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FLEXIBLE ALGEBRAS OF DEGREE TWO

BY

JOSEPH H. MAYNEÍ1)

ABSTRACT.     All known examples of simple flexible power-associative

algebras of degree two are either commutative or noncommutative Jordan.   In

this paper we construct an algebra which is partially stable but not commuta-

tive and not a noncommutative Jordan algebra.   We then investigate the multi-

plicative structure of those algebras which are partially stable over an

algebraically closed field of characteristic p fc 2, 3, 5.   The results obtained

are then used to develop conditions under which such algebras must be

commutative.

I.   Introduction.   An algebra  A  over a field  F is flexible if it satisfies the

identity

(1) (x, y, x) = 0    for all x, y in A where  {a, b, c) = (ab)c - a(bc).

If the characteristic of  F  is not two, then this identity is equivalent to

(2) (x, y, z) + (z, y, x) = 0    for all x, y, z in  A,

the linearized form of the flexible law.   If any element in  A  generates an

associative subalgebra, then   A   is  power-associative  and   A  is strictly power-

associative if the algebra  A „ = K ®„ A  is power-associative for every extension

field   K of  F.   We shall assume that all algebras are finite dimensional over

the base field.

If A  is power-associative and contains an idempotent  u,  then  A  has a

Peirce decomposition

A = A  (1) + A  C/Ç) + A  (0)    (vector space direct sum)

where  A  (s), s = 0, lA, 1,  is a subspace of A  such that x  is in  A  (s) if and

only if xu + ux = 2sx.   Moreover, if A  is flexible, the multiplicative relations

A (0)A  (1) = A  (1)A (0) = 0
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and

AvSs)AJ}Á) £ A^Vl) + Au{l  - S) (S = °'  X)'

Aj}A)Au(s) Ç Ab(M) + Ab(1 - s)       (s . 0, 1),

Ab(5)Am(S) Ç ABU) (5=0, 1),

are satisfied  [l].

A flexible algebra  A   is   «-stable if

Au(s)Au{y2) Ç Au(V2)       (s = 0, 1),

A^OÔA^Î») Ç AuM       (s = 0, 1).

If A  contains an idempotent  u such that A  is  «-stable,  A  is said to be partially

stable and if A  is  «-stable for every idempotent  «  in  A,  then A  is termed a

stable algebra.

An idempotent  u is said to be primitive if in the Peirce decomposition

A  (l) contains no other idempotent besides  u.   Now every simple flexible

strictly power-associative algebra with characteristic not 2, 3 has a unity element

1   [13].   Let  t be the maximal number of pairwise orthogonal primitive idempotents

a,, • ■ • , u    in any scalar extension  A„  of A  such that  1 = «.+••• + « ,  then

í is called the degree of  A.

A simple flexible strictly power-associative algebra over a field  F  of

characteristic not 2 or 3 is one of the following   [13]:

(1) a commutative Jordan algebra,

(ii) a quasi-associative algebra,

(iii) an algebra of degree one,

(iv) an algebra of degree two.

Kleinfeld and Kokoris have shown that the degree one algebras are fields

if the characteristic of  F  is  0  [8],  and Oehmke   [15] has recently proved that

if  F  is an algebraically closed field of characteristic not two, then a degree

one algebra is either a field or a nodal  noncommutative algebra of the type

described by Kokoris in   [ll].   Oehmke   [14] and Kokoris   [12] have studied the

degree two algebras and it is known that if A  is nilstable and  F  is an

algebraically closed field of characteristic not 2, 3, or 5, then  A  is a /-simple

algebra.   In this paper we shall show that this result cannot be extended to

arbitrary degree two algebras.

Let ^ be tne class of partially stable power-associative flexible algebras

of degree two which are simple over an algebraically closed field of character-

istic not 2, 3, or 5.   We shall show that algebras in   % need not be commutative
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and in addition need not be noncommutative Jordan algebras. This is accomplish-

ed by constructing an example of such an algebra. Finally we develop conditions

under which an algebra in the class  ?J  must be commutative.

II.  New algebras of degree two.  In 1952 Kokoris   [9] constructed the first

known example of a simple commutative power-associative algebra which was

not a Jordan algebra.   Albert  [3], [4], [5] generalized this work and characterized

all degree two algebras which are partially stable over an algebraically closed

field.   We begin by constructing an algebra in this class.

