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ABSTRACT. Let R be a commutative domain with 1. R(x, y) stands for
the free associative algebra of rank 2 over R; Rz, '}\/] E\sz the polynomial
algebra over R in the commuting indeterminates % and Yo

We prove that the map Ab: Aut (R(x, y)) — Aut (R[x, y]) induced by the
abelianization functor is a monomorphism. As a corollary to this statement

and a theorem of Jung [5], Nagata [7] and van der Kulk [8]* that describes

the automorphisms of F['a?', ;‘/’] (F a field) we are able to conclude that every

automorphism of F(x, y) is tame (i.e. a product of elementary automorphisms).

R stands for a commutative domain with 1. R(x, y) is the free associative
algebra of rank 2 over R on the free generators x and y; R[%, ’)7] is the poly-
nomial algebra over R on the commuting indeterminates % and ')\7

We will prove here that the answer to the following conjecture [3, p. 197] is
in the affirmative:

If F is a field then the group of automorphisms of F(x, y) is generated by
the elementary automorphisms (defined below) of F(x, y) (i.e. every automor-
phism of F(x, y) is tame).

In fact, we are going to prove here that, if R is as above, the map Ab:

Aut (R(x, y)) — Aut (R[x, }']) induced by the abelianization functor is a mono-

morphism and as a consequence of this statement and a theorem of Jung, Nagata
~

and van der Kulk* that says that every automorphism of F[x, 37] is tame (for F a

field) we will be able to give a complete description of Aut (F(x, y)).

The proof is a generalization of the proof of the main theorem of [4]; in fact
the algorithm we use here to solve a system of equations in R(x, y) is essentially
the same we used in the previous paper. We will refer to [4] for additional
details in the proofs.

I am indebted to G. M. Bergman for making the observation that the tameness
result is not true in the generality claimed in our previous paper [4] and announced
in the Bulletin of the AMS in November 1971 [Automorphisms of a free associative
algebra of rank 2, Bull. Amer. Math. Soc. 77(1971), 992-994], since the corres-
ponding tameness theorem for the abelian case (i.e. the theorem of Jung,
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Nagata and van der Kulk*) is only true for a field (and does not apply to a gener-
alized euclidean domain).

Notation and preliminaries. We will write R(x, y) as a bigraded algebra:

R('x: )’) = @ @;O

r>pP>0

where the subindex stands for the homogeneous degree and the upper index
denotes the degree in x.

For every P € R(x, y), we write

P = ,Zp Pf uniquely, where Pf € @f
The elementary automorphisms of R(x, y) are by definition the following:
(i) o € Aut (R(x, y)), olx) =y, oly) = x,

(ii) ¢, g € Aut (R(x, y)), a, B units of R, ¢, gx) = ax, ¢’a.ﬁ(y) = By,

(iii) 7,y € Aut (R{x, y)), where f(y) is any polynomial that does not depend
on xj 7y () =x +f(y), 7,0,(y) = y. N

The same definitions characterize the elementary automorphisms of R[%, y 1.

Let E, P, O € R{x, y). For every E; choose *E: =*El(z), -+, 2,) to be
a polynomial in m variables, homogeneous of degree 1 in each and such that
EZ:*E”;(x, <+, %,y,+++,y), where we have put x=z,1<i<y y =2
p+1<j<m Even though *Ef; is not uniquely determined by E:’ we choose it
to be zero when the latter is.

We can then write

E(P, Q)= Y, EX(P, Q)

m, i

= E(P ’...’P ’Q ,...,Q )
m‘.\_‘; a.g.ﬁ ™A W h bm—p
where a=(al,...,a#), a=(al,...,a#), bz(bl"”’bm—u)’ B:‘(Bl”"’

Bm—#)' .

Lemma 1. Let ¢, d be nonnegative integers, r, s positive integers. Let
P= P:gﬁ and Q = Q:.“_"+1 be two algebraically dependent elements of R(x, y) of
homogeneous degrees (rc + 1) and (sc + 1) respectively and degrees in x equal
to (rd + 1) and (sd) respectively., Then either P =0 or Q = 0.

Proof. We simply have to observe that the proofs of Lemmas 1 and 3 of [4]
are still valid if instead of assuming that the polynomials commute we allow them
to satisfy a nontrivial relation of algebraic dependence.

Main results.

Theorem. Let P, Q, E € R(x, y) satisfy the following requirements:

(i) P§=00=0, Eg=E, =0;
(i) P2=0 forall n>1, Q% =0 forall m>2, E® =0 forall 1> 2;
(iii) E(P, Q) = xy — yx.

*See footnote on page 313,
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Then we conclude that
P=Pi=ax, Q=07+ 0"=By+/&x), E=(@B) '(xy-yx)
n
where a, B are units of R.

