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ABSTRACT.     Projective dimensions of modules ovet the stable homotopy

ring are shown to be either  0, 1   or  °°; weak dimensions are shown to be  0 or  °°.

Also geometric charactetizations are obtained for projective dimensions   0, 1   and

weak dimension  0.   The geometric characterizations are interesting; for projective

modules they are about the cohomology of geometric realization; while for flat

modules they are about homology.   This shows that the algebraic duality between

"projective" and "flat" is strongly connected with the topological duality between

"cohomology* and "homology".   Finally, all the homological numerical invariants

of the stable homotopy ring—the so-called finitistic dimensions—are completely

computed except the one on injective dimension.

1.   Introduction and statements of results.

1 .1  Introduction.   In [7]   we investigated the homological dimension of a

'rr^-module of finitely generated type, where 77^   is the stable homotopy ring.   In

this paper we extend our computations to general 77 + -modules.   Namely, we find

that the projective dimension of a rr^-module is   0, 1   or 00;  and its weak dimen-

sion is  0 or 00.   Combining these computations with those of [7],  we obtain the

finitistic dimensions of tt*, except the injective dimension.   Moreover, we obtain

geometric characterizations of rr^-modules of projective dimensions  0, 1   and

weak dimension  0.   These characterizations are interesting:   For projective

modules they are about the cohomology groups of geometric realization;  while

for flat modules they are about the homology.   Heuristically "projective" and

"flat" are dual notions in homological algebra, while "cohomology" and "homology"

are dual in topology.   These characterizations show that these two heuristic

Presented to the Society, April 1, 1970 under the title Flat tt  -module and homological

algebra of IT'  ;  received by the editors November 9, 1971.

AMS (MOS) subject classifications (1970).   Primary 55E45, 55E10.
Key words and phrases.   Stable homotopy ring, stable homotopy module, finitistic

dimensions, projective dimension, weak dimension, injective dimension, higher order

homology operation, cohomology operation, Eilenberg-Mac Lane spectrum, Postnikov

system, projective module, flat module, injective module, Puppe sequence, mapping cone

sequence, spectral sequence, Hurewicz homomorphism.

(1)    The preparation of this paper was sponsored by National Science  Foundation

Grant GP-29533.

Copyright © 1973, American Mathematical Society

473



474                                                                    T. Y. LIN [October

notions are, surprisingly, well fitted to each other. Schematically

geometric

Projective-► Cohomology

I                            realization f

dual ¡dual
I
♦ geometric

Flat *-» Homology
realization

1.2 Main results.   Let %.  be, as in [7],  the category of rr^-modules bounded

from below  [7, Definition 2.3];  one can, without loss of generality, regard M  as

the category of nonnegatively graded ^-modules.   As in [7],  our spectra will be

assumed to be connected, pointed  CW-spectra [3].   We will not distinguish

between a map and its homotopy class, nor between a spectrum and its homotopy

type.   A 77^-module which is realizable by some spectrum, say X,  is called a

stable homotopy module and is denoted by tt+(X).

5.7 Theorem (Projective dimension theorem). Let M be a n^-module, then

(i)   The projective dimension  Pd      M  of M  is either   0, 1   or °°.

(ii)   Pd     M = 0 iff there is a wedge  R   of spheres such that ít+(R) — M.
*

(iii)   Pd      M = 1   iff there is a spectrum  L  with trivial homology operations,

which is not a wedge of spheres, such that 77 „.(F) — M.

5.9 Theorem (Weak dimension theorem).   Let M  be a n^-module, then

(i)   The weak dimension Wd_    M of M  is either 0 or oo,
77 '

(ii)   Wdjj    M = 0 iff there is a spectrum  L  with trivial homology operations

such that 77^(F) a¿ M.

5.11 Theorem (Duality theorem).   Let M  be a n¿.-module, then

(i)   M  is projective iff there is a spectrum  R  with trivial cohomology

operations such that ttJ.R) as M.

(ii)   M  is flat iff there is a spectrum  L  with trivial homology operations

such that t7^(L) — M.

5.12 Theorem.   // M  is a tt ¿.-module, then the following conditions are

equivalent.

(i) M  is a flat  (but not free) tr^-module.

(ii)   Pd^    Mm I,

(iii)   M   is realizable by a wedge   VL(G  , n)  of Moore spectra, where each

G     is torsion free, but at least one  G     is not free.
77 ' n '

(iv)   M  is realizable by a spectrum with trivial homology operations, which

is not a wedge of spheres.

In homological algebra, for a given ring A,  there are various dimensions—the
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so-called finitistic dimensions-attached to it ([2]   or [7]).   These dimensions are

G DU) > F P DU) > fl P DU) > f P DU),

F I DU) > F W DU) > fl W DU) > f W DU).

(Here we assume that A   is commutative in the graded sense.)   For the stable

homotopy ring tt*,  we have completely determined all these dimensions, except

F I DirrA-   Namely,

5.13 Theorem.

G DU*) = oo > F P D(t7*) = 1 > fl P DÍtt*) = f P D(t7*) = 0,

F I D(n*) > 1 > F W DÍtt*) = fl W DU*) = f W DU*) = 0.

