
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 172, October 1972

FINITE COMMUTATIVE SUBDIRECTLY IRREDUCIBLE SEMIGROUPS

BY

PHILLIP E. McNEIL

ABSTRACT.  This paper is devoted to completing the solution to the problem

of constructing all finite commutative subdirectly irreducible semigroups.   Those

semigroups of this type which were formerly unknown are realized as certain

permutation group extensions of nilpotent semigroups.   The results in this paper

extend the efforts in this area by G. Thierrin and B. M. Schein.

1. Introduction.  One approach to the problem of determining the structure of

algebraic semigroups is the well-known theorem of G. Birkhoff [l] applied to semi-

groups:  Every semigroup has a decomposition into a subdirect product of sub-

directly irreducible semigroups.   This leads naturally to a search for the structure

of these latter semigroups, and in particular, those which are finite and commuta-

tive.   G. Thierrin [lO] and B. M. Schein [7] pioneered the efforts in this area, and

D. Zitarelli [l3l has made a study of inverse subdirectly irreducible semigroups.

In this paper we present the structure of all finite commutative subdirectly irreduc-

ible semigroups which were heretofore unknown, namely, those which are ideal

extensions of nilpotent semigroups by groups with zero (we will refer to these as

group extensions).   Our results rest heavily upon extension theory of semigroups,

and we refer the reader to Clifford and Preston [4] for background material.   More-

over, we show a connection with the theory of finite permutation groups, and our

terminology in this area is that of Wielandt [ll].

2. Preliminaries.   Let S be a semigroup.   A transformation A of S, written

as a left operator, is a left translation of S  if   A(xy) = (Ax)y  for all x, y  in S;  a

transformation p of S,  written as a right operator, is a right translation of S if

{xy)p = x(yp)  foe all x, y in S.   A pair (A, p)  consisting of a left translation A

and a right translation p with the property that x(Ay) = {xp)y fot all x, y  in S is

called a bitranslation of S.   The collections A(S), P(S) of all left translations,

right translations of S  are semigroups under the operation of mapping composition;

the collection fl(S)  of all bitranslations of S with multiplication induced by the

direct product A(s) x Pis) is a semigroup called the translational hull of S.
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Definition. A semigroup S with zero having more than one element is called

nilpotent if there is a positive integer 77 such that the product of any 72 elements

is zero.   If h  is the smallest such positive integer, we say that S has height h.

What follows is a list of known properties of finite nilpotent semigroups; see

Tamura [9], Sedlock [8] or McNeil [5] for proofs and details.   Let N be a finite

nilpotent semigroup of height h,  and let x, y £ N.    The element x is said to be a

multiple of y  if

x £ Ny U yN U NyN

(Ny denotes the set of all elements in N of the form ay, a £ N).   The relation <

defined on  N  by  "x < y  if and only if x = y or x  is a multiple of y"  is a partial

ordering of  N.   The elements of N which are maximal relative to  < are called

primes.    Since  N  is finite, it has at least one prime, and the set X  of all primes

of N is the unique minimum set of generators for iV.    Let x , • • ■, x     denote the

elements of X.   A relation x.  • • ■ x .   =x. ■ ■ ■ x .    among the generators is called
n 'r        7 1 is 6 6

nontrivial if at least one of the integers  r, s  is less than h  and x.   / x .    for
6 ta       la

some   a,   1 < a < minir, s\.   The triple (X, R, h)  consisting of the minimum gen-

erating set X,  the nontrivial relations R   on X  and the height h  completely deter-

mine  N except for isomorphism; hence we write  ¡V = (X, R, h).   Note that if h = 2,

R  is empty.

For each positive integer r we refer to the set L   = \s £ N\  s  is a product of

r generators) as layer r of N.   Note that L j = X and L   - \0\ for all  r > h (zero

layers); also, if  1 < r < h,  L    has at least one nonzero element, otherwise the

minimality of h  is violated.

A nontrivial relation x.    • • • x .   = x .    ■ ■ ■ x .    is called a layer r relation if
M 'r        n Is '

r = s,  otherwise it is referred to as a skew relation.    If the layer relations x x . =

xx. hold in  N  fot all i, j,   1 < i, j < m,   then N  is commutative.   For the remain-

der of this paper all nilpotent semigroups discussed will be assumed finite and

commutative.

