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HORN CLASSES AND REDUCED DIRECT PRODUCTS

BY

RICHARD MANSFIELD

ABSTRACT.   Boolean-valued model theory is used to give a direct proof that an

EC^   model class closed under reduced direct products can be characterized

by a set of Horn sentences.   Previous proofs by Keisler and Galvin used either

the G. C. H. or involved axiomatic set theory.

We shall give a direct proof of the theorem that an  EC.   model class is

closed under reduced direct products iff it is characterizable by a set of Horn

sentences.   This was first proven by Keisler as a consequence of the continuum

hypothesis.   Galvin then proved that in  ZF   set theory it is provably equivalent

to a certain arithmetical statement.   From these two results, it follows that the

theorem is true in the constructible universe for set theory and is consequently

true.   This indirect proof of a simple proposition of model theory seems overly

ornate.   We shall carry out the main features of Keisler's argument within the

system developed in [3] and prove the theorem without any use of axiomatic set

theory.   Subsequent to this proof Shelah has given another direct proof of this

same theorem [5Í.   His methods do not use Boolean-valued models as do mine,

but rather closely follow his proof that elementarily equivalent models have

isomorphic ultrapowers.

1.   A major tool in our proof is the theory of first order Boolean-valued

models.   Since the standard notation for model theory becomes cumbersome in

the Boolean case, we give an alternate system; a model is identified with its

truth function.   For A- a finitary language without function symbols, an i--

structure is a set of constant symbols  |?I|  containing all the constant symbols

of £ together with a function  21 from it(j2I|)  into a complete Boolean algebra

satisfying the conditions:

1. U(a= &) = 1,

2. U(a = b) < m = a),

3. K(a . b) Â U(b = c) < «I(a = c),

4. For c6  an atomic sentence,  ?I(ç6(z7)) A U(a = b) < Uicpib)),

5. 2I(</> V iff) = 2I(<¿>) V «(-A),
6. ïï(-, <¿>) =  -,?I(0),

?IU(.)17.   ÎI[3x0(*)]=  V„e|-i«W«)].
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When the language i- contains function symbols, these must first be interpreted

by actual functions from the appropriate powers of  |8I|   into   |8I|   before proceed-

ing as above.   An .¿--structure satisfies the maximum principle if the truth value

of any existential statement is always equal to the truth value of some instance.

Any ¿--structure has a canonical elementary extension satisfying the maximum

principle.

Various basic operations of model theory can be generalized to Boolean

model theory.   If j8I.}.  .  is a collection of ¿--structures with corresponding al-

gebras  {B.|.,,,  11.81. can be defined as  a   ÜB.-valued  model.    The set of con-
v i i el        i     i zz

stant symbols for  II. 81.  is just the usual cartesian product of the component

symbols and truth is defined by the equation

This definition should actually be called the covariant direct product.   It has

the drawback that it does not specialize to the traditional definition in the two-

valued case; the product of a pair of two-valued models is a four-valued model.

The traditional definition will be a special case of our definition of a reduced

direct product.   The contravariant direct product, which is defined using the

algebra  X.  B ., does not have this drawback and has a much better claim to the

name "direct product."   However it is the covariant product which is useful for

the purposes of this paper.

The Boolean power of a two-valued model is the structure that was used in

the construction of Boolean ultrapowers in [3].   For 81 a two-valued model and

B  a complete Boolean algebra the   B-valued power 8Il       is defined as follows.

The constant symbols for 8I(       is the set of all functions from the constants of

81 into  B whose ranges partition  B, i.e.

¡f £B&:al4a2-^ f(ax) h f(a2) = Q and    \J   /(a) = ll.

Truth is defined by the equation

2l(B>Wi . .. Q] = V j/A  />,): 0 h #*v - ", al

For a more extensive treatment of this structure the reader is referred to [3, § l]

where it is discussed in necessary detail.   In [3] it is shown that  8Il       is an

elementary extension of 81.   Again our definition does not specialize to the

traditional one when  B  is a power set algebra; we will need to first reduce by

a filter.

