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ANALYTICALLY INVARIANT AND BI-INVARIANT

SUBSPACES

BY

DOMINGO ANTONIO HERRERO(l) AND NORBERTO SALINAS

ABSTRACT.   The purpose of this paper is to call attention to some interesting

weakly closed algebras related to a bounded linear operator   T acting on a Banach

space X   and their associated lattices of invariant subspaces, namely, the algebras

generated by the polynomials and by the rational functions in   T, and the commutant

and the double-commutant of   T.   The relationship between those algebras and their

lattices, as well as the ones corresponding to the operators induced by   T on an in-

variant subspace (restriction), or on the quotient space  X/% (where   Hi   is an invar-

iant subspace of a given type) are analyzed.    Several results relative to the decom-

position of invariant subspaces and the topological structure of the lattices (under

the "gap-between-subspaces" metric topology) are also considered.

1.  Introduction.  Let  A be a complex Banach space, and let X(Jl) denote the

algebra of all (bounded linear) operators on  X.

For each  T £ ■£(!£), there are several weakly closed algebras (with identity)

canonically associated with  T; namely,

2I_,     the algebra generated by the polynomials in  T;

?I~,     the algebra generated by the analytic functions in  T;

(K1> U'T,     the commutant of  T  (i.e., 21' = \S £ £(%): ST = TS\); and

U!y,     the double commutant (or bi-commutant) of  T

(i.e., U'/ = {R £ £(1):   SR = RS, fot every S £ U^l).

Likewise, there are lattices of (closed) subspaces of % naturally related to

T; namely

(1.2) 5r> rT, rT and 5;,

corresponding to the invariant subspace lattice of the algebra  7, £7,,   ¡7., and

íl*, respectively.   Clearly, since   »T C ?I«  C ÏÇ C IÇ. we deduce that  5r ^5"
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118 D. A. HERRERO AND NORBERTO SALINAS [November

-1 J-7- A$j..   Observe that, from a classical result, if X is finite dimensional,   2I_ =

ÎI«  = ÎÇ, and hence  5T = 5^ = £•

The lattices $~, (invariant subspaces of  T) and ¿L,  (hyperinvariant subspaces

of  T) have been studied in detail by several authors ([6], [18])  while ¡J"   and 5"

were considered only in very special cases ([3], [4]).

The main purpose of this note is to call attention to the lattices ¿Jt  and $"

and to point out some facts about them which may be useful in the study of the

structure of 5_  and £JT-

Definition 1.1.  The members of ji. will be called analytically invariant sub-

spaces of   T, and those of j!L  bi-invariant subspaces of T.

In §2 we shall find a simple characterization of the analytically invariant sub-

spaces of an operator  T  and we shall give a useful sufficient condition for a sub-

space to be bi-invariant under  T.

Douglas and Pearcy (in [6]) asked whether $T = j T  implies   21    = 21'       The

same type of problems arise by considering the different lattices of (1.2).   In fact,

in ^2 we give examples showing that all kinds of situations are possible with

regard to equality or inequality of the algebras (1.1).   However, in all these exam-

ples, the equality of a pair of lattices in (1.2) corresponds to equality in the cor-

responding algebras in (1.1).   Also, in §3, we discuss some other cases in which

the same phenomenon occurs.

In §4 we generalize to Banach spaces the results of Douglas and Pearcy [6]

and, in §5, we prove a decomposition theorem for 5t, j"t-> Jr analogous to that

obtained by Douglas and Pearcy for j . We also generalize a result of Crimmins

and Rosenthal [5] concerning a decomposition of 5-r--

Finally, in §6, we discuss some facts concerning restrictions of operators

and related topics.   The case of subnormal operators on Hilbert space is specially

considered.

2.   Analytically invariant subspaces and examples.   In what follows the term

subspace will refer to a closed linear manifold and by an algebra we shall mean

a weakly closed algebra with identity.