This paper is a ring theoretical report on the stable homotopy ring of spheres,

thus most of the works are algebraic.   Theorems 5.7(i), 5.9(i), 5.12(i), (ii) are purely

algebraic.   They are essentially based only on Milnor-Kervaire's computation of

Im /,  and hold good even for a more general ring (§4).   One interesting "feed

back"   to geometry of these algebraic theorems is that they allow us to realize the

flat  77 „.-modules, even the modules unbounded below (see [10]).   Thus it may

provide us the possibilities to study the flat modules (including those unbounded

below) by geometric means.   However one should note that at the present stage,

we do not yet have effective means to deal with the nonconnected spectra.(2)

The paper is organized as follows: §1 is introduction and statement of main

results.   In  §2  we define the higher order homology and cohomology operation in

a very general setting.   In  §3  we characterize the stable spheres in terms of

homology operations.   In  §4  we compute the projective and weak dimensions of

general rr „.-modules.   In  v5  we give the proofs to the main theorems stated in

this section.   We would suggest that the reader, after  §1, go directly to §5  and

refer to other sections when necessary.

The author would   like to thank Professor William Massey for the encourage-

ment and fruitful.discussions; he would also like to thank the referee for valuable

suggestions, which shorten several proofs.

2.   Higher order homology and cohomology operations.   In this section we will

define the higher order stable homology and cohomology operations in a very

general setting.   Roughly speaking, a primary homology (cohomology) operation is

a natural transformation of homology functors, and a secondary operation is a

natural transformation defined on the kernel of a primary operation with values in

the cokernel of primary operations;  by proceeding in this way, one can define the

(2)   Boirdman, Eilenberg and Moore are working on "spectral sequences of whole

plane" which probably will be a good machinery.
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operation of any higher order.   We will formulate these ideas in terms of spectral

sequences, namely, the first differentials will be the primary operations and the

second differentials will be the secondary operations, etc.   In order to formulate

these ideas more precisely we need some notations for spectral sequences.

The notion of spectral sequences that we need is slightly more general than

that in standard texts.   Let us recall that a bigraded abelian group F   is an

indexed collection of abelian groups  Es (  for every pair of integers  s  and  t.

A differential d: E —> E  of bidegree ( - r, r - l)  is a collection of homomorphisms

d: E       —» E , ,  for all s  and  t,  such that d   = 0.   The homology group
s,t s — r.t+r—l' ' nj   r>        r

//(F)   is the bigraded group defined by

HSitiE) =[KerU: B,#< - E s_r^r_A1/dÍEs+r¡t_r + 1).

2.1 Definition.  A homology spectral sequence is a sequence i F 1, d l\  such

that  (a)  r.  is an increasing sequence of integers.   (Here is the point where we

deviate from standard treatment.)  (b)  F l  are bigraded abelian groups and a1  is

a differential of degree i - r., r ■ - l)  on  E 1.   (c)  There is a given isomorphism
H(Eri) c± ETi^ .

Note that the differential in the homology spectral sequence is lowering the

degree of the first coordinate.   There are spectral sequences which raise the

degree of the first coordinate.   They are called cohomology spectral sequences and

are defined similarly.   We left the details to the reader.

A homomorphism of spectral sequences is defined as usual and their com-

positions are obviously still homomorphisms.   Thus the collection of all spectral

sequences is a category.   The category of homology spectral sequences will be

denoted by te.

With these notations we can now define the homology operations.   Let 2  be

the category of CW-complexes or more general CW-spectra.   For convenience we

will use Boardman's  CW-spectra [3];  and by his formulation one can regard

CW-complexes as some connected spectra.

2.2 Definition.   Let fe be the category of homology spectral sequences.   Then

a covariant functor T: £ —* ë  is called a Total Homology Operation if the first

term     F* „.    of the spectral sequence   T(X) = \E l, (fl\  is the ordinary homology

group, that is,

where each Gq   is an abelian group.   The differential z/1   is called a Primary

Operation and dl  is called a Homology Operation of the  z'th order.

Similarly, if we  take te  to be the category of cohomology spectral sequence

and  T to be a contra variant functor, then we get Total Cohomology Operation and

cohomology operations of various orders.
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Example 1.  Let  0—► Z —> Z —>Z„ —> 0 be an exact sequence.   Then there

is an exact couple

H AX, Z)-«HÁX, Z)

\     y
w*(x, z2)

which gives rise to the Bockstein spectral sequence  BÍX).   Then the functor

T: S —*& defined by  TÍX) = BÍX)  is a total homology operation and its

differentials are just the usual Bockstein primary and higher order operations.

Example 2.  Most common operations arise from a Postnikov system.   Let

F0-- Ei—" •••  —

<■> II I
Kn K. EU 1 r,

be a Postnikov system, where   K.  is an Eilen berg-Mac Lane spectrum.   Then the

functor  T,  which assigns to each X eS  the spectral sequence of the following

exact couple

Z"^A E)-2>„(X A En + 1)
\ v

2>,(XA Kn)=IX(X),

is a total homology operation, and its various differentials are various higher

order homology operations.

