m-\mu$; so that the following relations are satisfied:

$$
\begin{array}{rlrlrl}
\mu & =e^{\prime} \rho+1, & & m=e^{\prime} r+2, & & \\
a_{j} & =p_{j} \rho+1, & & a_{j} & =p_{j} r+1, & \tag{10}\\
\beta_{k} & =q_{k} \rho, & & b_{k}=q_{k} r+1 \leq \mu \\
& & 1 \leq k \leq m-\mu
\end{array}
$$

And also we have

$$
\begin{align*}
e^{\prime} \leq e, & \\
p_{j} \leq p, & 1 \leq j \leq \mu, \tag{11}\\
q_{k} \leq q, & 1 \leq k \leq m-\mu
\end{align*}
$$

Using (10) and (11) we obtain

$$
\begin{align*}
\sum_{j=1}^{\mu} a_{j}+\sum_{k=1}^{m-\mu} b_{k} & =\sum_{j=1}^{\mu}\left(p_{j} r+1\right)+\sum_{k=1}^{m-\mu}\left(q_{k} r+1\right) \\
& =\sum_{j=1}^{\mu} p_{j} r+\mu+\sum_{k=1}^{m-\mu} q_{k} r+(m-\mu) \tag{12}\\
& \leq p(e \rho+1) r+q(e(r-\rho)+1)+e r+2=L r+2 .
\end{align*}
$$

Consequently, if any of the inequalities of (11) were strict, by comparing (5) and (12) we get a contradiction. Hence (11) must all be equalities. This concludes the proof of Claim 1.

So, in (4), if either e, p or q are nonzero, using (iii) and Claim 1 we obtain

$$
[E(P, Q)]_{L r+2}^{L \rho+1}=E_{e r+2}^{e \rho+1}\left(P_{p r+1}^{p \rho+1}, Q_{q r+1}^{q \rho}\right)=0
$$

which is a nontrivial relation of algebraic dependence for $P_{p_{r+1}}^{p \rho+1}$ and $Q_{q r+1}^{q \rho}$, and applying Lemma 1 we see that one of them must be zero. But this contradicts the choice of e, p, q. Hence $e=p=q=0$. This concludes the induction and the proof of the theorem.

Corollary 1. The map $\mathrm{Ab}: \operatorname{Aut}(R\langle x, y\rangle) \rightarrow \operatorname{Aut}(R[\widetilde{x}, \tilde{y}])$ induced by the abelianization functor is a monomorphism.

Proof. Let $\phi \in \operatorname{Aut}(R\langle x, y\rangle)$ be such that $\operatorname{Ab}(\phi)=\widetilde{\phi}=\mathrm{id}{ }_{R[\widetilde{x}, \tilde{y}]}$. Let $\phi(x)=P(x, y), \phi(y)=Q(x, y) ; \phi^{-1}(x)=A(x, y), \phi^{-1}(y)=B(x, y)$.

Set $E=A B-B A$.
The following equalities hold:

$$
\begin{gather*}
A(P(x, y), Q(x, y))=x, \quad B(P(x, y), Q(x, y))=y \tag{13}\\
E(P, Q)=x y-y x .
\end{gather*}
$$

If we apply now the abelianization map we obtain

$$
\begin{align*}
\tilde{\phi}(\tilde{x}) & =\tilde{P}(\tilde{x}, \tilde{y})=\tilde{x}, \quad \tilde{\phi}(\tilde{y})=\tilde{Q}(\tilde{x}, \tilde{y})=\tilde{y}, \\
\tilde{A}(\tilde{x}, \tilde{y}) & =\tilde{x}, \quad \tilde{B}(\tilde{x}, \tilde{y})=\tilde{y}, \quad \widetilde{E}(\tilde{x}, \tilde{y})=0 . \tag{14}
\end{align*}
$$

As a consequence of (14), P, Q, E satisfy the hypothesis of Theorem 1 , and we conclude

$$
\begin{equation*}
P=\alpha x, \quad Q=\beta y+f(x) . \tag{15}
\end{equation*}
$$

But (14) gives $\alpha=\beta=1$ and also $f(x)=0$. This shows that $\phi=\mathrm{id}_{R(x, y\rangle}$, therefore completing the proof of Corollary.1.

Corollary 2. If F is a field, then the map $\operatorname{Ab}: \operatorname{Aut}(F\langle x, y\rangle) \rightarrow \operatorname{Aut}(F[\tilde{x}, \tilde{y}])$ of Corollary 1 is bijective.

Proof. H. Jung [4] proved that every automorphism of $F[\tilde{x}, \tilde{y}]$ is tame when F is a field of characteristic 0 (see also A. Gutwirth [6]) and the same conclusion follows from a theorem of M. Nagata [7] if F is a field of characteristic p. (1)

We now observe that given an elementary automorphism π of $F[\tilde{x}, \tilde{y}]$ there exists an elementary automorphism of $F(x, y)$, say π^{*}, so that $\mathrm{Ab}\left(\pi^{*}\right)=\tilde{\pi}=\pi$. Since every automorphism of $F[\tilde{x}, \tilde{y}]$ is tame (i.e. a product of elementary
${ }^{(1)}$ Added in proof. The same result has also been proved independently by W. van der Kulk [8].
automorphisms), the surjectivity (and by Corollary 1 the injectivity) of Ab follows.
A restatement of this corollary gives
Corollary 3. If F is a field then every automorphism of $F\langle x, y\rangle$ is tame.
Corollary 4. If R is a commutative domain with 1 , then every automorphism of $R\langle x, y\rangle$ keeps $[x, y]=x y-y x$ fixed (up to multiplication by a unit of R).