If  21 and  8  are two subalgebras of £(9C)  such that   21 C 8, and  ct(T; 21)

(ff{T; 8)) denotes the spectrum of the operator  T with respect to  21  (8), then it

is not difficult to show that

c9ct(T;2I)Cct(T;8)Cct(T;2I)

(where  ctX denotes the boundary of the set  X).   Moreover, it is easily seen that

the algebra  21^.  can be characterized as follows:

Lemma 2.1.   Let  T £ £.(%).    Then  21"   is the minimal subalgebra 21 of £$)

satisfying  ct(T; 21) = ct(T).
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Proof.  If f(z) is a function defined and analytic in a neighborhood of  a(T),

then it follows from the well-known theorem of Runge (see [12]) that  ¡(T) (defin-

ed   by means of the Dunford-Riesz functional calculus [11, Chapter XI]) can be

approximated in the norm by finite linear combinations of operators of the form

(T - (\A~X,  X    £ p(T) (the resolvent set of  T).

It follows that  SIÎÏ.  is equal to the weakly closed algebra generated by the

operators   T and  (T - À)-   ,  À £ p(T).   Using this characterization, the result

follows immediately.     Q.E.D.

Let %.£§-, and let R = T| (the vertical bar denotes "restriction"). It

is well known [5] that 3c/(R) C o(T). Therefore, a(R)\o(T) consists of some

bounded components of the complement p(T) of o~(T). In the case when 511 is

analytically invariant, the following characterization can be given:

Lemma 2.2.  Let 5H e 5r; then 511 £ ^  if and only if o(R) C a(T).

Proof.  Assume that 511 e 3"   and let X £ p(T); then (T - A)5H C 5H, (T - X)~ '5H

C 511  and therefore

5R = (T-X)5U = (T-A)-1^1.

It is not hard to conclude that  (R - X)  is invertible and, moreover,

(R-X)-1 = (T-X)-\.

Hence, X £ p(R); i.e., o (R) C a(T).

On the other hand, if 511 £ $     and  a(R) C a(T), then  (R - X)  is invertible

in 5H  and its inverse coincides with  (T - X)~   \^ , tot all  À £ p(T).

Therefore, (T - A)5H = % = (T - A)- l 511, for all A e p(T). The result follows

from Lemma 2.1.     Q.E.D.

D. Sarason [14] has already proved that if A belongs to the unbounded com-

ponent of p(T), then $/T _x)-l = úq- ancL if A., A2 belong to the same compon-

ents of  p(T), then ñ/f-X )~ ' = "(T- a   )-1'   ^ence

ñar = ñT^
..-]■

nv_A i-il-

where the (possible empty) set  ¡A   ! contains exactly one (arbitrary) point of

each bounded component of  p(T).   All these results can be obtained as applica-

tions of the above-mentioned theorem of Runge.   Another consequence of Runge's

theorem is the fact that, if  p(T)  is connected, then  SI"  = SI^..   However, SI^-

could be equal to  SIT  even if p(T) is disconnected.

Example 1.   Let  S be the unilateral shift (multiplication by  elx)  in the

Hardy class  H2  of analytic functions in the unit disc; let  q he an inner function
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and let  T be the operator in iqH2A   defined by  Tf = PSf if £ iqH2)X), where   P

denotes the orthogonal projection of  H2  onto iqH2)   .   Then (see [13])  2l'r = 2I_.

On the other hand (see [6, Lecture VIII]), it is known that ct(T) consists of

exactly those complex numbers  X £ D = \z: \z\ < l\, such that  qiX) = 0 and all

those  X £ dD, such that qiz)  cannot be continued analytically to  z = X.   Thus, for

suitably chosen  q, piT) is disconnected, but  21^- = 2IL = 2IT.

The following result provides a way to construct bi-invariant and hyperinvari-

ant subspaces:

Lemma 2.3.  Let  T £ X-iX), A £ 2I'T  and B £ 2I'l, and let ft be an invariant

subspace of T. Then the following hold:

(i)   kernel (A) £ 5"T,  kernel (B) £ 5'T;

(ii)   closure [Aft] £ 5T; moreover, if ft £ $"   (or $'L), then closure [AJR] £ ^

(5"T, resp.);

(iii)   if ft £<AT, then closure [Bft] £^'T;

(iv) ¿ra particular, if A is a Hilbert space, then every reducing subspace of

T is bi-invariant.