2.3  Definition.   Let d '  be the   z'th order homology operation of the total homology

operation  T.   Then the z'th order homology operation d 1  is said to be trivial on

spectrum  X  ii the  z'th differential of the spectral sequence  T(X)   is zero.   The

total homology operation  T  is trivial on spectrum X  if all the differentials of

TÍX)   are zero.   An  z'th order homology operation d l  is of degree ~>_n  ii d l

sends the homology class of dimension s  to that of dimension <_ S — if,    The

total homology operation  T  is of degree >_ n  if each d *  is of degree >^ ?z.

Similarly we can define the degree for cohomology operations.

A spectrum X  is called a homology (cohomology) operational trivial spectrum

abbreviated as HOTS (COTS),  if all the possible total homology (cohomology)

operations of degree   >_ 1   are trivial on the spectrum.

If the Postnikov system of Example 2 arises from a Postnikov decomposition

of a spectrum, then the total homology operations of Example 2 are trivial on the

0-sphere 5°  (by dimension reason).   In fact 5°   is a HOTS (COTS).

Next we would like to investigate the question of when a "subspectrum" or

"quotient spectrum" of a  HOTS  is itself a HOTS.   We have the following

proposition.
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2.4 Proposition.   Let X  and  Y  be spectra and suppose there are maps

between  X and Y such that, for every G,   either

0 -♦ HAX; G) — HJ.Y; G)

or

HAY;  C) — HAX; G)^0

is exact.   Then if Y  is a  HOTS,  X  is also a HOTS.

Proof.  Let  T be a total homology operation; then one of the lowest order

nonzero differentials on  T(X)  (which is defined on all //„.(X)) certainly implies

that the corresponding differentials are nonzero on  T(Y);  a contradiction.   Q.E.D.

Next we will investigate the duality between higher order homology and

cohomology operations.

Let O  be the rational number modulo one.   Let G = Homz ÍG, Q) be all the

Z-homomorphisms of G  to Q, where  Z  is, as usual, the integers,  Let  F =

i F '  , a' '   i  be a homology spectral sequence.   Then

defined by

F= Hom7(E, 0) s \Ep-q, dp-q\

Ë>:«=Homz(E^. Q)    and    d*>* = Hom^^, Q)

is a cohomology spectral sequence, because  Homz( —, Q)  is an exact functor.

Let  X    be the category of connected spectra with finite skeleton.   Then we have

2.5 Theorem.   Fez"  T: 2' —> te  be a total homology (resp. cohomology)

operation.    Then there is a total cohomology (resp, homology) operation

T: S   —>  fe satisfying the following condition:  The ith order cohomology

operation  d    i = the ith differential of T) is trivial iff ith order homology opera-
_ 7 i

tion d    i = the ith differential of T)  is trivial.
ri

Proof.  We will only give the proof for the homology operation  T, since the

case for cohomology can be obtained by verbatim change.   Let  T(X) = \EJ   , d '\,

and define  T as above.   Then as remarked above  T(X)  is a cohomology spectral

sequence.   Thus   T  is a functor X' —»  fe.   Moreover, note that since  E* \. =

//^(X, G*),  we have

E** = Homz(F„XX;  G*), Q) = H*(X;  Gj

where the last equality is obtained from [4, p. 120, Proposition 5.1    when  T is

a homology operation, or Proposition 5.3 when  T  is a cohomology operation ].
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Thus   T  is a cohomology operation.   Also note that it follows immediately from

d   = Hom7(zf «, 5)  that d  = 0 iff dri = 0.   This completes the proof.
r¿ z. r¡

3.  Characterization of stable spheres.   In this section we will characterize

the stable spheres in terms of homology or cohomology operations.   From now on

we will assume all the operations are of degree >   1,  for example we will not

regard the coefficient homomorphism as a cohomology operation.

The following theorem is more or less a folk theorem (e.g. see [8]).

3.1 Theorem.   Let  X  be a connected spectrum.    Then X  is a wedge of

spheres iff all the cohomology operations of degree >_1   on X are trivial.

The dual version is slightly different, due to the incompleteness of the

duality, namely,

3.2 Theorem. Let X be a connected spectrum. Then X is a wedge of

spheres iff (i) F+(X; Z) is a free abelian group, and (ii) all the homology

operations of degree >_ 1   on X are zero.

Note that  (i) is necessary;  for example, the Moore spectrum of rational

numbers does not admit any nonzero homology operations.

Since the proof is fairly long, perhaps it is desirable to give an outline.

First we set up a lemma which establishes the fact that a map between wedges of

spheres is detectable by homology operation (in general this may not be true, see

[9]).    Then we use the co-Postnikov system (or the homology decomposition) to

show that the spectrum is obtained by attaching cells successively in a certain

"normal" way.   Then apply the lemma to show that all these maps are null-

homotopic.

3.3 Lemma.   Let R  and Y  be wedges of spheres and f: R —> Y  be a map

which induces a zero map f*: H A R\ G) —> H*(Y; G)    for every  G.    Then f is

null-homotopic iff the mapping cone    C,  is a HOTS.