Let  F be an algebraically closed field of characteristic  p ^ 2, 3, 5  and

let  B = F Al, x] be the commutative associative polynomial algebra with identity

on one generator subject to the relation xp = 0.   Suppose  zB, yQB, y.B, y?B

and y.B ate isomorphic copies of  B  and then form the vector space direct sum

A = B + zB + yQB + y jB + y 2B + y^B.   Define

y<) = 1'    >vi=0>    yiy2 = l>

y]=o,     y0y2 = o,     >iy3=o,1;3

•/2>,3y] = 0'    yo>^ = °>    y?y* = °>

y\ = §    and    yiyj = yjyi    for i, j = 0, 1, 2, 3.

Now let  5) = {D¿.: i, j = 0, 1, 2, 3! be a set of derivations on  B  given by

xDol=0,       xD02=0,       xDQi=0,

xD12 = 0,       xDj, = 1,       xD2,=0,

Dii=~Dii       ('- 7 = 0, 1,2, 3).

Then define multiplication on  A  by assuming for  i, ; = 0, 1, 2, 3 and

a, b in  B that

(3) (yia)(y.b) = (y.y.)(ab) + (aD^b - a(bDij),

(4) {y{a)b = b{y.a) = y ¿ab),

(5) {za){ytb) = (yib)(za) = 0,

(6) B + zB  is a commutative and associative subalgebra of A,

(7) (za)(zb) = ab.

It is shown in  [4] that such an algebra is commutative, power-associative

and of degree two over F.   A  is   ^-stable where  u = ]4{z + l) and if A =

Aj + Ay + AQ  is the Peirce decomposition of A  with respect to  u,  then

Ay = y0B + yjß + y2B + y^B and Aj + AQ = ß + zB.
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Lemma 1.   The algebra A  is simple.

Proof.   It is known  [4, Theorem 3] that A  is simple if and only if B  is

S)-simple and there exists no element g  in A^  such that gd = 0 for all d in Ay.

Suppose  y = y0f + yxg + y2h + y^k, where /, g, h, k aie in  B,  is an element

in Av  such that yd = 0 for all ¿ in A,^.   In particular yyQ = yQ/ = / = 0 and so

y = y^ + y2h + ^3^- Then ^2 = ^1^2^ = g = °> thus y = y2h + y^k-

Now y.y = y, (y7¿ + y ,&) = h - k' =0 where  k'   is just the formal derivative

of k with respect to x.   Hence h = k'   and so y = y2&' + y„k.   But (yjx)y =

(y^x)(y2k' + y~k) = x&'  + k - xk' = k = 0 and thus  ¿ = 0 and  y = 0.   Since  B

has no proper ideals invariant under D.~, A  is a simple algebra.

Now denote the multiplication described above by x • y and let   [x, y] be

the image of a bilinear function from A x A  into A  with the following properties:

(8) [x, x] = 0 for all x in A,

(9) [a, b] = 0 for all a, b in Aj + AQ,

(10) [è, a,,] = 0 for all b in  B and  flw  in A,,,

(11) [y. ■ a, z ■ b]= [y{, z] ■ (a ■ b) toi a, b in  B  (i = 0, 1, 2, 3),

(12) [y.   • a, y. ■ b] = [y., y.] ■ {a ■ b) for a, b in  B  (i, j = 0, 1, 2, 3),

[y0,u] = y2, [y0, y1] = -2z, [y,, y2l = 0,

\yv a] = -y0< [y0, y2] = 0, [yx. y3l = 0,

[y2, «] = 0, [y0, y3] = 0, [y2< y?] = 0,

[y3, a] = 0.

Let xy = x • y + ^[x, y] for all x, y in A  and from now on consider A  as

an algebra with product xy.   Then the attached algebra A    with multiplication

x • y = VíKxy + yx) is just the commutative algebra defined prior to Lemma 1 and

[x, y\ = xy - yx is the commutator product on  A.   Since  A     is  simple  and

«-stable,  A  must also be simple and  «-stable.   We now show that A is a flexible

algebra.

Lemma 2.   The algebra A   is flexible.

