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COMPLETE MULTIPLIERS

BY

J. S. BYRNES

ABSTRACT.   We investigate whether the completeness of a complete ortho-

normal sequence for   L2(- IT, 77)  is preserved if the sequence is perturbed by

multiplying a portion of it by a fixed function.  For the particular sequence

i(277)-1/2emxi  we show that given any xb £  L°°(-77, 77), except lb = 0 a.e., there

is a nontrivial portion of Í (2rr)-^ einx\ which will maintain completeness under

this perturbation.

We investigate whether the completeness of a complete orthonormal sequence

(CONS) for L (- n, rt) (complex-valued) is preserved if the sequence is perturbed

by multiplying a portion of it by a fixed function.

To be more precise, given a function if, £ L°°(- n, tt)  and a CONS $ = \<pr\™00

for   L2  we call a subset S  of the set Z  of integers a 2¿ ^,-set  (for  L   )  if the

sequence !0   !, defined by 0    = ificb     for n £ S  and 0   = </>     for n d S, is also

complete in  L   . If all subsets of Z  are 2,/, .-sets we call the pair (if,, $)  a

complete pair  (for  L  ), and if (<//, $)   is a complete pair for all CONS $  we call

if,  a complete multiplier  (for  L   ).

The most trivial example of a complete multiplier is the function which is   1

almost everywhere  (a.e.), whereas if lb is  0 a.e.  then the empty set is the only

2,/, ^-set.  Also, if ib  is  0 on a set of positive measure then certainly (ib, 0)

cannot be a complete pair for any CONS <5, since Z  itself will not be a 2¿ ¿.-set.

However, even for such a z/f, and even if the measure of the zero set of if,  is

arbitrarily close to 277, there will exist nonempty subsets of Z  which are 2j,  .-

sets.

In [1]   it was shown that for if, to be a complete multiplier it is necessary and

sufficient that there exist a complex constant a  such that Re aib > 0 a.e. and

either Im aib > 0 a.e. or Im ays < 0 a.e.  on the zero set of Re aib.

We now consider in more detail the case when ifi (which we assume is not the

function which is   0 a.e.) is not a complete multiplier.  In particular we ask if there

always must exist a nontrivial 2 . ^,-set  (where S  is trivial if S  is empty or

S = Z).

As a partial answer to this question we first determine when a finite 2 ,     -set
i/>,*
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exists and then concentrate our attention on the standard CONS, 8 = i(27r)-   elnx\.

For this special case we are able to prove the result we are seeking, namely:

Main Theorem.   There exists a nontrivial 2j, 5 -set.

As mentioned above, however, before proving this we must investigate the

existence of finite  2j, .-sets.  In this regard we have

Theorem 1.  Let N be a positive integer.  There is no 1, 2, 3, • • • , N point

2j, *.~set   if and only if for each m-tuple (n , n , •••, n   )  of (not necessarily

distinct)   integers, and for each m, 1 < m < N, at least one of the following

integrals   is zero: fibd   <b 1 < i < m (where  n      , = 72., if, denotes the com-
O "i     "i + l> ~        ~ 772+1 1      ~

plex conjugate of ib, and the range of integration is (— 77, 77)).

Proof.  The  "if"  half of the theorem is not needed in the sequel, so we

present here just the proof of the  "only if"  half.  For the interested reader, the

remainder of the proof is presented in the Appendix.

The proof will be by induction on  N, so first suppose that  N = 1.  If there is

no 1   point 2j, 0-set then for each  n there is an  /    £ L , f    not the  0 (a.e.)

function, such that

W  ¡Wm * °» m * "> and
-

(Ü)  HnH>n = °-
But  (i) says that f   - c d>    where c    is a nonzero constant, and then   (ii) says

J>I<p„I2 = o.
We now assume that the theorem is true for  zV = 1, 2, • • • , K — 1 (K > 2) and

prove it for N = K. Thus, suppose that there is no 1, 2, • • •, K point 1,, *-set.