Proof.  The main idea of the proof is  first, reduce the discussion of / to its

restriction on a finite wedge of spheres.   Then, by duality, the problem is reduced

to the well-known situation—detecting map by cohomology operations.

The necessity is obvious.   To prove the sufficiency, let us assume, to the

contrary, that / is not null-homotopic.   Since  R   is a wedge of spheres, there is

at least one sphere, say S0,   in  R   such that the restriction   <b = f\SQ  is not null-

homotopic.   Then cb determines a nonzero element, denoted by </> again, in

ttAY).   Since   y  is a wedge of spheres  (and hence ttAY)   is a free 77^-module),

there is a finite wedge   y' C Y  such that cb  lies in rr^y'),  which is a free direct

summand of nAY).   In other words, cb can be factored through the finite wedge

y   ,  that is, there is  cb' : SQ —» Y'   such that the following diagram is commutative
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w   »  y = Y   V Y

where   y'    is the complement of   Y     in  Y.   Obviously the mapping cone

C j '= y'  Uj/   CS 0   is a direct summand of the mapping cone  Cj, = Y U¿ CSn,

namely,

(1) c c^- V y"

Next, let  R"   be the complement of SQ  in R,  i.e.  R = SQ V R" •    Then from

the geometry we have a mapping cone sequence

(2)
<£

-   C
*

c, y uf CR

where if/ is the composition R" C R —> y C Cj,. Note that lb induces a zero map

ib*: hAR" ; G) -* F^ÍC^; G) for every G, since f*: H*iR; G) -» //„XY; G) is, by

assumption, a zero map for every  G.    Thus, from  (2),  we get a monomorphism

(3) MAC,;  G) H Ac,; G)

for every  G.

Now, note that from the assumption that  C,  is a HOTS,  from  (3) above and

Proposition 2.4, we conclude that  Cj,   is a  HOTS.   Also note that since   Cj<is a

direct summand of  Cj   (see  (1) above), we can also deduce that  C ±,  is a  HOTS.

Then, by Theorem 2.5,  Cj,'  is also a COTS  (note that  C,'   is finite).   Thus,

by Peterson's Theorem [12],  cb'   is null-homotopic which is absurd.   (Note that

<b*: H*iS Q; G) —> HAY; G)  is zero for every G  because cb* is the restriction of

f* factoring through a direct summand  HAY' ; G)  of H*ÍY; G);  and all the

cohomology operations are trivial on  Cj, ' .)   Thus we conclude that / is null-

homotopic.

Proof of Theorem 3.2.  Since  X  is a connected spectrum, there is a co-

Postnikov system (or homology decomposition) {y   ! (see   [6]):

CYC
m + 1

1771+1

c y  c y ., c
n 77 + 1

7! +1

Uy. y c* x

¡+i n + l

such that

(i)    HqiYn;Z)= HqiX;Z),  q < n;
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(ii)   HqiYn; Z) = 0,q>n;

(iii)   Yn+l=Ck>^nUkLCRn>

(iv)   R     is the Moore spectrum of type   (Fn + ,(X), «);

(v)   k'nt: H*iRn; Z) -» H*iYn, Z) is a zero map.

Note that, by assumption,  H*iX; Z) = H*ÍY; Z)  is a free abelian group and hence

each Moore spectrum  R     is, in fact, a wedge of spheres.   Thus in order to show

that   y  is a wedge of spheres, it is sufficient to show that each kn   is null-

homotopic.

We will show, by induction, that each  k'   is null-homotopic.   In order to do

this let us assume that it has been shown that each k,, I < n,   is null-homotopic.

Then we will show that  k    is null-homotopic.   Note that since  k ,,   I < n,  are

assumed to be null-homotopic,   Y     is a wedge of spheres.   Thus  k   ■ Rn —» Yn  is

a mapping between wedges of spheres.   From (v) above k  » : H*ÍR   ; Z) —>

H*iY  ; Z)  is a zero map.   Moreover, by the universal coefficient theorem,

k  t : H*iR   ; G) —> H*(Y   ; G)  is zero for every group G (note that both H*(R   ; Z)

and  H AY  ; Z)  are free).    Thus  k    satisfies the conditions of Lemma 3.3.^77 77

Therefore it is sufficient to show that  Y     .   is a HOTS.   From the assumption

that W^(X; Z)  is free, we can, by the universal coefficient theorem, improve  (i) and

(ii)  above to the following statements:  For every  G,

(i')  Hq(Yn;G) = HqiX; G),  q < n;

(ii')   HqiYn; G)= 0,  q> n.

Thus we have a monomorphism

0^ H*iYn, G)^ H*iY;  G)

for every G. Then, by Proposition 2.4, we conclude that Y is a HOTS. This

proves that k is null-homcttppic. Thus, by induction, we have shown that all

k     are null-homotopic and therefore   y  is a wedge of spheres.    Q.E.D.

4. Dimension of ^„.-modules.   In this section we will compute all the possible

dimensions for general 77+ -modules.