Proof.  Now A  is a flexible algebra if and only if the linear mapping  D

defined by yD   = [y, x] is a derivation on A   .   This is equivalent to the identity

(13) [w ■ x, y] - w ■ [x, y] - x ■ [w, y] = 0.

Hence it is sufficient to show that (13) is satisfied when all possible

combinations of elements from the subspaces   B, zB,  and A,,  are substituted

for w, x,  and y.

Now if w, x, and y  are all in B + zB, then (13) is satisfied since   B + zB =
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A. + AQ is a commutative associative subalgebra of A. We also know from (3)

that (y.a) ■ (y .b) is in B for a, b in B and i, j = 0, 1, 2, 3. From now on let

us assume that multiplications in A are to be performed before multiplications

in A     unless otherwise specified so that wz ■ xy = {wz) ■ (xy).

Suppose w — y a, x = y b,  and y = y,c where  a, b, and  c ate in  B.    Then

[w ■ x, y] - [y .a ■ y b, y,c] = 0  because of (10).   Also  w ■ [x, y] = y .a ■ [y b, ykc]

= 0 and  x ■ [w, y] = y .b • [y a, ykc] = 0 by  (5), (12), and the way the multi-

plications   [y., y.] (z, ; = 0, 1, 2, 3) are defined.   Thus in this case (13) holds

and so Au is flexible.

Consider (13) for elements in  B  and  Ay.   If two of the three variables

w, x,   and  y  are in  B,  then each commutator in (13) has at least one entry from

B  and hence vanishes since  B  commutes with everything in A  by (9) and (10).

Now suppose  w = y .a, x = y b, y = c where  a, b,  and  c are in  B.    Then

(13) is satisfied since  c commutes with everything in A.   If w = y a, x = b,

and  y = y,c,  then the left side of (13) is

[y.a • b, ykc] - y¡ a . [b, y^c] - ¿> • [y {a, ykc] = [y ., yk](abc) - [y., yk](abc) = 0.

Since (13) is symmetric in x and  w,  this exhausts the possibilities for elements

from B and Ay.

Now suppose one element comes from each of the subspaces  B, zB,  and

A,,.   Because of the symmetry of (13) there are only three possibilities:

(i) w = y.a,  x = b,  y = zc;

(ii) w = za,  x = b,  y = y,c;

(iii) w = za, x = y .b, y = c; where a, b, and  c are in B.
7

For case (i): [y .a ■ b, zc] - y .a ■ [b, zc] - b ■ [y.a, zc] = [y., z]{abc) -

[v., z](abc) =0 by (11).   Case (ii) is similar and in case (iii), (13) is satisfied

since  c commutes with everything in A.

All that remains to be checked is that (13) is satisfied by combinations of

elements from zB and A,,.   Because of the symmetry of (13) there are only

four possible combinations:

(i) w = y a,  x = zb,   y = zc;

(ii) w = za,  x = zb, y = y,c;

(iii) w = y .a,  x = zb,   y = y,c;

(iv) w = y a,   x = y b,   y = zc.

For case (i): [y.a ■ zb, zc] - y a ■ [zb, zc] - zb ■ [y a, zc] = - zb ■ [y., z](ac) = 0

by (9), (11), the definition of [y., z], and multiplication in A   .   Similarly

cases (ii)—(iv) satisfy (13).    Hence  A   is a flexible algebra.

Before proving that  A  is power-associative, we prove a lemma relating

power-associativity in A    and A.   Note that in a flexible algebra A, x2x = xx2

so xi  is well defined.
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Lemma 3.  // C  is a flexible algebra over a field of characteristic not 2, 3,

or 5  and C     is power-associative, then C  is power associative if and only if

[x3, x] = 0.

Proof.   If  C  is power-associative then   [x  , x] = 0 by definition.   Now

suppose   [x  , x] = 0,  then x x = xx    or  2xix = xx3 + x3x = 2x • x  .   Now if  C

is power-associative,  x • xD = (x    • x) • x = x     • x   .   But x     • x    = x xz  and

hence  x3x = (x x)x = x x  .   Therefore   C is power-associative   [l].

Lemma 4.   The algebra A   is power-associative.

