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ABSTRACT. We consider an infinite, two person zero sum game played as fol-

lows:  On the rath move, players  A, B   select privately from fixed finite sets, A   ,

B   , the result of their selections being made known before the next selection is

made.  After an infinite number of selections, a point in the associated sequence

space, fl, is produced upon which B  pays  A   an amount determined by a payoff

function defined on   SI.   In this paper we extend a result of Blackwell and show

that if the payoff function is the indicator function of a set in the Boolean alge-

bra generated by the  G~'s   (with respect to a natural topology on   fl) then the

game in question has a value.

1.  Introduction.   Infinite games with imperfect information have been studied

by several writers, notably Blackwell [l], [2], and Shapley 151   Before proceeding

with the main result of this paper, we will discuss the structure and admissible

strategies of these games.

Let |A   j, [B  ! be sequences of nonempty finite sets.  Let Z   = A    x B   , and
zz'tz ^ xY J n n n

let ß be the space II~=1 Z    of infinite sequences co = (z , z2, • ••) where z^ e

Z  .   Let Q be topologized as follows (for a related discussion, see [3]):

Suppose  X is the set of all positions,   i.e.  finite  sequences,   x  =

izx, z ,.. ■ ,z ), z. £ Z., 77 = 0, 1, 2, • • •.  Then if co £ Q, x e X, we define x to

be a neighborhood of co if co passes through x.   If the positions are thus considered

as sets, they form a base for a Hausdorff, disconnected topology for Í1  in which  fi

is compact.

In this topology any open set is  defined by a subset of X  (a countable col-

lection of positions).  Any set defined by a finite collection of positions is both

open and closed.   It is shown by Wolfe [7] that if  G is a  G g then there exists a

collection of positions   T such that  G = \co £ 0 | co passes through infinitely many

members of  T], which we will henceforth denote by  G = T i.o.

Now, suppose / is a bounded Baire function on  Q.   Then we define a zero sum

two person game  G., played as follows:
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First, player A  selects   ¡7   e A     while player B  simultaneously selects  b j

£B      The result, z    = ia  , b A £ Z  , is announced to both players, upon which A

selects a    £ A    while  B  selects b2 £ B2, etc.  The result of this infinite sequence

of moves is a point co = (z  , z2, • • • ) £ Í2 and  B pays A    the amount /(oj).

A strategy  a (/3) for  A (B) gives for each position x (of length tz, say) a prob-

ability distribution on .A (Bn    j) with the stipulation that if the current posi-

tion is  x,  A  (B) will make his next choice according to  a (ß).  A pair of strategies

(a, ß) defines a probability distribution  P «   on fl and, hence, an expected payoff

to A in G. when A  uses a and B uses ß:

E(f,a, ß) = ff(co)dPaß(co).

The lower and upper values of G, ate, respectively,

L(G.) = sup inf E(f, a, ß),       U(G.) = inf sup E(f, a, ß).
'aß ' ß      a

It is always true that  L(G.) < U(G,); if  L(G,) = U(G,), this common value is called

the value of G. and will be denoted by Val (G A.

2.  Main Result.  We will show that if / = ¡G, where  G £ B(G5) (the Boolean

algebra generated by the  Cj's), then  G, has a value.  In [l], Blackwell proved this

result if  G is a G g.   Before proving this result, we give two examples of games of

this type and mention a related open question.

Example 1. On each move, players A and B choose, simultaneously, a 0 or

1.  The winning set S of the form  C.U F      is defined as follows:

S = G U F where   G = {co\ co    = (0, O) for infinitely many  n and  co    = (l, l) for

infinitely many 72!,

F = {cú\ co    = (O, O) for at most finitely many  tz and  co   = (l, l) for at most

finitely many  n\.

The value of this game is 1, which can be achieved by A  with a nonrandom

strategy; he starts by saying   1  on each move.   If  B  says   0 on every move, F is

hit.   If B  ever says   1,   A  then starts saying  0's.   If B  then says   1's  forever, E is

still hit.  If B  ever says  0 again,  A  switches back to  l's, etc.  If there are an in-

finite number of changes  G is hit, otherwise  E is hit.

Example 2.   The winning set is a  G g.   On each move, the players choose simul-

taneously a 0 or  1. If player A ever says   1, the game is over on that move; if B

also said  1,  A  wins; if B  said  0,  B wins.   If A never says   1, the game continues

and A wins if there are infinitely many moves with outcome (0, 0).   (In other words,

A  tries to predict B's choice.  See [2] for a related game.)

The value of this game is 1, but there are no optimal strategies for A. Here

is a strategy for A, due to David Blackwell, which, for fixed N, guarantees A at

least  1 - 1/N:
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Define  N. = 2'N,  / = 1, 2, • • • , so that

f^N.       N

Player A divides the trials into successive blocks of lengths  N     N 2, • • • .   If he

has not yet stopped the game, i.e. played   1  when block  / is reached, he selects

X. at random from  Í1, 2, • • • , N .\.  He then plays   1  at the  X .th trial of block /' if

B's previous  X. — 1  plays in the  block are all l's; otherwise, he plays   0 through-

out the block.   Then, clearly,

PiA   loses on /th  block | ;'th block is reached) < 1/zV ..