Let x.    • • • x .   =x.    - - • x .    be any layer r relation of N.   If s  is an integer
ll 'r        Jl ?r '       ' 6

such that r < s < h,   then the relations

i(x .    ■ • • x . )a = (x .    • • • x . )a \ a £ L       \
21 ;r 71 7r     ' s-'

are called the layer s  relations induced by x .    ■ • • x.   = x .    • ■ • x . .

If  |X| = 772 = p",   some prime p and positive integer 72,  we denote by St  the

following layer relations in  N:

K=    t X .      ■ ■ ■   X .    =X.      • • •   X .
1     !1 'r 71 7,

Z ^ Z/c>°d p"),  r-2....,*-l[ •
a= 1 <x= 1 )

3.   Permutation extensions.  Given semigroups S and T,  a semigroup   U is

called an ideal extension of S by  T    (T with zero) if S is an ideal of  U  and the

Rees quotient  U/S is isomorphic to  T .
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Definition.  Let  G  be a group and TV  be a nilpotent semigroup.   A homomor-

phism 0: G —► A(TV) x P{N)  is called permutable if, for any g, h in G  and s  in

TV,  (A s)ph = \ (spA,   where  (A , p )  and (A¿, pA denote the images of g  and h

under  0, respectively.

The following theorem is an analogue of a theorem of Clifford [3] and is a

special case of a result due to Yoshida [12]:

Theorem 3.1.   Let S = G U TV,   where  G  is a group and TV  is a nilpotent semi-

group, and let 0: g —» (A , p )  be a permutable homomorphism of G into Q(/V).

Denoting multiplication in TV and in  G by juxtaposition, define a multiplication °

on the set S by

s ° t = st        (s, t £ TV),

goh = gh        (g, h £ G),

g o S = A   S       (g  £ G,  S  £ N),
s °

s o g = sp       (s £ N, g £ G).

Then (S, °) is a group extension of TV  by  G .    Conversely, any group extension

of TV  is determined in this manner by a permutable homomorphism.

We now construct a particular group extension which plays a prominent role

in our discussion of subdirectly irreducible semigroups.   Let TV = KX, R, h)  be a

nilpotent semigroup with generators  X = jx „ ■ • •, x  „Î  for some prime  p  and

positive integer «.   For each  /, 1 < / < pn,  define a permutation g . of X as

follows:  for x . £ X,
1

g : x. —> xk     if k = i + j - 1   (mod pn).

One can verify that the collection  @(X) — \g ^, • • • , gbn\ forms a cyclic transitive

group of permutations on X; indeed, since  |X| = |®(X)| = p",  it is up to isomor-

phism the only cyclic transitive permutation group on X.   We note that g . is a

generator of @(X)  if and only if gcdl/ - 1, p"\ = 1.

For each g. in  ®(X)  define mappings  A., p. on TV  as follows:  Ajc. = x.p.=

g x . for all x . e X  and
°7     Z !

A.(x,    ...x.r) = (gyx.i)(x!2...x.r),

(x.    ••.• x.   e/V, r>2).

(x.i-.-x;>. = (x(i...x¡r_iXg;x.r),

It is easy to see that  A. £ A(TV)  and p. £ PÍN).   Further,  H/V) = {(A, p)\ j = 1,

• • •, pn\ is a subgroup of A(TV) x P{N)  which is isomorphic to  ®(X),   for the

mapping  0: g . —► (A., p.)  is a permutable isomorphism.   If h - 2,  then Y\H) Ç

íHTV),   and, by Theorem 3.1,  0 determines a group extension of N by  ®(X).   How-

ever,  Vis)  is not necessarily a subset of fi(TV)  for h > 2.   The following theorem

provides a condition on TV  which assures that the isomorphism 0 determines an

extension.
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Theorem 3.2.  // N, ®(X), V(N) are as described above with h > 2, then the

isomorphism ç6: g . —* (A, p.)  determines an extension of N by  <3(X)  ¿72 the sense

of Theorem 3.1 if and only if 5? C R.