Proof.   Let x = y „a + y  b + y?c + y,d + zf + g be an arbitrary element in  A

where  a, b, c, d, f,  and g  are in  B.   Then

x2 = (y0a)2 + (yxb)2 + (y2c)2 + (y3¿)2 + (z/)2 + g2

+ 2(y0a) ■ (yxè) + 2(y0a) • (y2c) + 2(yQa) ■ (y^d)

+ 2(yQa) ■ (zf) + 2(y0a) ■ g + 2(yxb) ■ (y2c)

+ 2(yib) ■ (y3d) + 2(yib) .(zf) + 2{yxb) ■ g

+ 2(y2c) ■ (y3¿) + 2(y2c) • (zf) + 2(y2c) . g

2(y3«0 ■ U/) + 2(y3¿) • g + 2(zf) -g

= 2y¿ag) + 2yj(2>g) + 2y2(cg) + 2y3Ùg)

+ 2z(fg) + a2 + f2 + g2 + 2bc + 2(b'd- d'b)

where   b    is again the formal derivative of  b with respect to x.

Let h = a2 + f2 + g2 + 2bc + 2(b'd -d' b), then

x2x = [2yQ(ag) + 2yx(bg) + 2y2(cg) + 2y^(dg) + 2z(fg) + h]

■ (y0a + y\b + y2c + y-$d + af + s>

2a2g - 2z(agb) + 2y7(agf) + 2y„(ag2) + 2z(bga) + 2bgc

+ 2[(bg)'d - bgd'] - 2yQ(bgf) + 2yx(bg2) + 2bgc + 2y2(cg2)

+ 2[b'dg - (dg)'b\ + 2y3Ug2) - 2y2(/gfl) + 2y0(/g£>)

+ 2f2g + 2zfg + yQ(ah) + yx(bh) + y2(ch) + y^(dh) + z(fh) + gh

y0(2ag2 + ah) + yx(2bg2 + bh) + y2(2cg2 + ch) + y p.dg2 + dh)

+ z(2fg2 + fh) + 4(b'dg - d'gb) + 4bgc + 2a2g + 2f2g + gh.

Let

«j =2ag2 + ah,        b^ = 2bg2 + bh,       C] = 2cg2 + ch,       dx = 2dg2 + dh,

/j = 2/g2 + fh.        gx = 4(b'dg - d'gb) + 4bgc + 2a2g + 2f2g + gh,
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then

2 3 t J i
x x == xD = y0flj +ylb1 + y2c1 + y?¿, + zfx + gx

and

[x3, x] = [y0ax + y1bl + y2c, + y^j + zf', + gy yQa + yxb + yjC + y^d + zf + g]

= - 2zaxb + 2y2aJ + 2zb{a - 2yQblf - 2y2fla + 2yQfxb

= 2y0(flb - bxf) + 2y2(a1f - f xa) + 2z(bla - alb).
Now

fxb - bxf = 2/g2è + bfb - 2bg2f - bhf = 0,

«j/ — /jß = 2ag2/ + ahf — 2fg2a — fha = 0,

and

bxa - axb = 2bg2a + bha - 2ag2b - ahb = 0,

hence  [x  , x] = 0.   Since A     is power-associative, by Lemma 3, we have that

A   is power-associative.

Theorem 1.  A   is a simple power-associative flexible algebra of degree two

which is not commutative.

Proof.  We have already shown that A   is simple, flexible, and power-

associative.   A  is of degree two since A     is a degree two algebra and A   is

flexible.   A   is not commutative since y^u = uyn + y7  and y2 /= 0.

Although A   is partially stable it is not stable and hence not a noncommuta-

tive Jordan algebra.   We show this in Theorem 2.

Theorem 2.  A   is not a noncommutative Jordan algebra.

Proof.   It is sufficient to show that A     is not stable and hence not a Jordan

algebra.   Denote multiplication in A     by xy.    Let w = y.x + lAy,,  then w    =

(yrx + My3)2 = (yjx)y3 = 1.   U e = V2(l + w), then e2  = !4(l + 2w + w2) =

%(l + w) = e, and so e  is an idempotent in A.   Now y^e = yAV2 + lAyjX + %y3) =

lAy.   and so y,   is in Aj}/-¡).

Also (ex)e = (Ax + Ay;X2 + %y}x)(A + Ayxx + Va y?) = Ax + Ayxx2 + Ay^x =

ex and thus  ex  is in  A  (1).  But if we consider

[yx(ex)]e = [y^x + Ay^2 + Y4 y 3x)](A + Ayxx + V4y})

= A(Ayxx-Ay5)¿A[yx(ex)],

then we see that yj(ex)  is not in A  (A) and hence  A     is not e-stable.