Proof.  The assertions follow after a straightforward computation.   For (iv),

observe that JR  is a reducing subspace of  T if and only if   TP = PT, where  P  is

the orthogonal projection of X onto ft; i.e., if and only if  P £ 2Ir.   Finally,

according to (i), ft = P% £ 5'T-     Q.E.D.

We do not know whether this lemma gives all the bi-invariant and hyperinvari-

ant subspaces or not.   However, this is true for some particular operators.

Let  T be a normal operator acting on a Hilbert space  X; by a well-known

result about von Neumann algebras (see, e.g., [16]), 2I"T  is equal to the weakly

closed algebra generated by   T  and   T   (the adjoint of  T).   Therefore  §"t is

precisely the set of all subspaces which are invariant under  T and  T   ; i.e.,

5; = ift: ft reduces TÍ = jft = ker P: P £ 2I1|

= jft= closure [P}{]: P e 2I||.

On the other hand, the hyperinvariant subspaces of  T  are the kernels of the

spectral projections of  T  (see [6, p. 330]); that is to say,

5; = jft = ker P: P £ 21^1 = jjR = clos [PK]: P £ 0*J.

Moreover, we may only consider the orthogonal projections contained in 21T  (for

5'T) and in  2I"r  (for [}'T).

Similarly, if 3l  is a finite-dimensional space, then

5r = 5; = ¡JR = ker A: A £ IIL\ = jjR = AX: A £ 2I¿!
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and 5 j-  is tne lattice generated by the subspaces

\%: 511 = ker A or 511 = A%, fot some A £ 8"|.

In the next three examples, we shall be concerned with normal operators with

a cyclic vector; these operators can be described, up to unitary equivalence, as

follows:

Let fi bea positive Borel measure on the complex plane   C with compact

support  K; then the operator   T (= M  ) defined in the Hilbert space K = L2(K, p)

as the multiplication by the function e  (z) = z is bounded and normal.   Moreover,

if  eAz) = 1  (a.e. dp), then (T* = M-),
u r- ' z  '■>

K = V {T*"Tme0: 72, 772 = 0, 1, 2 , - - •! =       {BeQ: B £ -7"

(the sign "V"   means "the subspace spanned by") and  SI _ = SI'l (see [16]).

Example 2.  Let  T and K  be as above with  K = {z: \z\ = l\ and p = linear

Lebesgue measure on  K.   Then  T is unitary and therefore

(T" 1 = T*)        KaT=r/ = {Mf: f £ L°°(K, p)l

However, 212, 4 SIr; in fact, we have

JT = 57- = ÚJ- = J Z- (F, P-): F  is a measurable subset of  K\,

but (see [9])

5T = 5«  U j?//2: ? e L°°(K, p); ^(e^l = 1 (a.e.)!.

Example 3.  If  K = {z: \z\ < l\ and  dp is the planar Lebesgue measure, then

a(T) = K  and therefore  212. = 21™..   As in the previous case, we have

Vr - WT = IM,: / e L-(JC p)l

j      i ■ ora    / OY"      *     r
In this case   tl™ ^ u T; in fact,

5ll = VSß(eo):ß eUT\ £$T = ilaT

is the closure in  L2(K, p) of the polynomials in  z.   It is not hard to see (use,

e.g., [12, p. 286]) that, if f(z) £ 5H, then there exists a function g(z) analytic

in the open unit disc, such that  f(z) = g(z) (a.e. dp).   Therefore, 511 ¿ $"T  (M-51Ï

t % and we conclude that % 4 $"T\ hence   WL 4 SI"T-

Example 4.  If, in the above example, the unit disc is replaced by   KQ =

|_: Y2<\z\<l\, then  2Ir 4 UaT 4 SI''   = SI'T and  5T 4 [YT 4 ñ"T = ñ'T  (« is enough

to consider the subspaces generated by the function e     as in the previous cases).