First let us note that if M  is a 77„.-module, then obviously we have   M/Mtt+ —

A ® Z  where A ®Z  means the tensor product over   77^(3) and 77+ = J77 , 72 > OÍ

is the Jacobson radical of 77^.

4.1   Proposition.   The rational number Q   is a flat rr*-module via augumentation.

Proof.   The    Z-flatness of Q  yields the following exact sequence for any

77„.-module  M.

0 ~* Mt7+ ®z 0 —> M ®z 0 —» .M/Mt7+ ® 0 — 0.

(5)   Throughout the whole paper ® will mean tensor product over 77   .
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Since   M77+ is  Z-torsion,  /W77 + ®7 2 = 0.   Therefore

Al   ®z O =* Al/Al77+  ®z   O e*(M  ® Z)  ®z   Q = M ® Q.

Thus   - ®7 Q  and  — ® Q   are the same functors; and  — ® Q   is an exact functor.

Therefore  Q   is a flat 77 „.-module.

4.2  Proposition.   Let M  be a flat n*-module such that Ml'Mtt +  is a free

abelian group.    Then M  is a free n*-module.

Proof.   Let ie.|  be elements in M such that their images  ii"i  under the

natural map constitute a basis of the free abelian group M/Mt7 + .   Let  F  be a free

rr „.-module with basis ix.}  such that deg x. = deg e ..    Let  / : F—* M  be the

homomorphism sending x. to  e ..    Tensoring with Z,  we have an isomorphism

(1) / ® Z:  F ® Z —> M ® Z = Ah M?7+.

From [11, p. 215, Corollary 1.5],  we see immediately that / is onto.    Thus we

obtain a short exact sequence

/
0 -» ker / -— F -» ti -> 0.

By applying the functor  Tor „.*„.( - , Z)    to this short exact sequence, we have

Tor^AL Z) -. (ker /)®Z-^F®Z^Af®Z

where the ring of integers  Z   is a 77 „.-module via augumentation.   Since  M   is

tt*-flat,  Tor.*(zVf, Z) = 0.   Combining this with the isomorphism of (1), we con-

clude that (kef /) ® Z = 0.   Then from [ll, p. 215, Proposition 1.4]  we have

ker / = 0.   In other words,  AI — F  is a free 77^-module.

4.3 Theorem.  A  n*-m.odule M  is flat if and only if its projective dimension

is equal to or less than one.

Proof.  Let M be a flat 77„.-module, and let 0 —» K —» F —> M —► 0 be an

exact sequence with  F  being a free 77„.-module.   Then from standard homological

algebra arguments (e.g. see [7, Proposition 2.4]),  we see that  K  is  rr„.-flat.

Consider the following commutative diagram

0 0

(2) K ® Z -►F ® Z

0—*K ® Q -»F ® 0

where both vertical and horizontal lines are exact.   The vertical lines are exact
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because   K and  F  are flat;  and the bottom horizontal line is exact because O   is

flat (by Proposition 4.1 above).   From commutativity we see easily that

/'   ®   Z:K®Z—'F®Z   is a monomorphism.   Since  F ®Z   is a free abelian

group, therefore  K ® Z = K/Ktt+ is a free abelian group too.    From Proposition

4.2, we conclude that  K  is a free  77„.-module.   Thus the projective dimension

P d     AI   of M  is less than or equal to  1.

Conversely, assume that  Pd     M < 1, then we will show that M  is rr*-f]at.

Obviously,  it is sufficient to show this for the case  Pd     Al = 1.   Let    0 —» F.

—> F0  —> AI —< 0   be a free resolution of Al [7, Theorem 215].   Let ÍF?, a £ ]\

be a directed set of finitely generated free submodules of F,,  namely,

FfCFf,    if  a</3

ind

U   FÎ=FX    (-Wf)
ae J

where   lima is the direct limit taken over ÍF. , a £ ]\.   Obviously

0 0
-— = lim —.
F,      —' pa

a    Fl

Moreover since  F.   is finitely generated, there is a finitely generated free direct

summand of FQ,  say FQ , such that  F.   C F0   (and  FQ = F^ Q) F'A.   Since

f W D (n*) = 0 [7, Theorem 4.3]  and W d n (F¿/F*) <  1, the module F'Q/F*  is

flat.   Hence  Fn/Fj   = (F'0/F^) © F"Q   is flat.   Because the direct limit of flat

modules is flat [4],  we conclude that Fq/F,   = lim Fq/E\    ls flat.   This

completes the proof.

4.4 Theorem.  The projective dimension of n*-modules is either 0, 1,  or oo.

Proof. Assume, to the contrary, that there is a 77^-module M of projective

dimension tz > 1. Then, by a standard homological algebra argument (e.g. see

[7, Corollary 2.5]  for similar arguments)  we can assume that  P d_   M = 2.   Then
TT *

from  [ 7, Theorem 2.15],  we have a free resolution of AI,

0-F2 -F, - F0 -M -0.

Or equivalently, we have a short exact sequence

0 -* F/F2 — F0 -> M — 0.