III.  Algebras in the class  $.  As in  /  let  <5  be the class of simple flexible

power-associative partially stable algebras of degree two over an algebraically

closed field of characteristic not 2, 3, or 5-   Let A   be an algebra in % and let
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A     again denote the attached algebra with product x • y = Vi(xy + yx) and

[x, y]  be the commutator product on A.   A     is a commutative algebra and is

power-associative if A   is a power-associative algebra.

Tsai [16]  has proved the following theorem which relates algebras in  y

to their attached algebras:

Theorem 3.  // A   is a flexible power-associative partially stable algebra of

degree two over an algebraically closed field of characteristic not 2, 3, or 5,

then A   is simple if and only if A     is a simple algebra.

It is also known [l]  that A   is  «-stable if and only if A     is «-stable.   Also,

A   is of degree two if and only if A     has degree two.   Hence if A   is in the

class y, A     is in the class  S  of commutative algebras described by Albert [4].

For the remaining part of this paper, assume that A   is in the class  %.

Suppose A   is stable with respect to the idempotent «  and A = A    + Ax/

+ AQ is Peirce decomposition relative to  u.   Then  v = 1 — « is an idempotent

orthogonal to u and A    = A   (s) = A  (l - s) foi s = 0, 1, Vj.   It is known [14]
° SUV '     '

that there exists an element w in A., such that w = 1. Let B be the set of all

elements b of C - A + A such that b = (b ■ w) ■ w. Then the following four

lemmas are known concerning the role of B   in the structure of A.

Lemma 5 [14], [16].  B     is a subalgebra of C   ,   both   A       and A       are

isomorphic to B ,  and A. = uB, A    = vB, C   = B   + z ■ B    where z = « — v.

Furthermore,   B    = F„[l, x,, • • ■ , x ]   is the truncated polynomial aleebra on
p     '     1 n c     * °

n generators.

Let y. = y. • 1  (z = 0, ■ • • , m) denote the elements of A     used in Albert's

description of the space A,..   Then we have

Lemma 6 [16].  The subspace At/  can be represented as:

Ay = (y0.B,...,ym • B),

where  Ax/   is the sum (not necessarily vector space direct sum) of   m + 1

homomorphic images  y. ■ B  of B.

The next result was first proved by Goldman  [6]  for m = 1   and extended

by Tsai [16]  for arbitrary  m.

Lemma 7.  For any  b  in B,

y .b = by. - y. ■ b       (i = 0, • • • , m).

Corollary [l6].  For a, b  in B and z = 0, ■ ■ ■ , m,

a(y  b) = (y. b)a = a ■ (y .b)    and    a(y  b) = a ■ (y . ■ b) = y. ■ (a ■ b).
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In the next lemma we see how important a role B  plays in the structure

of A.

Lemma 8 [16].  Every element in B commutes with every element in A and B

is a commutative associative subalgebra of A.

By Lemma 8,  B = B     and hence Lemma 5 implies that A    = A  , A    = A

and AQ = A..    Thus    (AQ + A j) + = A    + A     and again by Lemma 5, A    + A    =

B + z-B = B+zB  where  B + zB  is a commutative associative algebra and    B

is a truncated polynomial algebra.   Now A     is an algebra in the class  E and

hence the algebra B  is just the one used in the description for an algebra in  fiS.

We shall freely use the results given in Lemmas 5—8 without reference to their

origin.

Lemma 9.  // a and b are in B,   then

[y{a, y.b] = [y., y.](ab)       (i, j = 0, • • • , m).

Proof.  Letting w = y ., x = a, and y = y .b  in (13) we obtain [y.a, y .b] =

y . ■ [a, y.b],- + a ■ [y., y b] = [y., y b]a.   Applying the same procedure to

[y . • 1, y.b] we see that [y a, y b] = ([y., y ]b)a = [y ., y.](ab).   The last equality

holds because  (x, a, b) - 0 for all a, b  in B  and x  in A .   For   if x = c + dz +

£™ „y.b. where  c, d,  and the  b.'s ate in B,  then

/ m \ m

(xa)2> =   ¡ca + daz + T^ y h .a\b = c(ab) + (dz)(ab) + 2~\ y  h (ab)

=  íc + dz + 2_\ y • & ■ 1 (ß^)= *(a^)

!=0

\ ¿ = ° /

by the Corollary to Lemma 7 and the fact that A    + A .   is commutative and

associative.