Proof.  Sufficiency.  By Theorem 3.1 we need only show that V(N) Ç íK/V).   Let

(A., p •) £ IX/V),   and let x¿, xk be any two elements of X.   Then

x.(\.x,) = x.x       where     u = i+k-l  (mod p"),
2    ;   k i   u '

(x.p.)x,  =x x,     where    vsi + j—1  (mod p").
v ]    k        v   k

It follows that  i + u = v + k (mod p"),  whence x x u = x^x^ since  S Ç R.    Thus

(À., p.)  satisfies the bitranslation property for any two generators of N; it is

immediate that (A., p.) £ fi(\/).

Necessity.   Assume that 0 determines a group extension S = ®(X) U N.    (For

convenience of notation here and in the remainder of the paper, we denote all

multiplication in S by juxtaposition.   Thus if g . £ ®(X) and x .   • • ■ x .  £ N, then

g .(x.    • • • x . )  denotes the multiplication of these two elements in the semigroup

S   as determined by the isomorphism  <f>: g . —»(A., p.)  and Theorem 3.1.   Accord-

ingly, if r > 1,  then g .(x .    • • • x . ) = (p x . )(x .    • • • x .),  where g .x .    denotes

the image of x.    under the permutation g ..)   That the relations   3Î hold in  N  will

be a consequence of the following claim:

Claim 3.3.   For any r,   1 < r < h,   each element of L    equals one of the

elements

(1) xr   xr_1x     •••    xr_1xXj, Xj      x2,        , Xj      x^n.

Proof of the claim.   First consider the case in which  r = 2,  and let x¿x.

be any element in L       By the commutativity of N,  we have g .(x x .) = g.(x.Xj),

whence by the definition of p.,

(2) x.x. = x.x, = x,x,     where ia»+l-l   (mod 6").
2  j        k   1 1   k

Thus if x .    • • • x .    is any element in  L ,  2 < r < h,  repeated application of (2)

yields
r

x.    . . . x.   = x'-'x,     where     V  ¡'   = (r - l) + Hraod f"),
7 1 lT 1 k *—l       a

a=l

completing the proof of the claim.

Now, for any  r,   I < r < h,  let x .    • • • x .   and x . • ■ • x .    be elements in L
7     ' H 'r 71 ¡r *

such that 2ia=2 /a(mod pn).   By Claim 3-3 we have

x.    • • ■ x.   = xr, _1x,        where   Y"' z'   = (r - l) + k (mod p").
I I lT 1 k t—l     a.

x.    • • . x.   = x^'x,        where   V*/'   = (r - l) + / (mod p").
71 ;,        1        / /_^)<x

Therefore (r - l) + k s (r - l) + / (mod p"),  and since ¿, / < p",  we must have

k = /,  and consequently x .    • • • x .   = x .    • • • x . .
^ '      '\ 'r        n It
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Definition.  If TV = (X, R, h)  with  |X| = p"  and  3Î C R,  the group extension of

TV determined by the isomorphism 0: @(X) —► IX/V)  described above is called the

permutation extension of TV.

We conclude this section by listing further properties of permutation exten-

sions.    For the remainder of this section let ®(X) U TV be a fixed permutation

extension.

Property 3.4.  All of the elements in any layer L    of TV, r > 1,  can be obtained

by multiplying each generador by xT~   .   (This follows from Claim 3-3.)

Property 3.5.   31 = R  if and only if for each  r, 1 < r < «,   no two elements of

(1) are equal.   (In this case each nonzero layer L    consists of the p" distinct

elements of the form (1).)

Proof.  Necessity.   If k  are the only nontrivial relations on TV,  then since the

integers (r -l) + 1, (r - 1) + 2, • • • , (r - l) + p" form a complete residue class

modulo p",  it is clear that the elements in (1) are distinct for each r,   1 < r < h.

Sufficiency.  It is evident from Claim 3-3 that if the elements in (1) are dis-

tinct in all nonzero layers, then  3? are the only layer relations which hold in TV.

We need only show that under the same hypothesis, TV  has no skew relations.

Seeking a contradiction, suppose that TV  has a skew relation, x        x . = xs.~  x .,

s > r (recall Property 3.4).   Since  ®(X)  is transitive on X,  there is an element

g £ ®{x)  which maps x. onto x..   Multiplying both sides of the relation by g

yields a relation of the form

<3) x\ =xsl~lxk, s > r.