Thus, P(A loses on ;'th block) < l/N., and P(A  loses by failing to match) <

2 (l/N.) = 1//V.  However, by the nature of this strategy, if the game goes on forever,

A  will win, since there would then be  (0, 0)'s in each block.     □

The following question remains unsolved in general: Do games with payoffs

which are simple functions based on sets in B(G ^) have a value, i.e. games with

payoff of the form /= c Iß + • ■ ■ + c I„ , where B . £ B(G g), c . ate constants. In

fact, we do not even know whether or not the much simpler games with payoffs of

the form Iq — Iq have a value, where 0,, Q. ate open and disjoint. In another

paper we will discuss some special cases of these kinds of games and show that

they have a value.

We are now ready to prove the main result.

Lemma 1.   Consider the class of sets of the form

G, U F. U (G, n F A U • • • U (G   D F )
1 i ¿ ¿ n n

where G. e G g,   F. £ F   .   This class of sets is precisely  B(G §).

Proof.   By the fact that a finite union of G As is a  G g, a finite intersection of

Fp.'s  is an  F(y, and by the standard results for  generating Boolean algebras (e.g.

see [4, Proposition I. 2.2, p. 7]) it is easily shown that every set in B(G g) is of

the form \Jn{ =1 (G. C\ F A, G. £ G%,  F.  £ Fa.  Thus, every set in B(Gs) is of the

form

(u'<<vrvF¿>Y- n^i"^
\z = l / z' = l

¿FOu(ñc-)ü(¿(FínCíc'
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which, again using the fact about finite unions (intersections) of  Gg's  (F   's) is

easily seen to be of the required form.

Lemma 2.   Consider the class of sets C = U°°_i ^-    generated in the following

way: C    = G <-; if n > 1,  C   = sets of the form  G g U A   _     where A    = complements

of sets in C    (e.g. C2 = Gg U F   ).   We claim C = B(G A.

Proof.  By using De Morgan's law and the fact that GgUGs = Gg,  FaC\F a =

F_ , it is easily seen that C . = sets of the form G, U F, U (F. O G,), C,   = sets
cr' 7 4 112272tz

of the form G   U F, U (JJ"_2 ^- n G-)) which by Lemma 1 gives the sets in

B(GS).    a

The next lemma is the first step in an induction which will yield the main

result.

Lemma 3.   Let cf> be upper semicontinuous, 0 < cp < 1.   Suppose  G £ G «.   Then

the game with payoff <tj = min (cp, lA) has a value.

Proof.   The first part of this proof and A's method of play is the same as in

[l].  Suppose  G = T i.o., where   T is a collection of positions.   For any position  x,

let  G*  be the game, starting from x with payoff   UÍG-) if  T is hit for the first
X t        (p

time after x at  t, with payoff  0 if  T is never hit after x, where   UÁG-) is the

upper value of the original game starting from  r.   This payoff is lower semicontin-

uous, so, by [6], G*  has a value and player  B  has an optimal strategy.   We claim

Val (G* ) > Ux(G-); for fixed e > 0, we present a strategy for B  starting from x

such that no matter what A does, E (d/) < Val (G* ) + c

Let  B, starting from  x, play optimally in  G*  until  T is hit for the first time

after x, say at t.  Then B plays, starting from t, to keep E (d,) < U (G-) + e, so
z cp

EXQ>)=Y P^t)Eticp)< Y p(t)Ut(Gj)+ c< Val(G*) + e.
zeT zeT

Now, for f > 0, we describe a strategy for A  such that no matter what  B  does,

E(<7j) > UÍG-) - e, and the lemma will be proved.   First, A  plays  <r/4 optimally in

G* (e denotes the empty position).   If  T is hit after  e, say at  7,  A  then plays

e/8 optimally in G* , etc.  (If  T is hit for the Tzth time at t , A  then plays

e/2n+     optimally in  G* .)  Let the resulting sequence of moves be denoted by z =

(z y z2,- •• ).

We define a sequence of random variables:   X   = U(G~); fot k > 1,   X,  =

c/¿ (G-) if T was hit for the &th time at t,,  X, = 0 if T was hit less than &

times.  Thus, we have

(1) E(Xk\Xk_1,...,X0)>Xk_l-e/2^.
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This is obvious if Xfe_j = 0.  If not, T was hit for the (k - l)st time at tk_v say,

after which A played e/2k+ 1  optimally in G*   to get at least Val (G* ) - e/2k+ J
II k rZ

> X._x - e/2*+  .  Since the payoff in  G*    is  Xfe, (1) follows.   Taking expectations

on both sides, we get

(2) EiXk)>EiXk_A-£/2k + 1 => E(Xk)> UiGj) - c/2.