Examples 1 to 4 show that all the cases of (1.1) satisfying the condition

Sil = 21'    are actually possible.   To see that the other four cases are also
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possible, it suffices to take "two copies" of the same example; e.g., if  T  and  K

are as in Example 2, and   U = T © T  is the normal operator acting on  X = H ©  K

(direct sum with the norm (</,, /2)||2  = H/jJ + ||/2||J) defined by  Uify f2) =

ÍTfy T/2), then

21^21^21^21/     and    Jtf^-3^5¿.

In fact,  21^, = jß © B: B £ 2IrS and a similar result is true for  21^ = 21"^, but

...    [/a   bs

"u=}\c   DjA'B-c'DenTy

Hence.HSjOjeá»  =5y,  H © |0| ¿ $'„.

3.   Relatively reflexive algebras.  Given a subalgebra  21 of Ma), we shall

represent by  21    the algebra of all operators that leave invariant all the invariant

subspaces of 21.   The algebra  21  is called reflexive [7] if 21 = 21 .

Definition 3.1.   Let  21 and  8 be two subalgebras of A.(<A).   We shall say that

21 is relatively reflexive with respect to  S whenever  21     f)   8 = 21  f)   8.

Thus, an algebra is reflexive if and only if it is relatively reflexive with re-

spect to any subalgebra of ¿l(<a).   Moreover, if 21 is relatively reflexive with

respect to  8, then it is also relatively reflexive with respect to any subalgebra

contained in  8.

Definition 3.2.  We shall say that the algebra  21 CÍ(I)  has the property  if)

if, given x , x , . • . , x    £ X, there exists x £ X  such that

(3-1) |Tx;|| < ||Tx||,     for all T £21.

Remark.   If  21 has the property  if), then every subalgebra S  of  21 has also

the property  if).   Furthermore, it is easy to see that, if X is the direct sum of

the finite of Banach spaces  \X   j (under any norm) and  21    is a subalgebra of

X.{X )  satisfying the property  if) tot each  ra = 1, 2, • • • , N, then the subalgebra

21 of" £(3C)  defined by  2I = ©^_1 21^  also satisfies the property  (?).

Theorem 3.1.  // 21 has the property if), then every  subalgebra   G£ C 21  is

relatively   reflexive with respect to  21.

Proof.   Let 5 be the lattice of invariant subspaces of  S  and let  T £ 21 be

any operator such that  5-r -> J-    Let  x , %  , • • ■  , x     £ X and let c > 0  be given.

If x £ X, then X   =  V \Lx: L £ £| e $ C 5T; therefore, Tx £ X    and there exists

an operator  L e £ such that   ||(T - L)x|| < e.

If x  is chosen satisfying (3-1), it follows that (observe that (T - L) £ 21 )

\\iT- L)Xj.\\<c,     for /= l,2,-..,ra.
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Hence, T belongs to the strong closure of  £  and therefore (since  £  is weak-

ly closed) T e £.    Q.E.D.

Examples 5    (Algebras with the property  (j)).

I. Let C(/0 be the Banach algebra of all continuous functions on a compact

set   K (with the usual "supremum" norm).   Let  Ï1(K) = {M : M    is the multiplication

by  / £ e(K)i; then, if X is a subspace of C(K) containing a function  h  such

that   \h(k)\ > S >0, for all  k £ K, and  SI = \M   £ W(K): fg £ X, for all g £ X\, then

21  has the property  (f).   (In fact, given g., g , • ■ • , g   £X, the function g =

U/S) (2*xi  ||g,.||J- Í X satisfies (3.1).)

II. Let  $(7 be an increasing positive convex function defined for nonnega-

tive real values of  t such that  <P(0) = 0  and   lim $(/)// > 1   (t —> + °<0; let  (M, p.)

be a measure space and let  X - L    (M, p.) be the corresponding Orlicz space.

Let  SI = ¡M.: M. is the multiplication by / £ L'X(M, p)};  then 21 has the property

W) (given gy- g2, • ■ ■ , gn £%,  g(k) = max l|gX&)|: / = 1, 2, • • •  ,72! (a.e. dp)

satisfies (3.1)).

