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GROUP RINGS, MATRIX RINGS, AND POLYNOMIAL IDENTITIES
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ABSTRACT.  This paper studies the question, if  R is a ring satisfying a

polynomial identity, what polynomial identities are satisfied by group rings and

matrix rings over  R?   Theorem 2.6.   If R is an algebra over a field with at least

q   elements, and R  satisfies   x^ = 0,  and G  is a group with an abelian subgroup

of index k,   then the group ring R(G) satisfies   x   = 0,  where   t = qk    +2.

Theorem 3.2.   If R is a ring satisfying a standard identity, and  G is a finite

group, then  A?(G) satisfies a standard identity.   Theorem 3.4.   If R  is an

algebra over a field, and R satisfies a standard identity, then the k-by-k matrix

ring  R,   satisfies a standard identity.   Each theorem specifies the degree of the

polynomial identity.

1.   Introduction. We summarize results on matrix rings over polynomial iden-

tity rings.   Let [b] denote the largest integer in  b.   Suppose that  R  is a ring

satisfying a homogeneous polynomial identity with coefficients in the centroid,

at least one coefficient of 1, and degree  d.   Then for all  k, R,   satisfies some

power of the standard identity of degree   2k[d/2\    [6, Theorem l], [2, Theorem 8].

The unitary polynomial of degree  q  is

*/(!)•••*/(«)'

'     a

where the  sum   is over all permutations / in  S  ,  the symmetric group on  q let-

ters.   The unitary identity results from setting the polynomial equal to 0.   If  R

is a ring satisfying the unitary identity of degree   q,  then  R,   satisfies the uni-

tary identity of degree  qk   + 1 [2, Theorem l].

The docile polynomial of degree  q is

Z(- 1)1 x        • • • x
\ i) Xf(y) Xf(qV

where the sum is over all permutations  f in  S    sending even integers into even

integers.   If  A?  is a ring satisfying the docile identity of degree  2a,  then  R,

satisfies the standard identity of degree  2q k   + 1  [2, Theorem 21.

The docile product polynomial of degree  q, p is

n D(xn, ...,*.€)s.,
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where   D  is the docile polynomial of degree  q,  and the  x's  and  zz's  are noncom-

muting variables.    If  R  is a ring satisfying the docile product polynomial identity

of degree  2q, p, then  R,   satisfies a product of p  standard identities, each of

degree  2q k   + 1 [l, Theorem 2.2].

If  R  is an algebra over a field with at least  q elements, and  R  satisfies

all the homogeneous components of (X?_.x)q,  then  R,   satisfies  x^ = 0,  with

p = qk   + 1 [l, Theorem 1.2].

The next section uses these results on matrix rings to prove theorems on

group rings.   §3 is independent of the preceding material and contains the main

results of the paper:   If  R  is a ring satisfying the standard identity and  G  is a

finite group, then  R(G)  satisfies a standard identity.   A similar theorem for matrix

rings is a corollary.

2.   Various polynomial identities on group rings.   We know that if K

is a field and  G a group with an abelian subgroup of finite index  k,  then  KÍG)

satisfies the standard   identity of degree  k   + 1 [6, Theorem 4.2] .   The proof

below is similar.

Theorem 2.1.   Suppose that  R  is a ring and G a group with subgroup  A  of

finite index k.   Let E be the group ring RÍA), and let I be the set of all r in R

such that  Rr = 0.   Then there is a homomorphism of Rie)  into E,   with kernel 7(G).

Proof.   Let y x, • • • , y.   be a set of right coset representatives of A   in   G.

Then   R(G) is a free left module over  E  with basis  y,, • • •, y,.   Let  T  be the

ring of linear transformations of this module.   If   w £ RÍG),  let  T     be the function

on the module sending  y into yz¿>.   Then the map  w —> T     is a homomorphism

from the ring RÍG) into  T with kernel /(G).   Since  T is isomorphic to E., the

theorem follows.

Corollary 2.2.   Suppose that  R  is a ring with unity and G is a group with an

abelian subgroup A  of finite index k.   Then any homogeneous multilinear polyno-

mial identity satisfied by  R  is also satisfied by  RÍA),  and any polynomial iden-

tity satisfied by IRÍA)],   is also satisfied by RÍG).

Proof.    If  R  contains unity,   / = {0|.

