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AUTOMORPHISMS OF A FREE ASSOCIATIVE

ALGEBRA OF RANK 2. II

BY

ANASTASIA J. CZERNIAKIEWICZ

ABSTRACT.   Let  7?   be a commutative domain with 1.  R(x, y)   stands for

the free associative algebra of rank 2 over  7?;  R\x, y"]  is the polynomial

algebra over  R   in the commuting indeterminates  x and y.

We prove that the map  Ab:  Aut (/?(%, y))—» Aut (R[x, y"]) induced by the

abelianization  functor is a monomorphism.   As a corollary to this statement

and a theorem of Jung [5], Nagata [7] and van der Kulk [8]* that describes

the automorphisms of  F\x, y"] (F  a field) we are able to conclude that every

automorphism of  F(x, y)   is tame (i.e. a product of elementary automorphisms).

R  stands for a commutative domain with   1.    R(x, y) is the free associative

algebra of rank 2 over  R  on the free generators  x and y;   R[x, y ] is the poly-

nomial algebra over  R  on the  commuting indeterminates  x   and  y.

We will prove here that the answer to the following conjecture   [3, p. 197] is

in the affirmative:

If  F  is a field then the group of automorphisms of  F(x, y)  is generated by

the elementary automorphisms (defined below)  of F(x, y) (i.e. every automor-

phism of  F(x, y)  is tame).

In fact, we are going to prove here that, if  R  is as above, the map Ab:

Aut (R (x, y)) —► Aut(/?[x, y ]) induced by the abelianization functor is a mono-

morphism and as a consequence of this statement and a theorem of Jung, Nagata

and van der Kulk* that says that every automorphism of  FLx, y J is tame (for F a

field) we will be able to give a complete description of Aut (F(x, y)).

The proof is a generalization of the proof of the main theorem of  [4]; in fact

the algorithm we use here to solve a system of equations in  R(x, y) is essentially

the same we used in the previous paper.  We will refer to  [4] for additional

details in the proofs.

I am indebted to G. M. Bergman for making the observation that the tameness

result is not true in the generality claimed in our previous paper [4] and announced

in the Bulletin of the AMS  in November 1971 [Automorphisms of a free associative

algebra of rank 2, Bull. Amer. Math. Soc. 77(1971), 992-994], since the corres-

ponding tameness theorem for the abelian case  (i.e. the theorem of Jung,

Received by the editors August 5, 1971.

AMS 1970 subject classifications. Primary 16A06, 16A72; Secondary 20F55, 16A02.
Key words and phrases.   Free associative algebra, endomorphisms, automorphisms,

elementary automorphisms, tame automorphisms, wild automorphisms, polynomial rings,

euclidean domains.

*See footnote on page 313.
Copyright © 1972, American Mathematical Society

309



310 A. J. CZERNIAKIEWICZ [September

Nagata and van der Kulk*) is only true for a field (and does not apply to a gener-

alized euclidean domain).

Notation and preliminaries.  We will write  R(x, y) as a bigraded algebra:

R(x,y) =    0   QP
r>p>0

where the subindex stands for the homogeneous degree and the upper index

denotes the degree in  x.

For every   P £ R(x, y), we write

P =   £ PP    uniquely,     where   PP £ 8P.
r, P

The  elementary automorphisms  of  R(x, y) ate by definition the following:

(i)  ff e Aut (R (x, y)),  oix) = y,  o(y) = x,

(ii) cpa^ß £ Aut(R(x, y)), <x,ß units of R, <pa> ß(x) = ax,  <patß(y) = ßy,

(iii) t.,   . £ Aut(/?(x, y)), where  /(y) is any polynomial that does not depend

0n  **  r/(y)^x) = * + /(y)'  r/(y)(y) = y-

The same definitions characterize the elementary automorphisms of  Rix, y ].