Now if we multiply both sides of (3) by xb~T~   ,  we have x*~ 1 = 0,   since

x'f-  x.x belongs to a zero layer.   Similarly, if we multiply both sides of

(3) by Xj   T~ x., with j / 1,  we obtain x.~ x . = 0.   The foregoing shows that

x*-    = x j     x .,   / / 1,  ifi layer h - 1,   and this contradicts the hypothesis that

the elements of (1) are distinct in all nonzero layers, completing the proof of the

property.

Let p  be any element in  ®(X),   and let  e = (x .    ■ ■ ■ x . )(x .    • • • x . ) • • •  be

the decomposition of g  into disjoint cycles.   Writing  Cj = ¡x . , • • •, x.  !,

C2 = \x .,•••, x .!,•••,   we use the notation g = C ,C 2 • • •   to denote the cycle

decomposition of g.   For any r,   1 < r < h,  the sets  CT. = [xj-  x
1„ „r-1x,     x.

I' 1        'k
Cr2 = ¡x'      x. , • • •, xr~ x . ¡, • • ■   are called  rth layer cycles of g.    Applying

Property 3.5 we obtain

Property 3.6.   If  35 = R,  the rth layer cycles of any element of ®(X)  ate dis-

joint sets, and no two elements in a given nonsingleton rth layer cycle are equal.

Definition 3.7.  Let x .    • • ■ x .   = x .    • • • x .    be a layer r relation in  TV,
»1 lr 71 lr '

I < r < h.    The set of layer r relations

{(x      ...x   )g   =(x      ...x    )g I  /=l,2,---,/7"!
11 l r 1 't     *
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is called the layer r relations induced by   ®(X)  acting on x .    • ■ ■ x .   =

x .    • • • x . .
7 1 ¡r

4.  Finite commutative subdirectly irreducible semigroups.  The starting point

for any discussion of these semigroups must be the following result due to  B. M.

Schein [7J:

Theorem 4.1.  A finite commutative subdirectly irreducible semigroup is

either (i) a nilpotent semigroup, (ii) a group (possibly with zero), or (iii) a group

extension of a nilpotent semigroup; moreover if the group is nontrivial in (ii) and

(iii), it is a cyclic p-group for some prime p.

Since Schein has characterized subdirectly irreducible nilpotent semigroups

in [7], and since it is easily shown that any cyclic p-group is subdirectly irreduc-

ible, the question remaining is: which of the semigroups of type (iii) are sub-

directly irreducible?   The author has constructed a number of semigroups of type

(iii) which are subdirectly irreducible (see Theorem 4.9 below or [6]), but the

general problem has been heretofore unsolved.   In this section we establish the

following solution to the problem:  a type (iii) semigroup (with nontrivial group) is

subdirectly irreducible if and only if it is a permutation extension of a nilpotent

semigroup whose only nontrivial relations are  5R.

We will first of all list some general properties of subdirectly irreducible

semigroups as well as some properties of subdirectly irreducible semigroups of

type (iii).

Property 4.2.   A semigroup S  is subdirectly irreducible if and only if the

intersection of all nonequality congruences on S  is not the equality congruence

(Birkhoff [2]).

Property 4.3.   If  S   is subdirectly irreducible and commutative, then any

idempotent of S  is either the zero element or the identity element of S (Thierrin

[10]).

Property 4.4.   A semigroup S  is subdirectly irreducible if and only if S

(S )  is subdirectly irreducible (Schein [7]).

Definition.   Let 5  be a semigroup with zero.   The relation p defined on 5  by

"a = b(p)  if for any x, y, £ S   ,  xay = 0 if and only if xby = 0"  is a congruence.

If p is the equality congruence, then 0 is said to be disjunctive.

Property 4.5.   A nilpotent semigroup is subdirectly irreducible if and only if

its zero is disjunctive (Schein [7]).

For the remainder of the properties assume that S  is a finite commutative

subdirectly irreducible semigroup which is an extension of a nilpotent semigroup

N = (X, R, h) by a group G with zero, and let <f>: g —> (A , p )  denote the

homomorphism determining the extension.   Notice that if  |G| = 1,  then the Proper-

ties 4.3 and 4.5 are applicable, so we assume in sequel that G  is cyclic of order

p",   some prime p  and positive integer n  (recall Theorem 4.1).
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Property 4.6.   The homomorphism  (p is   1-1,   and it maps  G into the diagonal

of Q(N),   i.e. those  (A, p) € fl(/V)  such that As = sp for all  s £ N.