Lemma 9 reduces the study of the commutation properties of A      to the

study of the y.'s  under the commutator product.   We can obtain a similar result

for the case where the commutator has one element from A      and the other

from zB.

Lemma 10.  // a and b are in B  and z = u — v, then

[y.b, za] = [y¿, z] (ab)       (i = 0, • • • , m).

Proof.   Let w = y ., x = b, and y = za  in (13).   Then  [y b, za] = y. • [b, za]

+ b ■ [y., za] = [y., za]b.   Again using (13) with w = z, x = b, and y = y.,

- [y -, za] = z ■ [a, y.] + a ■ [z, y.] = - [y-, z]a.   Hence [y.b, za] = ([y., z]a)b =

[y.. \](ab).
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Next we prove an important result relating the multiplication in A,    with

multiplication between At/  and zB.

Lemma 11.   Let a, b,   and c  be in B,   then

(14) y .a ■ [y.b, uc] = V2(zc) ■ [y{a, y.b]      (i, j = 0, • • • , m).

Proof.   Let x = y .a, y = uc,  and z = y .b  in (12) to obtain  [y .a • uc, y.b] —

[y .a, y .b] ■ (uc) + y .a ■ [uc, y.b].   Now (y .a) ■ (uc) = (y .a) ■ V2(zc + c) - V2(y .a)c

and by Lemma 9 and the fact that A    + A     is commutative and associative,

[(y .a)c, y .b] = c[y .a, y .b].   Hence  V2c[y a, y b] = uc ■ [y .a, y b] + y .a ■ [uc, y .b]

or equivalently

y .a ■ [y.b, uc] = {(« - V2)c\ • [y .a, y.b].

But  « - V2 = Y2z  so (14) is proved.

For the remainder of the paper let us assume that y .y.  is in A    + A     for

i, j = 0, • ■ • , m.   For an algebra A   in the class  y  satisfying this condition, the

commutativity of A   is related to that of A,,  and to the multiplication between

the idempotent  «  and elements in A    .

Theorem 4.   The following are equivalent:

(i) A   is commutative.

(ii) Av   is commutative.

(iii) ua,. = a,.u for all a,,   in A...
71/1 71 71

Proof.   If A   is commutative, then certainly At    is also commutative.   Now

assume that A      is commutative and suppose that [y., u] fi 0 for some  /'.    Let

x  be any element in A,      then x = 1,m_y.a.  where the a.'s  are in B.   By (14)

with  b = c = 1, x • [y., u] = (1m .y .a .) ■ [y ., u] = lm ny .a . ■ [y., u] =

s7=o^ • by, y) = o-
Therefore x • [y., u] = 0 for any x  in A...   But A     is simple and so has

no nonzero y  in A,,  such that x • y = 0 for all x  in A...   Hence  [y ., «] = 0 forJ 71 71 7

; = 0, • ■ • , m.   Since  « = V2(z + l),  Lemma 10 implies that  [y a, «] = 0 for a  in

B  and  z' = 0', • • • , m.   Hence  «  commutes with everything in At/.

Now assume (iii).   We already know that A.+ A„   is a commutative sub-

algebra of A   and that the subalgebra  B  of A    + A     commutes with every element

in A.   Since  a  commutes with everything in A1/;  we know by Lemma 10 that

zB  commutes with everything in A   and all that remains to be shown is that A

is commutative.

By (14)  l/2z ■ [y., y.] = 0 (i, j = 0, • • • , m),  and so z(l/2z[y ., y .]) = l/2[y., y.] =

0 since B + zB  is commutative and associative and 2=1.   By Lemma 9

[y .a, y .b] = [y. , y ](ab) = 0 and thus A,,  is commutative.   Therefore A   is a
« j i      I 71

commutative algebra.
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Lemma 12.  [y.a, y.b]   is in  zB  for a, b  in  B  and i, j = 0, • • •, m.