Let  E, P, Q £ R(x, y).   For every  Eß   choose   *EM = *EM(z. , . . . , z   ) to be
'      ' * >   '  J' '       m zzz m      1' '     zzz

a polynomial in  222  variables, homogeneous of degree 1   in each and such that

ß _ *
F   ix, ■ ■ ■ , x, y, ■ ■ ■ , y), where we have put x = z .,   1 <  i < p; y = z.,E

771 rri ... - ..

p + 1 < / < 222.   Even though  *E     is not uniquely determined by  E^   we choose it

to be zero when the latter is.

We can then write

e(p, e) = Z Em{p- e)
zzz, /J.

(1>       ■ z z *^^r^>i4'-'''«¿»:t)
where zj = (zZj, - - - , a^), a = (a,, • • • , a^), b = (¿,, •• ■ , bm_f).   ß = (ß,, • ■ • ,

Lemma 1.   Let  c, d be nonnegative integers, r, s positive integers.   Let

P = P      .   and Q = Qs    .   be two algebraically dependent elements of R(x, y) of

homogeneous degrees  ire + 1) and isc +1) respectively and degrees in x equal

to ird +1) a72£z' isd) respectively.   Then either P = 0 or Q = 0.

Proof.  We simply have to observe that the proofs of Lemmas 1 and 3 of  [4]

are still valid if instead of assuming that the polynomials commute we allow them

to satisfy a nontrivial relation of algebraic dependence.

Main results.

Theorem.   Let  P, Q, E £ R(x, y) satisfy the following requirements:

(i) P°0 = Q°0 = 0, E0 = Ex=0;
(ii)  P° = 0 for all 72 > 1,  0°  = 0 for all 222 > 2,   E° = 0 for all r > 2;

ZZ ' —       '    a772 ' —      ' r ' —       '

(iii)   E(P,  Q) = xy; - yx.

*See footnote on page 313.
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Then we conclude that

P=P\=ax,        Q = Q° + £ Ql = ßy +/M>        E = (a/3)_1(xy -yx)
72

7 Q .inwhere a, p are units of  R.

Proof.   For every rational number  X > 0, define

SA = ¡P*; a > 1,  a > 1,  (a - l)/(a - 1) = Ai U |g£  è > 1, /8 > 0, ß/(b - 1) = A[

U {E^; 77Z > 2,  p > 1,  (p. - 1)/(t72 - 2) = AS.

To prove the assertion of the theorem we only need to prove that  SA = jOi

for every  X.

Since SA can be different from [01 for at most finitely many values of A we

can use the ordering of the rational numbers to prove inductively that SA = [Oi

for all A.

For this purpose let S = {Pj, Cjj, FA and let us set SA = SA U S.  We then

must show that dA = o for all  A.

Suppose we have proved  §A< = S for every  A' < A and let us prove

(2) S* = S,

i.e. we have to prove that if  X £ S* then  X £ o.  Observe that we include the

case  A = 0 in the inductive process.

Write  A = p/r where  p and  r ate relatively prime positive integers if A > 0

or else  p = 0, r = 1   if À = 0.

With this notation we can write

(3) S* = {Phh?;¡ ; h > 01 u {Q?r + l ; i > 01 u \BJ$ ; ; > 0}.

Since we have a finite collection of polynomials we can assume that the fol-

lowing holds:

(4) K'ttl -  °      Íf   S' > 6' I'Zl  = °      Íf   P< > ?' QÍ'r + i = °     " *' > *<
/ 0    for e' = e; / 0    if p' = p; ¿0    if a'= a.

To obtain assertion  (2) it will suffice to show that  e = p = a = 0.

Claim 1.  Let  L = epp + eq(r - p) + e + q + p.   Then under the inductive

hypothesis and conditions  (4) the only term of  E(P, Q) that lies in Q. p2   is

pep+1 Ippp-rl    nqp    \
Cer + 2^pr+l ' ^qr + J'

Proof of Claim 1.  In the notation of (1), a typical summand of [E(P, Q)]hf2

is of the following form:

(O     tout* «H&i -    Z    •^v"->2"ßi.-"iß^?
a, a, b, ß l Ml 7Z2-M

where

M m-zx M 772-72.