Remark.   If  R  is a ring without unity, it may be imbedded in a ring with unity,

as is well known.   If  R  satisfies the docile identity, the docile product identity,

or some power of the standard identity, then so does the new ring.   Thus we get

the following corollaries of three matrix ring theorems from the introduction:

2.3.  // R  is a ring satisfying the docile identity of degree 2q,  and G  is a

group with abelian subgroup of index  k,  the  RÍG) satisfies the standard identity

of degree 2q2k2 + 1.
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2.4. // R  is a ring satisfying the docile product identity of degree 2q, p,

and G is a group with an abelian subgroup of index k,  then RÍG)  satisfies a

product of p standard identities, each of degree 2q k    +1.

2.5. // R is a ring satisying a homogeneous polynomial identity with coef-

ficients in the centroid, at least one coefficient of 1, and G is a group with an

abelian subgroup of index k, then  RÍG) satisfies some power of a standard identity.

For the unitary identity we prove the following:

Theorem 2.6.   // R  is a ring satisfying the unitary identity of degree q,  and

G  is a group with an abelian subgroup of finite index k,  then RÍG)  satisfies

xQUÍXy, • • ■, x ) = 0,  where  U  is the unitary polynomial,  p = qk   +1,  and the

x's  are noncommuting variables.

FVoof.   Let  E and  / be as in Theorem 2.1.   There is a homomorphism from

RÍG)  into  E,   with kernel  l(G).   Now  E,   satisfies   Uix., •••, xA = 0.   Thus if

wy, •••, w    are p elements of RÍG), then  Uiw., •••, w ) £ ¡ÍG).   Since A is the

right annihilator of R,  the theorem follows.

Theorem 2.7. // R is an algebra over a field with at least q elements, and

R satisfies xq = 0, and G is a group with an abelian subgroup of index k, then

RiG) satisfies xl = 0, where t = qk   +2.

Proof.   The polynomial (2?, x.)9 vanishes on  R.   Using a Vandermonde

determinant, we see that every homogeneous component of this polynomial van-

ishes on  R and hence also on  í?(A).   Thus [ß(A)],   satisfies xp = 0, with

p= qk2 + 1.   Thus if w £ RiG), wp £ l(C).   Hence wp+1 = 0.

3.   The standard identity.

Definition.  Suppose that  G is a semigroup and  [g,, • • • , g   | is a sequence

of q elements of G.   To parenthesize the sequence into j clumps is to insert ;' pairs of

adjacent, nonoverlapping parentheses.   The subsequence within one pair of parentheses

constitute a clump.   It is odd or even, depending on whether there is an odd or

even number of elements.

In the example below we parenthesize a sequence into 3 clumps:

h:, gr igy <?4' >igy >ig6- 87> h8l

The product of the elements within a clump is the  value of the clump.   If C.,

• • •, C,   are  k clumps, then the value of C,    • • •   C,   is the product of the values

of these clumps in the stated order.

Lemma 3.1.   Suppose that  G  is a group with unity  e.   Let j and n be

positive integers, with  p = ~L".~Q j1.  Let S = \gy, • • •, g A  be a sequence of p
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elements of G.   Then S  may be parenthesized into clumps such that at least one

of the following conditions holds:

1. There are  n consecutive clumps  C   , • • • , C    such that  C    begins with

g,, and the values of C., C . C 2, • • • , C yC 2 •••   C    are all distinct.

2. There are j consecutive clumps each of value  e.

Proof.   Induct on 72.   If n = 1,  then p = 1.   If S  is a sequence composed of a

solitary element g., then we form one clump consisting of g.,  and condition 1

holds.

Assume that the lemma is true for n.   Let p = X"~/'z,  and let  q = X"_n j' =

jp + 1.

Suppose that jg., •••, g  S is a sequence of q elements of G.   Let 5    =

ig?» • • • > f?ft+i >•   H S    has / consecutive clumps of value e, then we are done.   If not,

then by induction hypothesis we can form 72 consecutive  clumps C , • • • , C +,   in S

such that C    begins with g2, and the values of C2, •■• •, C. • • • C^+1 are all distinct.

Form a new clump C.   consisting of g..

Case 1. The values of  C,, C, C., ■ ■ • , C, ■ • ■ C   .,   ate all distinct.   Then
112' '1 72+1

conclusion   1 holds.