Proof.  If <p is not 1-1, then the equivalence relation o defined on S  by

"a = b(o)  if c£>a = d>b ot a = b"  is a nonequality congruence.   If r is the nonequal-

ity congruence on S whose only nonsingleton class is the set N,  then a. n t is

the equality congruence, and we have contradicted the subdirect irreducibility of

S  by Property 4.2.

Let s £ N and g £ G.   Then since S is commutative, A s = gs = sg - sp ,

whence (A , p )  is in the diagonal of fi(/V).

Property 4.7. G is isomorphic to a subgroup of ^5(X), the group of permuta-

tions on X.

Proof.   First note that by Property 4.3 the identity  1 of G  is the identity for

all of S.   This implies that <pl = (Aj, pj) is the identity bitranslation of fi(/V).   It

follows that  c4(G)  is a subgroup of the maximal subgroup of fK/V)  containing the

identity bitranslation.   Further, since from Property 4.6 ç6 is an isomorphism into

the diagonal of fi(/V),   it is clear that  G  is isomorphic to a subgroup of the max-

imal subgroup of  A(/V)  containing the identity left translation, i .   (To see this,

merely project the image <p(G)  into A(/V).)   Denote this latter maximal subgroup

by  HL.

If A is any element in  Ht,   then  A maps the generators X  into themselves.

For if kx . £ L ,  some x . £ X and  r > 1,  then clearly  Amx . ■/= x . for all positive
ir' i ' i r    i *

integers 772, contradicting the fact that some power of A equals l. Thus we may

regard H as a group of pe*mutations on the set X, and since 5ß(X) is the maxi-

mal such group, the property has been proved.

Definition. Let G be a permutation group on X and let x be an element in

X.   The set iy £ X| gy - x for some g £ G\ is called the orbit of x.

Note that G is transitive if and only if the orbits of any two of its elements

have a nonempty intersection or, equivalently, the orbit of each element of X is

X  itself.

Property 4.8.   |X| = p",   Hi CR  and S is isomorphic to the permutation exten-

sion of N.

Proof.   Using Property 4.7, identify  G and its isomorphic copy in  5ß(X).   We

claim that G is a transitive group of permutations on X.    For suppose that   Y  and

Z  are disjoint orbits of elements of X.   Then   Y and Z  can be used to define

equivalence relations  a and  r on S  as follows.

(1) a is defined to be equality on  G.

(2) For a, b £ N,   define

a, b £ Y U 0,     or

, a = x .    ■ ■ ■ x . ,   b = x .   • ■ • x. ,   I < r < h,
a=b(a)    if    / 'I lr n 'r

where x .  , x .    £ Y and x.   = x. , a - 2, ■ ■ • , r,     or
n     H '*-      'a

a = b.
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Similarly define the relation  r on S by replacing   Y by Z  in (1) and (2)   above.

It is a matter of direct calculation to show that a and T are nonequality congruen-

ces on S  whose intersection is equality.   This contradicts the subdirect irreduci-

bility of 5.   Therefore, the orbits of any two elements of X  intersect, and  G  is a

transitive cyclic group of permutations on X  of order p".   Let a £ G be a genera-

tor of G.    Since  G is transitive, the decomposition of the permutation  a  into dis-

joint cycles yields a single cycle which consists of precisely the elements of  X.

Furthermore, since G  has order p",  it follows that  |X| = p".    Any two transitive

cyclic permutation groups of order pn defined on a set of p" elements are isomor-

phic; therefore  G is isomorphic to  ®(X).   From Property A.6 and the description of

0(G)  given in the proof of Property 4.7, it follows that 0  is the isomorphism of

Theorem 3.2, whence  3? C R  and S  is isomorphic to the permutation extension of

TV.   This completes the proof of Property 4.8.