Proof.   Again by Lemma 9 it is sufficient to show the result for [y., y.].    We

know that [y ., y]   is in  B + zB.   Now [y., u]   is in  A,,  and hence yi • [y-, u]  is

in   8  because of the way multiplication is defined in  A  .    By equation (14)

z[y<, y.]   is in  B.   Suppose [y ., y .] = ¿>. + zb2  where  b.   and  b2  ate in  B.    Then

z[y -, y •] = z(£>. + zbA) = zè. + &2   is in  B.    But then  zb,   must be in  B  and thus

è, = 0  since zB C\ B = 0.   Hence [v., y.] = zè,   is in zB.
i J i   J i ¿

The next two lemmas follow as consequences of Lemmas 11 and 12.

Lemma 13.  // a, b,  and c are in  B,   then (y.a) • [y.b, uc] = (y . • [y ., u])(abc)

(i, j = 0, ••-, m).

Proof:   By Lemma 9 [y a, y.b] = [y ., y ](ab)  and by Lemma 12 [y ., y.] = zd

where  d is in  B.   Hence [y.a, y.b] = (zd)(ab) = z(dab).   Then  zcty.a, y .&] =

(zc)(zdab) = ¿rifle = [z(zi^)](.aèc) = (z[y., y.]) • (abc).   Using (14), we have

(y.a) • [y.b, uc] = Vizc)[y .a, y.b] = (V2z[y ., y])(abc).    But by (14) AiAy ., y] =

y i • [y;-. "]   so (y{a) • [y.4, uc] = (y¿ • [y, u])(abc).

Lemma 14.   Let A,. = (yQB, • • •, y   B), a and b  be in  B  and [y., u] =

^H-oyk.ak (/= 0> "•"> m)  where the  a.,'s are in  B.    Then for i, j = 0, • • •, m,

m

(15) Y [aD..(a.,b)-bD..(a..a)] = 0.

fe=0

Proof.   By Lemma 13 {y.a) • [y b, ud] = (y . • [y-, u])(abd)  fot all  a, b and

d in  ß  and  z, / = 0, • • •, w.   However, Lemma 10 allows us to write [y .¿>, ud]'

= [y-, u](bd).   Hence

(y.a) ■ \[y., u](bd)\ = (y. ■ [y ., u])(abd)

or

m I m \

ife = 0 \ fe=0 /

Using the multiplication defined for  A     we obtain

m

£ [<y. • yt)(fla.tW) + aDik(ajkbd) - (ajkbd)Dika]

m

= -£[(y. . yk){aafkbd)- a.kD.k(abdil
k = 0

Now each  D .,   is a derivation on   8   so the above equation reduces to

77Z

Z[aD Aa .,bd) - (bd)D Aaa .,)] = 0.
Ik IK. lk jk

k = 0
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Letting d= 1,  we obtain (15).   Our final result relates the commutativity of A

to properties of the derivations on B  used by Albert [4]   in defining A  .

Theorem 5.   Suppose the subalgebra B  of A  has n generators x„ •••, x

and Ay = (y„B, • • • ,y   B).    // /or e<zcè  n = 0, • • •, to  there exists some  i and

some h  such that x.D ■   = s,    ^0, s,     in  F,   and x.D ■. = 0  for all t ¿ n,   then
h    in hn '     hn h    it ' r- «i

A   is commutative.

Proof, [y., u]   is in Ay  for j = 0, • • •, m.   Suppose [y -, «] = ^í _Qyía k

(j = 0, • • •, ot)  where the  a.'s are in  B.    By Lemma 14

m

2>»a(*Mc) - cDrt(«/ifl)] = 0
fe=o

for all a  and c in  B.   Let /' = q, n = r and let  z  and  è be chosen as in the

hypothesis of the theorem.   Letting c = 1   and a = x,   we obtain

m

Z[x,D ..a ., - ID ,(a .,x. )] = 0.
h    ik   jk ik     ¡k   h

Now  ID , = 0 and  x.D., = 0 except when k = r.   So we have  s, a     =0 and
life h    ik r br   qr

since  s,   ^ 0, a     = 0.   But  q and  r were arbitrary, so a ., = 0 (/, k = 0, • • •, ra).

Therefore [y., «] = 0 for all /' = 0, ■ • •, m  and by Theorem 4,  A  is commutative.
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