III. Let  JAa, ^„S^r   be a family of Banach spaces and algebras of the type

described in II and let  ¡X be the topological direct sum of the  X^s (under some

"suitable" norm, e.g., \\{fj\\x = supJ/J^;   \\{f J\\% = daeZ \\fa\\X)l/r,   1 < » <

cw;   \\{f !||„    = sup   ||/  17   , and  /   = 0 for all but a denumerable subset of indices,

etc.).   Let  21  be the algebra of all bounded linear operators   T  in  X such that

X"a£ 5 (the lattice of SI) for all  a £ E and   T\%     £ 21 a,  then  SI  has the property

(?).

IV. Let   K be a Hilbert space and let   S be an abelian von Neumann algebra

on H.   Then  S  is unitarily equivalent to a subalgebra of the multiplication alge-

bra  L°°(X, p) acting on  L2(X, p.), where  (X, p.) is an appropriate localizable

measure space [17, Part II, Theorem 1].   Therefore  S  has the property  (j).

Lemma 3.2.  // 21  is an algebra of operators of the type described in Example

5- II and III, then SI  is a maximal abelian subalgebra of x(,X).    Moreover, SI  is

reflexive.

Proof.  Let  P    be the projection of  % onto  A„    and let  M      be the operator
0. .       ' a A ex

"multiplication by the characteristic function of  Ea"  (where  Ea is any  im-

measurable subset of  M¿; clearly, Pa£?I  and  Mx   £ 21 a, for all  a £ E.   Let  B

£ X(9i)  and assume that either  B  commutes with  P  Mx P    or B  leaves invariant

each of the subspaces  M%  %a = L     \Ea, dp^, for all  a £ s and for all pa-

measurable  EaC M   .   In both cases, we obtain the same conclusion:   If fa is a

simple function of %  , then there exists a  fza-measurable function ga such that

B(f) = gaPa(f) (f being the element  {{y\, where fy = faU y = a, fy = 0 for y 4

a).   By a density argument, we conclude that  B £ SI.   Q.E.D.
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Several observations of A. Lambert made it possible to state the present version

of the following two results, instead of the weaker statements that appeared in the

preprint:

Theorem 3.3. Let 21 be a reflexive subalgebra of X.(X) and assume that 8

p| 21 = 8 for every algebra 8 C 21. Then 8 is also reflexive and, moreover, S

f)   8 = £  for every subalgebra   £   of  8.

Proof.  Let  T £ X.iX) and assume that 3T  contains the lattice   Lof invariant

ntsubspaces of  8; since  8 C 21, it follows that  5    3 5 a » tne lattice of invaria

subspaces of 21.   By reflexivity, T £ 21.

On the other hand, 8  is relatively reflexive with respect to 21; since  jT 3 5_

and   T £ 21, we conclude that  T £ 8.   In other words, 8  is a reflexive subalgebra

of HX).

Finally, if £ C 8 C 21, then   E = ®~ f|   21 = £~= £~ p|   8.     Q.E.D.

In particular, every subalgebra  21  of the type described in Examples   5. II

and III satisfies Theorem 3-3.   The following result extends a theorem due to D.

Sarason   [15, Theorem 2J:

Corollary 3.4.  (i)  // 21  is as in Examples 5. II or III, then every subalgebra

8  of 21  is reflexive.

(ii) In particular, if T £ 21, then equality of two lattices in (1.2) implies equal-

ity of the corresponding algebras in (1.1).

(iii) Ara abelian algebra of normal operators (in a Hilbert space) is always re-

tíflexive.

Proof, (i) This is a consequence of Lemma 3.2 and Theorem 3.3.

(ii) For any subalgebras   21   , 21     of i-(A), the inclusion  21    C 21     implies the

inclusions  21'   C 21',   and 21",  C 21"    (where  21'   21". denote the commutant and the
2 112 /       ;

double commutant of the algebra  21.,  ; = 1, 2).   Since, by Lemma 3-2, 21'  = 21" = 21,

it follows that

aT c a« c a* c ac u'.