If A   and  B  are both complete Boolean algebras, we define an A-valued

filter on  B  to be a function D  from  B  into A  such that  D(b. A b?) =
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DibA A Dib2) and D(l) =1.   If in addition D(-. b) = -> D(b), D is an ultrafiker.   D is

proper if A)(0) = 0.   A function E from B  into A  has the finite intersection

property if £(0) = 0 and also A\ { _x b. = 0 implies /A "=J E(&.) = 0.   Just as

with two-valued filters any function with the finite intersection property uniquely

generates a filter.   This is accomplished by the definition

Dib) = w\/AEibi): /¡\b.<bl

If i^-l-g,  is a collection of ¿--structures satisfying the maximum principle

and  D  is a B-valued filter on the product algebra, we define the Boolean reduced

product  FI. <*./D  as a B-valued model.   The set of constant symbols is the same

as in LI 21. and truth for atomic  cf> is defined by

nvD(# = D[n«i#]

Truth for arbitrary sentences is then defined by induction according to conditions

5, 6, 7 of the definition of an it-structure.

In the special case that  D is an ultrafiker, it can be shown that, for arbi-

trary  cp",  UU./Dicf>) = D[n2I.(<7j)] but in the general case this is not so [3].   How-

ever, when ci is a Horn sentence it is an easy exercise to prove that

nvDí^DÍnw].
This shows that Horn sentences are preserved by reduced direct products.

Since we are allowing the use of Boolean-valued models, nontrivial use of

the above definition can be made even when only'one model is involved.   W-    /D,

the application of the above definition to just the one model 2IA     , is a reduced

direct power of the two-valued model 21.   When D is a two-valued ultrafiker,

this structure is just the Boolean ukrapower studied in [3].

If  D is a two-valued filter on  2    and each 21. is a two-valued model,

I12I./D  is the traditional reduced direct product of the  21.'s.   If D  is the trivial
7 7 ;

filter  (1¡, II2I./D  is just the traditional cartesian product and  21/    >/D  is can-

onically  isomorphic  to  the traditional cartesian power of  21.

We shall conclude this section by stating a lemma which shall be used in

the main argument.   This lemma follows easily from

Theorem 1.1.  // 21 is a B-valued ¿-structure and B  satisfies the  < N , oo

distribution law and £ is countable, 21 has a countable substructure  B for

which there is a nonzero b  in  B  with

Uicf>) A b = B(çi) A b

for every  cf> in M 53).
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Since this paper is not meant to be a treatise on Boolean-valued model

theory, we are leaving the proof of this theorem to the reader.   Very briefly, in

order to prove it one must first pass to a certain elementary extension 81    of 81

in which the truth value of any existential statement is equal to the truth value

of one of its instances [4].   In the extension the Lowenheim-Skolem argument

can be applied exactly as in two-valued logic.   Since the extension I have in

mind satisfies the condition that, for any a    £ |8I'|,   V   £|„| 81'(a = a') = 1, the

distributivity law produces the desired element  b and countable structure   B.

Lemma 1.2.  // {81.!.,,  is a collection of two-valued models and D  is a B-

valued filter on 2    and B satisfies the < X , »    distribution law, there is a

two-valued ultrafilter p on  B  such that for any sentence  cf> without parameters

Proof.  There is a countable   33 C Y&../D and an element  b £ B  satisfying

Theorem 1.1.  Let  p he an ultrafilter on B  containing  b and preserving all of

the countably many sups used to evaluate sentences in i-(53).   The existence

of such a p is guaranteed by the Rasiowa-Sikorski homomorphism theorem,   p

is easily seen to satisfy the lemma.

2.

Theorem 2.1.   If K is a model class closed under elementary equivalence

and reduced direct products, K can be characterized by a set of Horn sentences.

We stress that despite all the Boolean constructions of the previous section

this is a two-valued theorem; the models in  K ate two-valued and the reduced

products are the traditional ones.   The proof, however, will be quite Boolean.

What we shall actually prove is that any model for the Horn theory of K is ele-

mentarily equivalent to a reduced product of  K, and hence   K can be characteriz-

ed by its Horn theory.

For the sake of completeness we give a definition of the class of Horn

formulae.   A basic Horn formula is a formula in the form  /X\ "_. <p. —* <7->0   where

each of the  r/>. for 0 < i < n  is atomic (true and false are counted as atomic

sentences).   A Horn formula is a formula in prenex normal form whose matrix is

a conjunction of basic Horn formulae.   The Horn theory of  K is the set of Horn

sentences true in every member of  K.