Then, by Theorem 4.3,  F j/'F     is a flat 77^-module which is embedded in a free

module.   By an argument similar to that in Theorem 4.3,  P\/FQ ¡s a free tt*-module.
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Thus   P d    M = 1,  a contradiction.   This proves the theorem.
77 *

Remark.   This theorem is true for a more general ring;  for example, let A   be

a ring satisfying (i) AQ<^ Z  and  (ii) for every prime  p and integer /' there is

a £ A + such that the order of a  is precisely p1.

4.5 Theorem.   The weak dimension of a rr*-module is either 0 or oo.

Proof.  Assume, to the contrary, that there is a ^„.-module  AI  which has

finite weak dimension tz -/ 0,  i.e. W d    M - n,  where  0 < n < oo.   Then from

standard homological algebra (e.g. see [7, Corollary 2.5]  for similar arguments),

we can assume, without loss of generality, that W d    M = 1.   Let us consider the

following short exact sequence  0 —* K —► F —> AI —»0 with  F  a free ?7 „.-module.

Then   K  is a flat 77„.-module embedded in a free module (e.g. see [7, Corollary

2.4]).    By arguments similar to those in Theorem 4.3, we conclude that K is a

free  77„.-module.   This proves that   Pd    AI = 1.   By Theorem 43, M   is flat,  a
** *

contradiction.   This completes the proof.

5.   Main theorems.   The present section is the central one in this paper, for

here we prove the main theorems stated in §1.

5.1   Theorem.   Let   X  be a connected spectrum, and h: n*(X) —» H*(X; Z)

be the Hurewicz homomorphism.   Then h  is an epimorphism. if all the homology

operations  (of degree y_ 1) are trivial on X.   Conversely if H*(X; Z)   is torsion

free and h   is an epimorphism, then all the homology operations on X are trivial.

Proof.   Io.   Let us assume first that X   is a HOTS.     Then we will show that

the Hurewicz homomorphism h: n*(X) —* H*(X)  is onto.   To show this, first note

that there is a spectral sequence [5]  H*(X; tt*) => 77+(X)  with edge homomorphism

»«M -£:/<0 = ^  rr0)^HniX),.

which is just the Hurewicz map.   Since  X   is a HOTS and all the differentials are

homology operations of degree >_ 1 ,  so F    = F     whence the Hurewicz map is

onto.   This proves the first half of the theorem.

2°.   Next we will show the second half of the theorem:   Let \ga: s"a —> X\

be a set of generators of rr*(X) as a 77^-module, and let Af_ =  VaS   a be the wedge

of spheres .V     .   Let /: MQ —» X  be a map such that the following diagram is

commutative

m0=\js ~ —!_, X
a ♦

(1)

where  /  is the natural inclusion.
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Let <C„ be the fundamental class of H    (S   °).    Then by   the definition of

the Hurewicz homomorphism Mga) = ga*iCA  where ga5|c: H*(S   a) —» H*(X)  is

induced by g   .   Thus the ontoness of h  implies that the set \g(x*iCa)\   for all  a!

generates the whole group H*(X).   Note that H*(MQ) = HaH*(S     ),  and hence

È/*(£cr)l   ^or a^ a^ generates  H*(MQ).   Moreover by the commutativity of the

"triangle"   (1) above, we have f*j*(CA = &a^C A-   Thus ÍAACA generates the

whole group H*(X).   In other words, Im f*= H*(X).   That is, /„.: H*(MQ) —> H*(X)

is an epimorphism.

Note that, by assumption, H*(X; Z)   is torsion free;  and hence, by the

universal coefficient theorem, we have an epimorphism

/*:   H*(M0;  G) = H*(MQ) ®z G - H*iX) ®z G = H*iX;  G)

for every G.   Now, since  M_,  as a wedge of spheres, is a HOTS, we conclude

from Proposition 2.4 that X   is a HOTS.

Thus we have completed the proof of the theorem.

5.2 Proposition.  A  n*-module  M with finite projective or weak dimension

is realizable as a stable homotopy module 77„.(X) for some spectrum X,   i.e.

M a* 77„.(X).   In particular every flat TT*-module is realizable.

Proof.  From Theorem 4.4, the finiteness of W d      Al or P d_   M  implies
" * n *

Pdff    Al <  1.   Let

di

0 ^ Fl—-,F0^M^0

be a free resolution of Al  [7, Theorem 2.15].    Then by [7, Theorem 2.18]  F.

and  d.   can be realized by wedges of spheres  R., z = 0, 1,  and a map /: R.—>

RQ.    That is, TT*iR.) — F. and /„. = d .   Note that the monomorphism of ¡3?. = /„.

reduces the Puppe sequence of the mapping cone sequence  R. —« Rfl —> C. into

the following short exact sequence

0—»„(»¿-.»„(«¿Î *• *¿Cf) -+Q

where   C,  is the mapping cone of /.   Comparing the two short exact sequences

above, we obtained the isomorphism M — tt*ÍC A   This proves the proposition.

5.3 Theorem.  A  n*-module  M  is flat iff M can be realized as a stable

homotopy module tt*ÍX)  by spectrum X with trivial homology operations.