Now, by the definition of upper semicontinuity and the nature of the topology

on ii, for every point z = iz , z2, • ■ • ) and every e > 0, there exists k such that

any point co = icox, co2, • • A with co ■ = z. for i < k has the property

cpico) < cpiz) + c/2  =£> if z £ G, epico) < cpiz) + c/2

=£> (still if z £ G) l/(Zl>. . . ,,. ) (Gj) < cjiz) + c/2

=^" (for any z) lim sup X   < cpiz) + e/2.
n

The last implication is obvious it z £ G.  If z d. G,  T is only hit say  N times,

so for  22 > N,  X   =0.  Using Fatou's lemma on the last inequality, we get

E icj) > lim sup F (Xn) - e/2 > UÍG¿) - c.    □
zz

Theorem 1.  Suppose H £ £  , i.e. H = G U S,  G £ G g,  Sc £ C  _,,  Suppose,

also, that cp is upper semicontinuous with the property 0 < cp < 1,  cp = 1  072  S.

Then the game with payoff cp = min (fp, /,,) has a value.

Proof.   Lemma 3 shows that the theorem is true for sets in  C      Suppose the

theorem is true for sets in C      ,.  Let  H £ (c ,  H = G U S, where G £ G s,  Sc £
72—1 72' 0>

C (assume, without loss of generality, that G ,= 0).  Suppose G = T i.o. for

some collection of positions  T.  For any position x, let W* be the game starting

at x which continues until the first time  T is hit after x, say at  t, with A get-

ting   Ut(G-) when this happens.   Otherwise, the game continues and  A  gets  Is.

We claim  H* has a value (the payoff in  H* may be neither upper nor lower semi-

continuous).

Observe that if  C is closed, /eGg=4>Cn/eGg;   J £ F a =&■ C C\ J £ F a;

therefore  / £ C^ =#> C D / £ C  .   Let 0x be the open set defined by the collection

of positions passing through x which later hit  T.  Let  C   = Gc.   Then  Sc O C    £

Cn-1  since  Sc  is.   Define  cp* = 1 - /, where / is the payoff in  f/*.  Also, define

the upper semicontinuous function g: g = cp* on Q  , g = 1 elsewhere.  Thus g

satisfies the conditions of the theorem and  cp* = min(g, lc  nçC), so by the induc-

tion hypothesis the game starting at  x with payoff cp* has a value.   Therefore,   H*

has a value since its payoff is / = 1 — cp* (the method of proof in Lemma 3 allows

negation of the payoff since the same proof can be used by reversing the role of

the players; it clearly allows the addition of a constant to the payoff).
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By reasoning similar tothat in Lemma 3, it can be shown that Val (H* ) >

U (G-).  Now, for fixed  t > 0, we will exhibit a strategy for player A  which guaran-

tees that  E(0) > U(G-) - c.

As in Lemma 3,   A  starts out playing  e/4 optimally in  //*, etc. (If  T is hit

for the Tzth time at t ,  A then plays  e/2" + l optimally in H* .) Let the resulting

play be  z = (zy, z2,- ■ • ).

Define the random variables:  X    = U(G-): fot k > 1,  X, = U.AG-) if  T is
0 rb   ' - k tk <t>

hit for the zkh time at  t.,  X, = ¡s  if  T is hit less than  k times.   By reasoning

similar to that in Lemma 3, we  get

(3) E(Xk)>U(G¿)-c/2.

Again, by the definition of upper semicontinuity, there exists  k(e    .  such that any

point  (ú = ico., co~, ••• ) agreeing with z up to z, has the property
1 ¿ R ( £ ,z )

cpico) < 0(z) + f/2  =£> if z £ H,  0(<u) < 0(z) + e/2

=^> if z £ H,  U,Zi¡...tZk)(G^)<cJ(z) + e/2

*•■ for any z,   lim sup X    < cf>(z) + e/2.
72

Again, the last step is obvious if z £ G. If not, S Cl Gc is hit and 0=1 or Sc O

Gc is hit and lim supn X^ = 0. Thus, by Fatou, EQ>) > lim supn £(^n) > !/(Gj -

<r.     D

Corollary 1.   If H £ B(G A, the game with payoff /„  has a value.

Proof.   Let  cf> = 1  and use the theorem and Lemma 2.

Corollary 2.   G, has a value if f satisfies the following conditions:

(a) There is a collection  T of nonoverlapping positions (nonoverlapping means

x £ T =^ x is not an initial segment of any other member of T) such that if x £ T

then f is constant on all sequences passing through x.

(b) 0 < / <  1   072   T.

(c) There exists H £ B(G g)  such that f = ¡H  if T is never hit.

Proof.   The function 0=1  off  T,  cp = f otherwise, is upper semicontinuous,

0 = 1  on  //, and /= min (0, ¡H)  so the theorem applies.     O
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