By the inductive hypothesis we know that the conclusion of the theorem holds for

each   m-tuple  of integers, where  1 < m < K — 1.  If we let  (n., zz., •••, 72   ) be an

arbitrary K-tuple of integers we know, since there is no  K point  2j, ¿,-set, that

there is. an fu £ L    such that

au) UK<Kr °>n¿nv n2> •••• nK>and

(iv)//K^c6n = 0,   72=  72 j,   n2,   ....   7ZK.

But  (iii) says that there are constants  a., a2, • ••, aK not all 0  such that  /„ =

alcPn     + a2<t)n    + ••*+ aK<r'n    ' and tnen We See ^rom   ^v^  tnat

(1)

(2)

ajij/lcp^]2 + «2/-A0„20ni + • • • + aKfib<pn¡4>n^ = 0,

aifW»*n2 + aiÍ^n}2   + • • * + aKp^n^n2 ' °>

(K) «¿unfnK + aJn>n4>nK + ••• + «Kf*\<t>„K\2= 0.
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Suppose now that none of the integrals fib<f>n çpn .    ,   i = 1, 2, • • • , K — 1 are

0.  We must show that   fibcb     (f>      =0. However, again by the inductive hypothesis,
_       _ n/C      1

fifnp    cb     = 0 for  i = 1, 2, • • • , K - 1   and ; = 1, 2, . . ., i and also for  i = K and

/ = 2, 3, • • • , K.   By  (2) we see that a^ = 0.  Then by  (3), «2 = 0, etc.  Thus,

Ü\ = a2 = *" = aK-l = °» and SO  aK^ °'   Then by   ^'  W'Pnü'Pni = °  SS recluired-

By applying the above result to ¿5 = \(2n)~/2einx\  we obtain

Theorem 2.   There is no finite £ ,   g -sei if and only if ib(z) = zh(z)  or if/(z) =

zh(z) for some function h  in H°°  of the unit disk.

Proof.   Let us first suppose that ib(z) = zh(z), hence that ib(x)  has the

Fourier series 2"°, a  elnx  (the proof for the case ib = zh  is identical).  Then,

for any positive integer N, let (re,, re , • • •, nN) be any  N-tuple of integers, where

we can assume that  raj < re    < • •• < nN.   Then clearly  exp(inNx)  is orthogonal to

[0  (*)!,   and so there is no finite £ .   g -set.

Suppose, on the other hand, that neither if, nor if, is of the form zh(z),  and

let the Fourier series of ib be 2™1_    a.e ,x.  If aQ4 0 then clearly any integer

is a 1  point I,   . -set. If fl_ = 0 then there exist positive integers  m, n such

that a_   a   4 0.    In this case we observe that, for the  (m + ?z)-tuple 5 = (re , re ,

• • -, re        ) = (0, — 777, —2m, • • •, — (n — l)m, — (n — l)m + n, — (n — l)m + 2n, * • • ,

— (re — l)?zz 4- rzzre),

Í a_        for  /=1,2, •••,w— l,77z + re,

/

in .x   —in .   , y
1   „ 7+1ibe    '  e

a for    7 = 72,   72+1,   •••   ,   72+7ZZ—   1.

That is, for the (m + re)-tuple S, none of the above integrals are 0, and thus

Theorem 1 assures the existence of a 2,/, s -set consisting of at most m + n

points.

We are now easily able to prove our Main Theorem.  In fact, by Theorem 2 ,

we need only consider the cases where either if, or if,  is of the form zh(z).  For

convenience we assume the latter case, the proof for the former being identical.

Thus  ib(x)  has the Fourier series  2°° ,a  elnx.r 72 = 1     72

For any integer M we let  SM = !re: re > M\, and we claim that SM  is a 2 .   j-

set.  Indeed, suppose that / is an  L2  function which is orthogonal to Í0  \, so

that

(v) ¡ße~inx = 0, n> M, and

(vi) ffe~inx = 0, re< M.