Proof. It follows from Proposition 5.2 that Al is realizable, that is, there is

a spectrum X such that Al =i 77„.(X). Then, from [7, Corollary 4.10], we see that

X   is a HOTS.   Thus we have shown the necessity.

To prove the sufficiency, note that from Theorem 5.1 we have an onto
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Hurewicz homomorphism h: tt*(X) —» H*(X; Z) —» 0.   Let MQ  be the wedges of

spheres which are "generators" of 77 „.(X)  as 77^-modules  (AL   is constructed as in

the proof 2° of Theorem 5.1).   Then, arguing as in the proof 2° of Theorem 5.1,

the ontoness of  h   implies the ontoness of f*.

H*iM0;  Z)-^U H*iX;  Z) — 0

where  /: Af„ —» X  is constructed as in the proof 2    of Theorem 5.1.

By tensoring with abelian group G,  we get

H*(M0;  Z) ® G ^ H*(X;  Z) ® G — 0.

Since both X,  by assumption, and  AL   are a wedge of spheres, they are both

HOTS.   So the homology groups  H*iX; Z)  and  H*iMQ; Z)  are torsion free  [7,

Proposition 4.14].   Therefore, by the universal coefficient theorem, the above

exact sequence can be rewritten as H*iMQ; G) —• H*iX; G) —> 0.   Then, by the

Puppe sequence of AL   —> X —< C,,  we get from the above sequence the follow-

ing exact sequence  0 —*H*iC,; G) —» H*ÍMfí; G),  for every G.   Thus, by

Proposition 2.4, we conclude that  C. is a HOTS  (since  AL   is).   Moreover

H*iC,; Z),  as a subgroup of a free group //„.(AL; Z),   is a free group.   Therefore,

by Theorem 3.2, we conclude that  C.  is a wedge of spheres.   In other words,

the Puppe sequence

0   -. TT*iCf)  -*  TT*iMQ)  -,  TT*iX)   -. 0

is a free tt*-resolution of tt*(X).   Then, by Theorem 4.3, tt*ÍX)  is flat.   This

completes the proof.

5.4 Theorem.  A spectrum with trivial homology operations has the same

homotopy type as a wedge of Moore spectra of tor'sion free groups.

Proof.   By Theorems 5.3 and 4.3, the stable homotopy module of the HOTS  X

has projective dimension 1, i.e. there is a free resolution

(D 0- F}^F0-^ tt*(X)-^0.

From  [ 7, Theorem 2.18],  there is a realization for (1).   Namely, there are wedges

of spheres  RQ, Rj   and a map /: Rj —■  RQ  such that the following sequence

(2) SU Sll

F, Fr
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is exact and f*= dQ.   Note that tt*(X)  is flat (by Theorem 4.3), hence, by tensor -

ing with Z, we still have an exact sequence

(3) 0 — F j ® Z — F0 ® Z — n*(X) ® Z — 0.

From [7, Corollary 4.9l   and [13],  we have n*(X) ® Z = tt*ÍX  A  K(Z)) = H*(X;Z)

(where   K(Z)  is Eilenberg-Mac Lane spectrum of integers).   Similarly we get

Fj ® Z = H*(RX ; Z)  and  FQ®Z = H*(R0; Z).    Let  L  be a wedge of Moore

spectra of torsion free groups such that H*(L; Z) = H*(X; Z).   Then it is easy to

see that (3) is merely a free resolution for the group H*(L; Z)  which is realizable

by the wedges of spheres  R „, R ^   and the map /: RQ —• R..   Thus we have the

following homotopy commutative diagram

R0-^R,— X—«o
i

i
R0-► Rj-*L --R0.

Then, by  [3, J. 12],  there is a map g  such that the above diagram is homotopy

commutative.   Thus g  induces an isomorphism H*(g) : H*(X) —> H*(L).   By

Whitehead's theorem, we have  X =* L.      Q-E.D.

5.5 Theorem.  A  tt*-module   P  is projective iff P can be realized as a stable

homotopy module tt*(R) by spectrum R with trivial cohomology operations.

Proof.  The necessity follows immediately from Theorem 3.1.   To prove the

sufficiency, let us assume that 77„.(X)  is projective.   Then by [l, Eilenberg

Lemma],  there is a large free module  F     such that 77„.(X) © F, = F,,  where  F2

is a free module.   Then, by [7, Theorem 2.18],  we have wedges of spheres  R

and  R ?  realizing  F.   and  F?.   Thus we get

(1) tt*(X V R^ttAR^.

Moreover there is a map /: R, —' X V R¡ which induces the above isomorphism

(1); see e.g. [7, Theorem 2.18]. By Whitehead's theorem, we get X V R, a; P.

Hence we have

H*iN2;  G) = H*iX;  G) © «*()?,;  G).

Thus  H (X; G),  as a direct summand of H (R  , G),  does not admit any nonzero

cohomology operations of degree >   1.   Thus, by Theorem 3.1,  X   is a wedge of

spheres;  and hence is a HOTS.   This completes the proof.