(5) 5>y+Z ** = *- +2>   Ea7+Z^ = ̂  + 1-
2 = 1 ¡Ul 7 = 1 Zfe = l
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(In  (1') *F     is a polynomial in  772  variables, homogeneous of degree 1 in each

and  *EM = 0 whenever EK = 0.)
zzz zzz

By inductive hypothesis we know 5,,  = S  if X' < X, hence we can assume

that the following inequalities hold:

rip- 1) > p(z72 - 2),

(6) r(a. -1) >p(a. - 1),        1 < 7 < p,

rßk  >P(bk ~ 1)'        I <k<m - p.

If we now add the inequalities  (6) term by term we obtain

(m-ß       \ I zzz —M \

V- - 1  + Z  ai ~ r1 +   X,    ßk)    ?■ P \m -  2 + H  aj * r1 +   Z     hk - (TO - M
2 = 1 fc.l / \ 7 = 1 fc.l /

which is simply

(772—M \ /   ß m-ß \

2>,-+E ^-1 >p E-.-+Z *fc-2 •
7 = 1 fc = l ) \; = 1 fc = l /

The inequality   (8) together with  (5) yields

(9) rLp > pLr.

If any of the inequalities in  (6) were strict then  (9) will also be a strict

inequality and we would have reached a contradiction; hence  (6) are all equal-

ities.  As a consequence  E^; P^7, 1 < / < p; 2/> 1 < zs < 222 - p, are all elements

of o^  and using  (3) we deduce that there are positive integers   e';  p.7  1 < / < p;

1 k>   1 < ^ < ra — Mi  so that the following relations are satisfied:

p = e'p + 1, m = e'r + 2,

(10) a.= p.p + l,        a. = 25.r+l, 1</<P,

ßk^lkP' hkrc¡kr+l'        1 < k<m - p.

And also we have

e' < e,

(11) />,-</?,        1</<P,

?i   < 9> 1   <  ZÍ  <   722   —   p.

Using  (10) and  (11) we obtain

ß m—ß ß m—ß

Z>,+ Z^ = Z(v + 1)+Z(^ + 1)
;' = 1 fc = l 7 = 1 fc = l

ß m-ß

(12) =^2 p.r + p+  ^2   akr +i™ - P)
2=1 k=l

< p(ep + lV + q(e(r - p) + l) + er + 2 = Lr + 2.
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Consequently, if any of the inequalities of (11) were strict, by comparing

(5) and (12) we get a contradiction. Hence (11) must all be equalities. This

concludes the proof of Claim 1.

So, in (4), if either e, p or a  are nonzero, using  (iii) and Claim 1   we

obtain

[E(P, Q)]Lp+\ = Eep+\(Ppp+}, Qqp ,) = 0,
'  x-'JLr + 2 er + 2      Pr + i     *-qr + l '

which is a nontrivial relation of algebraic dependence for  Ppp+,   and O       ,, and
6 r pr + l ^qr + 1'

applying Lemma 1 we see that one of them must be zero.   But this contradicts

the choice of  e, p, a.   Hence  e = p = a = 0.  This concludes the induction and the

proof of the theorem.

Corollary 1.   The map Ah: Aut(R(x, y))—r Aut (Rix, y"]) induced by the

abelianization functor is a monomorphism.

Proof.   Let  cp £ Aut (R(x, y)) be such that  Ab (cp) = <p = id   ^ ^-i.  Let

<p(x) = P(x, y),   cf>(y) = Q(x, y);   d>~l(x) = A(x, y),   cp~l(y) = B(x, y)?

Set E = AB - BA.

The following equalities hold:

A(P(x, y), Q(x, y)) = x, B(P(x, y), Q(x, y)) = y,

(13)
E(P, Q) = xy - yx.

If we apply now the abelianization map we obtain

cf>(x) = P(x, y) = x,        cp(y) = Q(x, y) = y,

Mx, y )  = X , ß(x, y ) = y , E(x, y ) = 0.

As a consequence of (14), P, Q, E  satisfy the hypothesis of Theorem 1,

and we conclude

(15) P = ax,       Q = ßy + f(x).

But (14) gives  a = ß = 1   and also f(x) = 0.  This shows that  cp = id„/       vi

therefore completing the proof of Corollary 1.