Proof. We simply have to observe that if ϕ is an automorphism of $R\langle x, y\rangle$ then ϕ induces an automorphism of $F\langle x, y\rangle$, where F is the field of fractions of R. Since every tame automorphism keeps $[x, y]$ fixed (up to scalar multiplication), we conclude that ϕ keeps $[x, y]$ fixed up to multiplication by an element of F, say α.

Since the same reasoning applies to ϕ^{-1} we are able to conclude that in fact α is a unit of R.

Remarks. 1. The following example due to G. M. Bergman shows that Corollary 3 is not true if R is not a field.

One first shows that if ϕ is a tame automorphism of $R\langle x, y\rangle$ (or of $R[\tilde{x}, \tilde{y}]$), then if $\operatorname{deg} \phi(x)>\operatorname{deg} \phi(y)$, the highest degree component of $\phi(x)$ is a power of that of $\phi(y)$, times an element of R. We omit the details here.

Let c be a nonzero nonunit of R. We shall construct a tame automorphism of the free algebra over $R\left[c^{-1}\right]$ such that all coefficients in ϕ and ϕ^{-1} lie in R, but such that the highest degree component of $\phi(x)$ is a power of that of $\phi(y)$ times c^{-1}. Thus, ϕ induces an automorphism of the polynomial ring in x and y over R, but this cannot be tame. ϕ is obtained in the following way:

Define automorphisms

$$
\text { a by }\left\{\begin{array} { l }
{ \alpha (x) = x + c ^ { - 1 } y ^ { 2 } , } \\
{ \alpha (y) = y ; }
\end{array} \quad \beta \text { by } \left\{\begin{array}{l}
\beta(x)=x \\
\beta(y)=y+c^{3} x^{2}
\end{array}\right.\right.
$$

and let $\phi=\alpha \beta \alpha^{-1}$. Then $\phi^{ \pm 1}=\alpha \beta^{ \pm 1} \alpha^{-1}$ is given by

$$
\begin{aligned}
& \phi^{ \pm 1}(x)=\left(x+c^{-1} y^{2}\right)-c^{-1}\left(y \pm c^{3}\left(x+c^{-1} y^{2}\right)^{2}\right)^{2} \\
& \phi^{ \pm 1}(y)=y \pm c^{3}\left(x+c^{-1} y^{2}\right)^{2}
\end{aligned}
$$

Note that the expression $c^{3}\left(x+c^{-1} y^{2}\right)^{2}$ reduces to $c\left(c x+y^{2}\right)^{2}$, while in the expression for $\phi^{ \pm 1}(x)$, terms $c^{-1} y^{2}-c^{-1} y^{2}$ cancel; we find

$$
\begin{aligned}
& \phi^{ \pm 1}(x)=x \pm\left(y\left(c x+y^{2}\right)^{2}+\left(c x+y^{2}\right)^{2} y\right)+c\left(c x+y^{2}\right)^{4} \\
& \phi^{ \pm 1}(y)=y \pm c\left(c x+y^{2}\right)^{2}
\end{aligned}
$$

Thus, ϕ has the properties claimed.
2. One would like to know for what classes of rings is Corollary 2 true. There is a counterexample to it, also due to G. M. Bergman, involving an R that
is not separably closed in its integral closure.
3. With respect to Corollary 4, there is a related conjecture (see [3, p. 197]): is it true that every endomorphism of $R\langle x, y\rangle$ that keeps $[x, y]$ fixed (up to multiplication by a unit of R) is an automorphism of $R\langle x, y\rangle$?

We give an affirmative answer to it, under very restrictive conditions in the following:

Corollary 5. Let ϕ be an endomorphism of $R(x, y)$ such that $\phi(x)=P$, $\phi(y)=Q,[P, Q]=\lambda[x, y], \lambda$ a unit of R. Assume further that conditions (i) and (ii) for P and Q of Theorem 1 are satisfied. Then ϕ is indeed an automorphism of $R\langle x, y\rangle$.

The proof is an immediate consequence of Theorem 1, by taking $E(x, y)=$ $\lambda^{-1}[x, y]$.

REFERENCES

1. P. M. Cohn, Free associative algebras, Bull. London Math. Soc. 1 (1969), 1-39. MR 39 \#2800.
2. ——, On subsemigroups of free semigroups, Proc. Amer. Math. Soc. 13 (1962), 347-351. MR 25 \#3111.
3. _, Lecture notes on free rings, Yale University, New Haven, Conn., 1962.
4. A. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2. I, Thesis, New York University, 1970; Trans. Amer. Math. Soc. 160 (1971), 393-401.
5. H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. MR 5, 74.
6. A. Gutwirth, An inequality for certain pencils of plane curves, Proc. Amer. Math. Soc. 12 (1961), 631-638. MR 23 \#A4053.
7. M. Nagata, A theorem of Gutwirth, J. Math. Kyoto Univ. 11 (1971), 149-154. MR 43 \#213.
8. W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33-41. MR 14, $941 .\left({ }^{2}\right)$

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027
(2) Added in proof.

[^0]: Received by the editors August 5, 1971.
 AMS 1970 subject clas sifications. Primary 16A06, 16A72; Secondary 20F55, 16A02.
 Key words and phrases. Free associative algebra, endomorphisms, automorphisms, elementary automorphisms, tame automorphisms, wild automorphisms, polynomial rings, euclidean domains.
 *See footnote on page 313.

[^1]: *See footnote on page 313.