Case 2.  These values are not all distinct.   Then there exist positive integers

k and r such that  k + r < n + I   and  C    • • • C, = C.  • • • C, + .   If k > I,  then we

cancel the value of C,   and obtain  C„ • • • C, = C, •- • C. . •    But this is
1 2 k 2 k +7

impossible.   Hence  k=l,  and

C=C,---C,      .
1 1 1 + r

Thus  e = C- • • •   C. . .
2 1 +7

Combine the clumps  C-, ••• , C.+    to form a new clump  D.   of value  e.   Let

g      be the entry in the sequence following  D..   Continue the argument as before

with the next p entries, starting with g   .   If we do not finish then, we get a

second clump D     of value  e.   Since there are jp elements after g.,  we will get

/ clumps   D .,•••, D ., each of value  e,  if we do not finish earlier.

Theorem 3.1. Suppose that n and j are positive integers, G is a group of

order n > 1, and q = if — l)/ij - l). Then any sequence of q elements of G can

be parenthesized into j clumps, each of value  e.

Proof.   By the formula for the sum of a geometric progression  q = 2"_nf'.

If the theorem is false, then  G has at least re + 1 elements.

Lemma 3.2.   // jg., • • • , g   i  is a sequence of elements of a set, and one

parenthesizes them into j odd clumps, and permutes the clumps with some per-

mutation f in S ., then the resulting permutation of the original q elements has

the same parity as f [2, Corollary to Lemma A].
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Lemma 3.3.  Suppose that n and k are positive integers, and A  and B  are

sets,  A  containing at least n(k - l) + 1  elements,  B  containing exactly n ele-

ments.   Let h be a function from  A   into  B.   Then at least k elements of A  have

the same image in B  [2, Lemma l].

Lemma 3.4.  Suppose that  A  and B  are finite nonempty sets,   \A\ = m, and

\B\ = n.   Let  h be a function from A   into B.   Let  [;'] be the largest integer in j,

and let k = [(m + n - l)/n\.   Then at least k elements of A  have the same image

in  B.

Proof.  Since  k < (m + n - l)/n,  we have  nk < m + n - 1,  and  nik - l) + 1

< TTZ.   The previous lemma now applies.

Lemma 3.5.   Suppose that  G  is a group of order n > 2,  and p  is a positive

integer.   Let  t = nip - l) + 2.   Let  q = (tn - l)/(t - l). Then any sequence of q

elements in G can be parenthesized into  2p  odd clumps whose values commute

with each other.

Proof.   By Theorem 3.1, the sequence can be parenthesized into t clumps,

each of value  e.   Let  E  be the number of even clumps, and let D be the number

of odd clumps.   Let k = [(E +   n - l)/n].

Let A  be the set of even clumps.   If A  is nonempty, define a function from

A   into  G,  letting the image of each even clump be its initial element.   By Lemma

3.4, since   \G\ = n,  at least  k even clumps have the same initial element g.

Choose the first k such clumps; call them  \C     ■ • • , CA = C.

If A   is empty, k = 0.   Let  C be the empty set.

Let  /  be the union of  C with all the odd clumps.   Create new clumps as

follows:   Let  E    be the first clump in  /.   If  E.   is odd, form the new clump  F.

by combining F    with all even clumps to the right, if any, up to the next clump

from  /.   Then  F    is odd, of value   e.

If E     is even, form two new clumps   F    and  F   :   let  F     consist of the

single element g that begins  Ey.   Obviously,  F.   is odd, of value g.   Let  F

consist of all subsequent elements, up to the next clump from  /.   Now  E   ,  with

g  deleted, is odd, of value g~   .   All following clumps not in  /  are even, of

value  e.   Thus   F     is odd, of value g~   .

Continuing in this manner, we form  2k + D new clumps,  adjacent, odd, and

of value either g, g~   ,  or e.   We next show that 2k + D > 2p.

Case 1. Suppose that  D = 0 or  1.   Now  E = t — D = n(p - l) + 2 - D.   Thus

£ + 77 -  1 np 1 - D~]      np + 1 - 1-     > JL- = p.
n n

Hence  2k + D > 2p.



246 ELIZABETH BERMAN [October

Case 2.   Suppose that  D > 2.   Then

np + 1 — D + D>2[np+l-D-l  I   +D
2k+ D =

= 2nJA±±-2 + D(l-l)>2n±l±_2+2(l-l)
72 V « / 72 \ 72/

2
=   2/7->   2p -   1.