Corollary 2.   // F   is a field, then the map Ab: Aut (F(x, y))—► Aut (E[x, y ])

of Corollary 1   is bijective.

Proof.  H. Jung   [4]   proved that every automorphism of  F[x, y ]  is tame when

F  is a field of characteristic  0 (see also A. Gutwirth  [6]) and the same conclu-

sion follows from a theorem of M. Nagata  [7]  if  F  is a field of characteristic p. (*)

We now observe that given an elementary automorphism 77 of E[x, y] there

exists an elementary automorphism of F(x, y), say 77*, so that Ab (77*) = 77 = 77.

Since every automorphism of  F[x, y 1  is tame (i.e. a product of elementary

0) Added in proof. The same result has also been proved independently by W. van

der Kulk [8].
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automorphisms), the surjectivity (and by Corollary 1 the injectivity) of Ab follows.

A restatement of this corollary gives

Corollary 3.   // F  is a field then every automorphism of F(x, y)  is tame.

Corollary 4.   //   R is a commutative domain with  1, then every automorphism

of R(x, y) keeps   {x, y] = xy — yx  fixed iup to multiplication by a unit of R).

Proof.  We simply have to observe  that if cp is an automorphism of  R(x, y)

then cp induces an automorphism of  F(x, y), where  F  is the field of fractions of

R.  Since every tame automorphism keeps  [x, y] fixed (up to scalar multiplica-

tion), we conclude that  cp keeps   [x, y] fixed up to multiplication by an element

of F, say  a.

Since the same reasoning applies to cf>~    we are able to conclude that in

fact a is a unit of  R.

Remarks.   1.  The following example due to G. M. Bergman shows that

Corollary 3 is not true if R  is not a field.

One first shows that if </>  is a tame automorphism of  R(x, y) (or of  Rix, y]),

then if deg cp(x) > deg </>(y), the highest degree component of  cpix) is a power of

that of <p(y), times an element of  R.  We omit the details here.

Let  c be a nonzero nonunit of  R.  We shall construct a  z.a?72e  automorphism

of the free algebra over  R{c~   ]  such that all coefficients in  cp and  <p~     lie in

R, but such that the highest degree component of cp(x) is a power of that of <p(y)

times   c~   .  Thus, cp induces an automorphism of the polynomial ring in x and y

over  R, but this cannot be tame.  <p  is obtained in the following way:

Define automorphisms

\a(x) = x + c-ly2, \ß(x) = x,

a by )   ( \ ßhy)at) 32
(a.(y) = y; (ßiy) = y + c3x¿;

and let cp = a/3a~ 1.  Then cp   1 = a/3_1a~ '  is given by

cp±lix) =ix + c~ 'y2) - c-Ay ± cHx + c- V)2)2,

<p±1(y) = y ±cAx+c-ly2)2.

Note  that the expression  c (x + c~  y  )    reduces to c(cx + y  )  , while in

the expression for <p    (x), terms  c~  y    — c~  y     cancel; we find

cp±1(x) = x± (y(cx + y2)2 + (ex + y2)2y) + c(cx + y2)\

4>~ iy) = y ± cicx + y2)2.

Thus, cp  has the properties claimed.

2.  One would like to know for what classes of rings is Corollary 2 true.

There is a counterexample to it, also due to G. M. Bergman, involving an  R  that
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is not separably closed in its integral closure.

3. With respect to Corollary 4, there is a related conjecture (see [3, p. 197]):

is it true that every endomorphism of R(x, y) that keeps [x, y] fixed (up to multi-

plication by a unit of R) is an automorphism of  R(x, y)?

We give an affirmative answer to it, under very restrictive conditions in the

following:

Corollary 5.   Let <p  be an endomorphism of R(x, y) such that tp(x) = P,

cpiy) = Q,   [P, Q] = A[x, y], A a unit of R.  Assume further that conditions  (i) and

(ii) /o7  P and Q  of Theorem 1  are satisfied.   Then cp  is indeed an automorphism

of R(x, y).

The proof is an immediate consequence of Theorem 1, by taking  E(x, y) =

X~l[x, y].
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