In fact we have proved more, namely,

5.6 Corollary.  Every projective n*-module  P  is realizable by a wedge of

spheres, and hence is free.
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5.7 Theorem.   Let M  be a  TT*-module.   Then

(i)   The projective dimension   Pd      M  of M   is either 0, 1   or ¡x>.

(ii)   Pd      Al = 0  iff there is a wedge  R  of spheres such that  M ai 77„.(R).

(iii)   P d      Al = 1   iff there is spectrum  L with trivial homology operations,

which is not a wedge of spheres, such that M a¿ 77„.(L).

Proof,   (i) follows from Theorem 4.4;  (ii) follows from Corollary 5.6;  and

(iii) follows from (ii) and Theorems 5.3 and 4.3.

5.8 Corollary.  77„.(X)  has projective dimension oo   iff there is a nonzero

homology operation on H*iX).

Proof.   By Theorem 5.7, the projective dimension of 77„.(X)  cannot be   0 or

1   iff X  is not a HOTS.   So the corollary follows.

5.9 Theorem.   Let M  be a n*-module.   Then

(i)   The  weak dimension W d„    M  of M  is either  0 or °o.v 77* '

(ii)   Wd      M = 0  iff there is a spectrum  L with trivial homology operations
TT *

such that  M ==í t7„.(L).

Proof,   (i) follows from Theorem 4.5, and (ii) follows from Theorem 5.3.

5.10 Corollary.  W d      (77„.(X)) = °°  iff there is a nonzero   homology operation

on  H*(X).

5.11 Theorem.  Let M  be a n*-module, then

(i)   Al   is projective iff there is a spectrum R  with trivial cohomology

operations such that M ai 77„.(R).

(ii)   AI   z's flat iff there is a spectrum  L with trivial homology operations

such that M a¿ 77„.(F).

Proof.   Follows from Theorems 5-7 and 5-9.

5.12 Theorem.   // M   is a   n*-module, then the following conditions are

equivalent:

(1) M  is a flat  (but not free) TT*-module.

(2) P d„    Al = 1 .v    ' 77,

(3) Al   z's- realizable by a spectrum  L  with trivial homology operations, which

is not a wedge of spheres.

(4) Al   is a wedge  \JL(G , n)  of Moore spectra, where each G     is torsion
^ n € n

free, but at least one is not free.

Proof.   (1) «=» (2) follows from Theorem 4.3.   (3) <=> (4) by Theorem 5.4.

(1)« (3) by Theorem 5.9.
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5.13 Theorem.

G DU*) = oo > F P DU*) = 1 > fl P DU*) = f P DU*) = 0,

F I DU*) > 1 > F W DU*) = fl W DU*) = f W DU*) = 0.

Proof,  fl P DU*) = f P DU*) = f W DU*) = 0   is computed in [ 7, §1,

Theorem 3].   F P DU*) = 1   and  F W DU*) = 0 follow immediately from Theorems

4.4 and 4.5 respectively; G DU*) = oo  follows immediately from the fact that

F P DU*) /f P DU*).   Thus the only thing left to be proved is that  F I DU*)> 1.

To prove this, let us assume, to the contrary, that  FID (tt*) = 0.   Then,

by [2, Theorem 7.1 (c), p. 483], every  77*-module, in particular the integer  Z

as   77*-module, contains a nonzero submodule isomorphic to a principal ideal.

On the other hand one notes that every principal ideal in  77*  must contain

some (additive) torsion element.   (Let   (x) be a principal ideal in  77* and

x £ 770 = Z.   Let  p be a prime which is not a factor of x.   Then  (x) contains

all the elements in the   p-ptimaty component and hence contains an (additive)

torsion element.)   Thus  Z cannot contain a submodule isomorphic to any

principal ideal of  77*, a contradiction.   This proves that FID (77*) > 1.   Thus

we have completed the proof of the theorem.

This paper has been announced in Notices Amer. Math. Soc. 17 (1970),

p. 686, Abstract #70T—Gl04.   This author would like to apologize that he is

unable to prove Theorem 5 of that article.

Open problems.   (1)   F I DU*) = ?   It seems likely that F I DU*) = 1.

(2) I d     U*) = ?   P. Freyd has shown that the self-injective dimension

I d      (77*) fí 0 (see Proc. La Jolla Conf. on Categorical Algebra (La Jolla,

Calif., I965), Springer-Verlag, New York, 1966, pp. 121 — 172).   It seems to us

that  I d^   U*) = 00.

(3) F-dimU*) = ?   It seems that  K-dimU*) = 1.   This question is very

interesting.   The Krull dimension  X-dimU*)   is a "measure"  of prime ideals

(namely, the maximal length of chains of prime ideals) and which is closely

related to the nilpotency problem.   For example, the Barratt's conjecture means

that there is only one (nonmaximal) prime ideal in 77* (which implies  K-dimU*)

= 1).   Therefore the answer to this question is not only interesting by itself, it

would also give a good approximation to the old question.   We would like to

point out here that in the theory of Noetherian ring the   X-dim  is closely related

to the finitistic dimensions.   If 77* were a Noetherian ring (but it is not) > then

our computations would imply  K-dim 77* = 1.
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