Let  S be a model for the Horn theory of  K.   By taking an elementary exten-

sion if necessary we may assume that   8  is  X .-saturated.   (For a definition of

N.-saturation, see [2, p. 310].)   Let {8I.}.6. be an indexed collection from  K such
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that any Horn sentence true in all but finitely many  21.  is also true in  93.   Suck

a collection can easily be constructed since a Horn sentence false in  93 must

also be false in at least one element of  AC and this element can be included infin-

itely many times in the collection.

We let the notation /: II 21. —> 33 mean that / is a partial function from II21.

into  33 such that whenever the Horn sentence  cpia  , • • . , a ) is true in all but

finitely many 2L and {a{, ■ ■ ■ > «„! Ç dorn f,  cp[fiaA, ■ .. , fia )] is true in 33.

(Sometimes when the parameters of  c6 are not explicitly listed, we shall use the

notation ficp) fot the image formula.)   Our first step is to construct a certain

Boolean algebra.   This will be done by using the regular open subsets of a topo-

logical space.   Let  T be

{/:II2I¿-Band  |/| - A

Each countable   Q: II21. —» 33 defines a subset of  T, namely  [Q] = Í/ £ T: Q C f\.

We  give  T the topology generated by the  [ßl's, and let  B  be the regular open

algebra  of that topology.   In order to show that  B  is nontrivial we must prove

that  T is nonempty.

Lemma 2.2.  // Q: 1321.    ' 33  is countable, there is an f £ [Q]  with  a £ dorn f

and b £ rng / for any  a in II21.  and b £ 33.

Proof.  The discerning reader will realize that this lemma exactly corresponds

to Keisler's lemma [2, Theorem 3» 11; not surprisingly it has the same proof.   We

first find a countable QQ: II21. ~* 33 extending Q with a edomQ0.   Let F be

the set of Horn formulae with one free variable and parameters from dorn Q  such

that for all but finitely many   z, 21. (= cp[aii)\.   Then for  A a finite subset of  T

the sentence  3x   /A\A is true in all but finitely many  21. and is a Horn sentence.

Thus  Qilx  /y\A)  is true in  S3, i.e., Q(D  is finitely satisfiable in   33.   Therefore,

by the  N .-saturation of  33, there is a  b    in  S3 which satisfies every formula in

Q(T).   Clearly Qu \(a, b')\ is the desired extension.

We will now use a parallel argument to find a Q^ II21. —» 33  extending  Q0

with   b e rng Q..   This time let  L be the set of Horn formulae  cf>(x) with one free

variable and parameters from dorn QQ  suchthat  Q0[cp(b)] is false in  S3.   For each

cb in  T, let  A , = [i: 21 ¿ \= ]x  -, ç6(x)i.   Since  Q0[cf>ib)]  is false, I^  is infinite.

Therefore, by a lemma of Keisler [2, Lemma 1.3], there is a pairwise disjoint

collection i/^Ljp of infinite sets with ] ± C / ,   for each <p in T.   Now pick

a    in  1121. suchthat  i e J ̂   implies  21. j=   -, <j>[a'U)].   Then  QQ U   \(a , b)\  is

the desked extension.

We finally show that Q    can be extended to an element of T.   Since I12L is
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uncountable, we have just shown that any countable   Q: II81.—>  B  can be properly

extended; thus  a  canonical use of Zorn's Lemma gives the desired result.

For  a £ E8I.  and  b £ B, define
z

(a, b) = interior (closured/ £ T: fia) = b\)).

Then  (a, b) is a regular open subset of  T and hence is a member of B.   Note that

[Q] Ç (a, ¿>)  implies  Q U {(a, è)[: 1181. —* B.    We can now define a function /

from  II8I.  into  B'   '  by  jia)(b) = (fl,  (?).   We must first show that, for each  a,

j(a) is actually a member of B(B).   Clearly, for bx 4 ¿2< /(«Hi»^ A j(a)(b2) = 0.

Suppose that   \f,j(a)ib) < 1.   Then there would be a countable  Q: II 81. —* B  with

[Q] A   V/,(a' ^) = 0.   We have just shown that there is a  Q    extending  Q with  a

edom<20.   Then,

0 < [O0] < [\(a, Q0(a))}] < (a, QQ(a)) <   V  U. *).
6

In similar fashion it can be shown that  V   (a, b) = 1.
a

Lemma 2.3.  If r/>  is a Horn sentence with parameters from II8I.  and   \i: 81. (=

9!. i Z5 cofinite, B(B)[/(rA)]= 1.