We may now summarize the results of the foregoing properties in this manner:

any subdirectly irreducible semigroup of type (iii) whose group is nontrivial is up

to isomorphism the permutation extension of a nilpotent semigroup.   Therefore, the

problem central to this paper shall have been solved when we know which nilpotent

semigroups have subdirectly irreducible permutation extensions.   The author has

proved the next theorem in [6]:

Theorem 4.9.   If TV = (X, R, h),   \X\ = p" and h = 2,  then the permutation

extension of TV  is subdirectly irreducible.

Our final result settles the question for nilpotent semigroups of arbitrary

height greater than 2.

Theorem 4.10.   Let TV = (X, R, h),  h > 2,  where X = ix,, • • •, x    1 and 3i Ç R.
I ptl

The permutation extension S = ®{x) U N is subdirectly irreducible if and only if

3c = R.

Proof.   Necessity.  Suppose S  is subdirectly irreducible.   By Property 3-5 we

need only show that the elements of (1) are distinct in each nonzero layer of  TV.

Suppose that for some r,   1 < r < h,  two of the elements of (1) are equal, and

assume that r is the smallest such positive integer.   Since  ®(X)   is transitive, we

lose no generality by supposing that the assumed relation has the form

(4) xTl=xrylx.1     some  z>l.

Let d = gcdlz - 1, pn\.   Notice that since  d - 1  and pn  ate relatively prime,  gd

is a generator of ®(X).   Now if we multiply both sides of (4) by each of the

elements g ,, g„ ■ ■ ■  in turn, the result will be the p" layer r relations induced

in TV  by the action of ®(X)  on (4) (see Definition 3-7).   By the definition of multi-

plication in S,  these induced relations have the form
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x\~ l{xisd] - xî"1{3r^'      z = *» • ' ' ' P"'

where  x¡gd is the image of x . under the permutation g1,.   One can verify, after the

application of the permutations, that these relations can be described by

xT~  x. = xr~  x,     if and only if / s k (mod d).

Thus if we let ttz = (pn/d) - 1,  we may write a tabular representation of the rela-

tions induced by the action of ®(X)  on (A) as follows:

/r/r'ïitr/rI,:u2r," = ïrlli^

(5) *l"S = x\~ S+rf = X\~ S+2d =■■■= X\~lx2+md

X\~ lxd = X\~ lxd+d= X\~ lxd + 2d = ■■■ = x\~   xd+md-

Also Property 3-4 implies that the relations in layers  L  ,   r < s < h,   induced by

the relations (5) are obtained by replacing the integer  r in (5) by s.

Now consider the following partition of L _   •

L1"'X1       ' Xl      Xl+d- Xl      X\\2d, ,X1      Xl+mdi

C    ~\xr~2x     xr~2x xr~2x ■■■    xr~2x \
2~'    1 2'  Xl       X2+d'Xl       X2+2d' ,X1       X2+mdi

r    -\xr-tx      xr~2x xT~2x '■■■    xr~2x \
U¿      lXl       Xd,X\      Xd+d'      1       Xd + 2d' '1       Xd+mdij

and let a be the equivalence relation on S  which coincides with the above parti-

tion on  L     ,,  and which is equality elsewhere in S.   Since for each g. £ ®(X)

and each partition class   C ., g-C . Ç C .,  and since for each a £ N the product

aC. results in one of the relations in (5) or a layer relation induced by a relation

in (5), it follows that a is a congruence.    Furthermore, a is not the equality

congruence.   For since  d > 1,  each  C . has at least two elements, and no two

of these elements are equal by the minimality of r.

Next let  t denote the congruence on S whose only nonsingleton class is

Lh_x U lOS.   (Note  Lh_x / Í0| because  TV  has height h.)   Recalling that r - 1 <

h - I,  we see that the nonsingleton classes of a do not intersect L,_. U |0!.

It follows that a O r is the equality congruence, and this contradiction to the

subdirect irreducibility of S completes the proof of the necessity part of the

theorem.

Sufficiency.   Assume that 3Î = R.    By Property 3.5 this implies that the

totality of elements in each layer  L  ,   1 < r < h,   is given by the  p     distinct ele-

ments of the form (1).

Let gQ be any element of ®(x)  of minimal order p,  and let gQ = C jC2 • • •

C  „_i  denote its disjoint cycle decomposition.   We shall show that 5  is sub-
P

directly irreducible by establishing the following claim.
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Claim. If 6 is any nonequality congruence on S, then 6 does not divide the

(h - l)st layer cycles, C*~ , C2~ ,•■-, of gQ, i.e. the elements in each of the

sets  C are related modulo  0 (cf. Property 3-6).