By   (v), ß^^_xcneinx  and by  (vi), ft* 2^=A1+, *„*''"*.  Thus we have

oo oo M

72=M+1 72 = 1 Z2= —OO

But this implies that c„ = 0 for all re, which assures that fib=Q a.e. Since an

W     function cannot be   0 on a subset of the boundary of positive measure [2, p. 52]
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we see that /= 0 a.e., and the proof of the Main Theorem is complete.

Remarks.  I. We point out that if  Z  is allowed as a choice for a  2^ g-set

then the Main Theorem follows immediately from the fact that an  H    function can-

not be  0   on a subset of the boundary of positive measure.  In fact, if  lb is  0  only

on a set of measure   0 then  Z  is a  2 .   s-set.  On the other hand, if  if/ is   0  on a

set with measure p, where  0 < p < 2n, then the set  S = [re: re > Ol (and of course

any translation of S) will be a  2,/,  ¿¡-set.  This is because, if / is orthogonal to

|0J, then  (1) / £ H2, and  (2) fib = zg where  g £ H2.  Thus  g  is   0 on a set of

measure  p, so g = 0 a.e.  Finally, /is  0 on a set of measure  2rr - p, so 1=0

a.e.

II.  Many questions remain concerning these ideas.  We mention below two

which seem particularly interesting and invite the reader to investigate.

(1) It can be shown that if if, has an absolutely convergent Fourier series

then there is a constant  c such that   (if, + c, 8) is a complete pair for the space of

continuous functions with period  2?7.  Is this condition sufficient for absolute con-

vergence?

(2) What results correspond to the above for spaces of real-valued functions?

In this case it appears that these problems require completely different methods.

Appendix. We now prove the  "if"  half of Theorem 1.  The proof is again by

induction on  N.

If \n\ is a 1-point 2^ ^,-set then it is clear that fib\<b  \    4 0, since if this

integral were  0 then  c6    would be orthogonal to  0     for all  tzz, so that  ¡0   Í would

not span  L  .  This completes the case  N = 1.

For the case  N = K suppose that for some   ttz      1 < ttz   < K, there is an  tzz

point  2,/, .j,-set.  If  mQ< K then by the inductive hypothesis there is an 77z-tuple

(«j» re2, .... nm),where  1 < ttz < ttz0) such that none of the integrals  fibcb    cb       ,

/ = 1, 2, • • • , 772, is  0, and we are done.  Thus the only remaining case is   ttz0 = K,

so we suppose that  (py p2, •••, pK)  is a  2^, .¡,-set. We can assume that for each

TTZ-tuple   («j, n2, ••■, nm),  l<m<K-l,at least one of the integrals ¡ibcb    cp        ,

7 = 1, 2, • • • , ttz, is  0. To complete :he proof we show that there is some permuta-

tion  (q., q2, •••, qK) of  (p1# p2, •••, pK) such that none of the integrals

ß<t>q.<Pq.  .. 7-1,2, .-., K, is  0.
7     •

We first let  q^ = p^ and then observe that the completeness of  10   1 assures

the existence of  p{ for some   i, 1 < i < K, such that fif/cb    <p     4 0 (otherwise we

would have  c6       orthogonal to  &n for all re). We then set  q   = p. and observe that

by hypothesis  Jibcb    cp      = 0 (unless   K = 2, in which case   fibcp    cb      4 0 by com-

pleteness, and the proof is finished) . Therefore, again by completeness, for some

/' 4 1, / we have $ibcbq cp     4 0, and we let q, = p ■.

Clearly we can continue this  process, and we end up with  q., q,, • • •, q„
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satisfying  fibcb    cp 4 0 for   i = 1, 2, • • • , K — 1. At the final stage we see

that   fibcb     cp     = 0,   7 = 2, 3, • • • , K (by considering the  (K - /' + 1 )-tuple
K      i

(lil-  i, • • •, ?!<•)), so that, since we  cannot  have  <f>       orthogonal to  Í0  I,
77+lZx y'., 72

fibcb     cf>      4 0.  Thus  (9., 92, •••, qK) satisfies the required property, and the

proof is complete.
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