Proof.  If a,,••■, a    are all the parameters of  <f> and  Q: II81. —» B  and

j, .. • , a  \ C domö, then B |= (/itöXflj), • • • , Qia )].   Therefore\a

/y\ fia)ib} > 0     implies     B [= <p(bv ■•-, bj.

z=l

Consequently,

*«1. ■••.*„)       7 = 1 V*«       Í-I

but L. H. S. is  B(B) [/(</,)].

Now let  B    = rng ;'.

Lemma 2.4.   For every h  in B(   ',

VíB(ñ)(A = /):/eB'!=l.

Proof. Suppose otherwise; then there is a g with [Q] A \f0B)(h = f): f £ B'j = 0.

Since   Vt,h(b) =  1   there  is  a   b   in   B   with   [Q)   A hib) > 0.     Then since

V    (a, 7>) = 1   there is an a with  Q A Mfc) A (a, b) > 0.   But  /x(i>) A (a, t) <

B<B){A = j(a)l
In [3, §1] it was shown that  B(   '  is an elementary extension of  B, i.e., a

sentence is true in B  iff it has value one in B(   '.   We now use Lemma 2.4 to

show that  B'   '  is elementarily equivalent to B .
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Lemma 2.5.  If <p  is any sentence in £(B'), W(cp) = B(b)(<7j).

Proof.  We proceed by induction on the logical depth of <f>.   The lemma is true

by definition for atomic formula.   For negations and disjunctions it follows instant-

ly from the inductive hypothesis without any use of Lemma 2.4.   So we assume

<f> = Jx ifr(x).   Then

»'(*)»   V     S'(>A(/))<    V       Biß\,/A7)) = B<B\ci).
/e$' /eS(B)

We must show that the reverse inequality also holds.   For each / in  B    and  h

in  B'B\   B<BK<A(M A / = h) .< B(B)(^(/)).   Therefore,

V     B(B)(^/z)) AB(B)(/=/7)<B'(cS).
feSS'

Thus for each h in  W   ', Bl   '(ip'(h)) < B'(cA)  and taking the sup over A  gives

the desired result.

We now define a B-valued filter on  2 .   For each atomic  <p in x(Il8I.), let

1^ = \i: 21. |= <f>\.   Then let  E(I^ = B'(/(cA)); E(j) = 0  for any  / Ç I which is not

an 7 ..   It is straightforward to show using the technique of the next lemma that

E has the finite intersection property and thus generates a proper  B-valued

filter  D.

Lemma 2.6.  / is an isomorphism from II8I./D  onto B.

Proof.  We show that, for any atomic sentence,

U^/D(c?iav v, aj) = B'^/Uj), ...,/(«„))).

From the definition of £  and   D  it follows that

u 81./D(<p(av ..., an)) = DÜz: U.\= fra^i), ...,«a<i))î)

> E({ z: 81. |= tfiap), ..-, aJUM = K'icpijiaA, • • •, fiaj)).

In order to prove that equality holds suppose   (0,}?,   is a finite set of atomic

sentences .in £(n«I.) with  {i: K¿ |= /X\ ^, 0J Ç {¿! 81. |= cf>\.   Then for every

i, 81. j=  t0(\"   , </>,  —> <^> and this is a Horn sentence; thus by Lemma 2.3 it is

•    valid in  B', i.e., (¡1-, '<Pk £ > <p  ^plies  /A * _j F(/^) < E(/¿)  and thus   E(/¿)

= °(^)-

Lemma 2.7.  B  satisfies the < X , oo distribution law.

Proof.   From Lemma 2.2 any countable decreasing infinum of base sets is

nonzero.   The distribution law follows in a standard manner from this fact.

We have now nearly completed the proof of Theorem 2.1.   By Lemmas 1.2 and

2.7 there is an ultrafilter p on  B  with II 21 ,/D o ll<-4>) = <x(Il8I ./D{<t>)) for every
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sentence cß. Then every sentence true in 33 has value one in S31 ' [3], value one

in 33 (Lemma 2.5), value one in II2I./D (Lemma 2.6) and hence is true in II 21 ./D

o fr. by the above equation.    That is to say, 33  is elementarily equivalent to

n 21 ./Do i,.
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