Proof. For every rational number A > 0, define

S, =tP% a>1,a>1, (@-1D/a-1)=Auig? b>1, B>0,B/(b~1)=AMA

a)

ULEE, m>2, p>1, (p-1)/(m—2)= A}

To prove the assertion of the theorem we only need to prove that §) = {0}
for every A.

Since SA can be different from {0} for at most finitely many values of A we
can use the ordering of the rational numbers to prove inductively that 8, = {0}
for all A.

For this purpose let & = {pl, Q?, E;} and let us set S’; = 5)‘ U . We then
must show that 8} = § for all A.

Suppose we have proved S;‘} =3 for every X' <X and let us prove
) & =38,

i.e. we have to prove that if X € S; then X € 8. Observe that we include the
case A =0 in the inductive process.

Write A = p/r where p and r are relatively prime positive integers if A > 0
orelse p=0,r=1if A=0.

With this notation we can write

] . 10+1 .
3) 8y =1PpPH b2 0 Ui, i 200 ULES!); j> 0l

Since we have a finite collection of polynomials we can assume that the fol-
lowing holds:
@ ESPHI=0 ife'>e,  PRAI-0 if p'>p,  QLA,=0 ifq >q,
£0 for e =e; £0 if p' =p; £0 ifqg' =g
To obtain assertion (2) it will suffice to show that e = p=¢=0.
Claim 1. Let L = epp + eq(r — p) + e + ¢ + p. Then under the inductive
hypothesis and conditions (4) the only term of E(P, Q) that lies in &tf:zl is

ep+l (pp P+l ~Hap
Eer+2 (P0r+1 ’ qu+l)'

Proof of Claim 1. In the notation of (1), a typical summand of [E(P, Q)]li“::;
is of the following form:

1 Lptl _ " %1 ap 'Bl 'Bm—p.
ay (AP, 1Lt - ) az; , CER(Pops s Pal Oy, 0,77
where

(5) Zu:“ﬁ by=Lr+2, 3 a.+ 3 By=Lp+l

j=1 k=1 ji=1 k=1
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(In (1") *E: is a polynomial in m variables, homogeneous of degree 1 in each
and *E! =0 whenever E! =0.)
By inductive hypothesis we know 5’;, =& if M <A, hence we can assume
that the following inequalities hold:
rp—1) > p(m — 2),
(6) Mo, =) >pla; = 1), 1<j<p,
By >p(b, = 1), 1<k<m=—p.

If we now add the inequalities (6) term by term we obtain
I m—p © m—p
) r(y-1+2a].-;1+ Z Bk) 2p<m—2+z a -p+ Z bk—-(m—p)>
j=1 k=1 j=1 k=1
which is simply
e m—p © m—p
(8) r<j§aj+kz=:l Bk—l)ZP j;la’.+kz=l bk_)‘

The inequality (8) together with (5) yields

(9 rLp > pLr.

If any of the inequalities in (6) were strict then (9) will also be a strict
inequality and we would have reached a contradiction; hence (6) are all ¢qual-
ities. As a consequence EZ; PZ’j, 1<j<my Q'i’;, 1<k<m-p, are all elements
of 5: and using (3) we deduce that there are positive integers e'; 2 1<7<m,
9y, 1 <k <m— p; so that the following relations are satisfied:

p=e'p+1, m=e'r+2,
(10) a;j=pp+l, a=pr+l, 1<j<p
Bi= ap, by=q,r+1, 1<k<m-—p.
And also we have
e'ge,
an pi<p, 1<j<p,

9, <4, 1<k<m-—p.
Using (10) and (11) we obtain

“w

m—HM
0+ Y b,
=1 k=1

(pr+1)+ 2 (g,7+ 1)

]

m—p

biT+ o+ kzl g7+ (m — p)

(12)

VRN

<
1]
—

<plep+ Dr+qle(r—p)+1)+er+2="Lr+2.
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Consequently, if any of the inequalities of (11) were strict, by comparing
(5) and (12) we get a contradiction. Hence (11) must all be equalities. This
concludes the proof of Claim 1.

So, in (4), if either e, p or g are nonzero, using (iii) and Claim 1 we

obtain

Lp+l _ pep+l (ppptl Hap ) _
[E(P' Q)] Lr+2 — Eer+2 (Ppr+1 ’ qu+l) =0,

. . .. . . bp+l qp
which is a nontrivial relation of algebraic dependence for Ppr+1 and qu+1’ and
applying Lemma 1 we see that one of them must be zero. But this contradicts

the choice of e, p, g. Hence e = p = g = 0. This concludes the induction and the

proof of the theorem.

Corollary 1. The map Ab: Aut (R(x, y)) — Aut (R[%, ¥]) induced by the

abelianization functor is a monomorphism.