72

Since 2k + D is an integer,  2^ + D > 2p.

Note.  The next theorem hypothesizes that  R  satisfies a standard identity of

even degree.   Leron and Vapne mention that a ring with unity satisfying a stan-

dard identity of degree   2p + 1   also satisfies the standard identity of degree   2p

[A, p. 130].

Theorem 3.2.   // R   is a ring satisfying the standard identity of degree  2p,

and G  is a group of order re > 1,  and q  is the integer defined in Lemma 3.4,

then  RÍG) satisfies the standard identity of degree  q.

Proof.   Let  P(x     ■ ■ ■ , x  ) = 0 be the standard identity of degree  q.   It suf-

fices to prove that  P vanishes on elements of  R(G) of form rg, where  r £ R,

and g £ G.   Let r g   , ■ ■ ■ , r g    he  q  such elements, and let / be any permuta-

tion in  S   .   Let S be the sequence in G   jg. .,., • • • , g, .A.   Then  S caribe

parenthesized into  2p odd clumps whose values commute with each other.   Consider

/ as a sequence:   j/(l), • • • , f(q)\, and parenthesize  / in the same manner as  S.

We can partition  S     into disjoint subsets, such that if / and  /   are in the same

subset, they satisfy the following relations:

1. The integers before the first clump are the same integers in the same

order.

2. The integers after the last clump are the same integers in the same order.

3. The   2/7  odd clumps are the same, but in any order.   Now

p{riSi' "•• W= g (- iï'nifHi)'-- riiqfiiqy
>e 1

Let  T  be one of the partition subsets defined above.   Let f   £ T,  and let

?/'d) ' " gf'(lY«■«/'in-i/'/.v   Then

Li- ^/(Df/dj'-'/^M" IX (- 1)/ra i ) •'• rf(,)

For each f £ T,  we parenthesize the sequence  St-,(1), • • • , r     A  in the same

manner as  S,  forming 2p  odd clumps.   The expression within brackets above is

the product of the following factors
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1. The product of all the  r's before the first clump.

2. Polynomial  P, evaluated on the 2p odd clumps.

3. The product of all r's after the last clump.

Since the second factor is  0,  the theorem follows.

Theorem 3.3.   Suppose that   R   is a ring satisfying the standard identity of

degree  2p.   Let  k be a positive integer, and let n = 2  k\.   Let q be as in Lemma

3.4.   Suppose that 2q does not annihilate R.   Then R,  satisfies 2qP(x^ , • • • , x ) = 0,

where   P  is the standard polynomial.

Proof.   As is well known,   R,   is isomorphic to  R   (g) Z,,  where  Z  is the

ring of integers.   Let B  be the subset of Z,   of nonsingular matrices in which

each row consists entirely of zeroes, except for a single entry of either  1  or - 1.

Under matrix multiplication,   G  is a group of order  2 k].

If r £ R,  and g £ G,  let f(rg) = r  ® g £ R  ® Z,.   Then / can be extended

to get a ring homomorphism of  R(G) into  R ® Z,.   Suppose that  e ..  is the matrix

unit in Z,   with  1  in row  z,  column /'.   Let w and z be elements of G   such

that every entry in w  is the negative of the corresponding entry in z, except

that each has  1   in row   z,  column  /.   Then  2e .. = w + z.   Thus if  r £ R,  and  u

is a matrix unit in  Z, ,  then  r ® 2u  lies in the image of the homomorphism.

It r,,•••, r    £ R,  and  u,, ■ • ■ , u    are matrix units, then
1 '    q ' 1 ' '     q '

2qP(Ty ®  Uy, • ■ ■, rq % uq) = P(ry ® 2«,, • • • , rq ® 2u^ = O.

Hence   2qP vanishes on  R,.

Theorem 3.4.   Hypothesis:   Let  R  be an algebra over a field F'.   Suppose

that  R satisfies the standard identity of degree  2p.   Let  k  be a positive integer,

and let q  be as in Lemma 3.4.

Conclusion:  If F has characteristic  2,  then  R,   satisfies the standard

identity of degree  2pk    +1.   If F  has another characteristic, then  R,   satisfies

the standard identity of degree  q.

Proof.   The first statement is the  Corollary to Theorem 1 from [2].   The

second is a corollary of Theorem 3.3.
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