Proof of the claim.   If 6 is a nonequality congruence on S,  then there exist

two distinct elements of S which are related modulo 6.   The possibilities for

these two elements are exhausted in the following four cases:

(a) x\-lx.= x\-lx.(d),  i fit,

(b) x\-lx. = x^_1x.(ö),   s>r,

(c) g.a*(-1*.(fV

(d) g^gfO),   i fij,
where   1 < i, j < p"  and   1 < r, s < h.   We show that if relation (a) holds, then  6

does not divide the  (h - l)st  layer cycles of gQ; then we indicate that a relation

of the form (a) results from each of the relations (b) through (d).

Toward this end let us assume that (a) holds, and let C . denote the cycle of

g0 which contains x ..   By the transitivity of ®(X)  there is an element g £ ®(X)

such that x .g - x ..    Let 772  denote the order of g  and let g = B jB2 • • •  be the

disjoint cycle decomposition of g.   Then x. and x. belong to the same cycle

B,   of g,  and the elements   x ., x g, •••, x ,gm~     constitute the totality of elements

in  Bk.   From this it follows that )r'~  x¿, xTx~  x¿g, • • -, Xj-  x¿gm_     constitute

the totality of elements in BT,.   Since xT~  x. = xr~  x .(6),  we have xT~ x .=
' k I        t        1        j     ' I        1

x\~ lx .g(6),   whence

r — 1 r — 1 7 — 1        m— \ {a\
x\     xi=x\     x.g = ---=xl    lx.gm    l(d),

which says that BT,   is indivisible by  6.   Since g0  has minimal order, it can be

shown that  C.ÇB, (use Theorem 7.5 of [ll] and the well-known property that

the subgroups of  ®(X)  form a chain).   This implies that CT. Ç B\, which proves

that CT is indivisible by   9.   Now if each element of CT. is multiplied by the ele-

ment x.~r~   ,  one sees that   C.        is indivisible by 6.   (Note that since  3? = R,

Property 3.6 assures that  C consists of p distinct elements.)

If C . is the only p-cycle of g0,  we are finished with case (a); hence assume

that gQ has a cycle  C    different from C ■ and let x    be an element in  C .   By

the transitivity of  ®(X)  there is an element  g  in  @(X)  such that x/g = x      Let

x    = x .g.   Then applying g  to both sides of relation (a) we have x,-  x    s

xr.~ x (6),  where  /. ^ u  since  i / j.   Now a proof exactly like the proof that

C.-    is indivisible by Q shows that C   ~    is likewise indivisible.   We conclude

that each of the (h - l)st layer cycles of g     is indivisible by 6.

Suppose that (b) holds, and let g £ ®(X)  be such that x .g = x       Then multi-

plying g on both sides of (b) yields

(6) xr. = x~~1x,(0)     where x, = x.g.
Ile k        j°
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Now if both sides of (6) are multiplied by x   ~'~ \  we obtain x   ~    = 0(d);  and if

both sides of (6) are multiplied by xh~r~ x2   we obtain x~lx   = 0{9).   Conse-

quently, we have obtained the relation x y    = x*~ x Ad),  a relation of the form

(a).

If (c) holds, then multiplying both sides of (c) by x  ~     and then by x   ~ x_

yields the type (a) relation x~ x.= x  ~ xAd),   where x, = x-,g.

Finally if (d) holds, the type (a) relation xT~ lx . = x\~lx .{6),  i / j,  results

from multiplying both sides of the relation (d) by xr   for any r, 1 < r < h.    This

completes the proof of the claim.   The proof of the sufficiency part of Theorem

4.10 now follows from Property 4.2.

Corollary.   Let S be the semigroup of Theorem 4.10 with  3Î = R,   and let gQ

be any element of @(X)  of minimal order p.    Then the unique minimum (nonequal-

ity) congruence  Ö.  on S  is given as follows: for a, b £S,   a = bid A if and only

if a = b or a and b  belong to the same {h - l)st layer cycle of g_.

Proof.  This follows from the proofof the claim in Theorem 4.10 and the easily

verified fact that dQ  is a congruence relation.
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