Proof. Let ¢ € Aut (R(x, y)) be such that Ab(¢) = :i; = idR[,\, oL Let
- Z XY
#(x) = P(x, y), ¢(y) = 0(x, y); ¢~ 1x) = Alx, y), ¢~ 1(y) = B(x, y).
Set E = AB - BA.
The. following equalities hold:
A(P(x, y), O(x, y)) = x, B(P(x, y),0(x, y)) =y,
E(P, Q) = xy — yx.
If we apply now the abelianization map we obtain
& =PE=% =-0EN-=5
AR =% B&Y-=y, EFM-o0.

As a consequence of (14), P, Q, E satisfy the hypothesis of Theorem 1,

(13)

(14)

and we conclude
(15) P=oax, Q=By+/[x).

But (14) gives a = 8 =1 and also f(x) = 0. This shows that ¢ = id
therefore completing the proof of Corollary.1.

R(x, y)’

Corollary 2. If F is a field, then the map Ab: Aut (F(x, y)) — Aut(F[%, 31

of Corollary 1 is bijective.

Proof. H. Jung [4] proved that every automorphism of F[x, y] is tame when
F is a field of characteristic 0 (see also A. Gutwirth [6]) and the same conclu-
sion follows from a theorem of M. Nagata [7] if F is a field of characteristic p. (1)

We now observe that given an elementary automorphism 7 of Flx, 37] there
exists an elementary automorphism of F(x, y), say m*, so that Ab (s*) = 7 =

. . N, N . .
Since every automorphism of Flx, y] is tame (i.e. a product of elementary

(1) Added in proof. The same result has also been proved independently by W. van
der Kulk [8].
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automorphisms), the surjectivity (and by Corollary 1 the injectivity) of Ab follows.
A restatement of this corollary gives

Corollary 3. If F is a field then every automorphism of F(x, y) is tame.

Corollary 4. If R is a commutative domain with 1, then every automorphism

of R(x, y) keeps [x, yl = xy — yx fixed (up to multiplication by a unit of R).

Proof. We simply have to observe that if ¢ is an automorphism of R(x, y)
then ¢ induces an automorphism of F(x, y), where F is the field of fractions of
R. Since every tame automorphism keeps [x, y] fixed (up to scalar multiplica-
tion), we conclude that ¢ keeps [x, y] fixed up to multiplication by an element
of F, say a.

Since the same reasoning applies to ¢-1 we are able to conclude that in
fact a is a unit of R.

Remarks. 1. The following example due to G. M. Bergman shows that
Corollary 3 is not true if R is not a field.

One first shows that if ¢ is a tame automorphism of R(x, y) (or of R[x, yD,
then if deg ¢(x) > deg ¢(y), the highest degree component of ¢(x) is a power of
that of ¢(y), times an element of R. We omit the details here.

Let c be a nonzero nonunit of R. We shall construct a tame automorphism
of the free algebra over R[c™!] such that all coefficients in ¢ and qS'I lie in
R, but such that the highest degree component of ¢(x) is a power of that of ¢(y)
times ¢~ !. Thus, ¢ induces an automorphism of the polynomial ring in x and y
over R, but this cannot be tame. ¢ is obtained in the following way:

Define automorphisms

alx) = x + c~1y?, Bx) = x,
b b
P lak) = y; B by BO) =y + ?x%;

and let ¢ = afa”'. Then ¢*! = aB*'a~! is given by
@) = (r+ 7y - ey 2 A+ 7)),
¢ﬂ(}') =yt lx o+ c'lyz)z.

Note that the expression 3lx+c” 1y2)2 reduces to clcx + yz)z, while in

1.2 2

the expression for ¢i1(x), terms ¢~ 'y° — ¢~ ly cancel; we find

¢ﬂ(x) =x t(ylex + y2)? + (cx + y2)2y) + clex + y2)4,
¢ﬂ(y) =y tclex + y2)2.
Thus, ¢ has the properties claimed.

2. One would like to know for what classes of rings is Corollary 2 true.

There is a counterexample to it, also due to G. M. Bergman, involving an R that
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is not separably closed in its integral closure.

3. With respect to Corollary 4, there is a related conjecture (see [3, p. 197D):
is it true that every endomorphism of R{x, y) that keeps [x, y] fixed (up to multi-
plication by a unit of R) is an automorphism of R{x, y)?

We give an affirmative answer to it, under very restrictive conditions in the

following:

Corollary 5. Let ¢ be an endomorphism of Rx, y) such that ¢(x) =P,
d(y) = Q, {p, Q] = Mx, y], A a unit of R. Assume further that conditions (i) and
(ii) for P and Q of Theorem 1 are satisfied. Then ¢ is indeed an automorphism
of R{x, y).

The proof is an immediate consequence of Theorem 1, by taking E(x, y) =

A, yl.
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