By (i), 21      WL and  21"    are actually reflexive subalgebras of X-iX); thus, if

21'    = 21, we are done.   Otherwise, 2I'T contains properly  21  and  2I"r  is properly

contained in 21; therefore, there exists  L e 2I'T  f|   (2I\2I"T), and the reflexivity

of 21  implies that  5'V  contains properly the lattice of invariant subspaces of  A;

since this lattice contains  ¡)'T, it follows that  5"7- /= J f

(iii) An abelian algebra  8  of normal operators is always contained in a max-

imal abelian von Neumann algebra  8; since  8 (see Examples 5. II and IV) is of

the type described in  Example   5 . II, the result follows from (i).     Q.E.D.
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4.  A topology for invariant subspaces.   Let H be a Hilbert space and let  T £

Mn); in [6], R.  G. Douglas and C. Pearcy studied the structure of 5-r  under the

topological structure induced by the metric

0(511, 51) = || P%-Pyi ||

where  J1Î, 51 are subspaces of  K  and   P*. ,   P^ denote the orthogonal projections of

K onto JIÏ, 51, respectively.   Most of their results can be extended to a more gen-

eral situation; if  X  is an arbitrary Banach space, then it is possible to introduce

a metric in the set of all subspaces of  X which, in a case when  I  is a Hilbert

space, induces the same topology as  d.

Let 5H, 51 be subspaces of  X; following [10] we define

8(%, 51)

sup     inf   ||x-y||       (^=UeJH:||x|| = l!),     if5ll^J0!,
x sSfn yell

0,     if5ll = J0i;

5(511, 51) = max [8(% 51), S(5l, 5H)] ;

d(% 51)

sup    inf    ||x-y||,    if 511 ¿ JO! yjl,
xeS%  yeS-¡,

l,   if 511 4¡o!, 51 = So!,

0,     if5H = Í0¡;

d(% 51)  = max [d(% 51), ¿(51, *)].

As it is well known [10], d is a metric in the set of all subspaces of X .   More-

1, 51) < d(%, 51) < 28(3)1, 51),     and

(4.1) g(jR, 51) < 5(5)1,51) < 2§(5H, 51),

for all pairs of subspaces 511, 51.   If «X  is a Hilbert space, then §(511, R) = 0(5H, R).

However, when arbitrary Banach spaces are considered  8 is not a metric.

The following results can be obtained from a suitable modification of the

proofs given in [6] and [10]; therefore, we shall only sketch the proofs.

Lemma 4.1.  Let SI   be a subalgebra of X(T)  and let 3  be its lattice of in-

variant subspaces.    Then  ($, d)  is a complete metric space.

Lemma 4.2 (cf. [6, Lemma 1.1]).   For i' = 1, 2, let 511.  be a subspace of X

and let  C. £ x(!X)  satisfy   \\C .x\\ > c.\\x\\ (e. > 0) for all x £ 5H..   // 31. =

C .511., z'= 1, 2, then R. is closed and
i   i i

8(RV 512) < (\\Cl\\/cl + \\C2\\/e2)8Í%v 5H2) + (I/7 + l/e2)||C1 - C2||.
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Proof.  R.  is clearly closed; hence, it is a subspace of X.   If x    £ Sy.  ,  x

£ Ti2, x. = Cry ., z = 1, 2, then

infill -x2\: x2 £jl2S= infJIICjyj - C2y2¡: C2y2 eJl2l

<  infillC^y,   -y2)\\ + \\{Cx-C2)y2\\:y2 e*2\.

Observe that

infillxj - x ||: x2 ejl2 i = inf{||x, - x  ||: x2  e Jl , ||x2|| < 1}.

Ihus, we get

influx, -x2\\:x2  £R2\<\\CX\\  infj||y1-y2||:y2  £%2¡ + il/e2)\\Cx ~Cj

<(ffc,|fA,)SÖIl,,JS2)+fic, -c2\\/c2.

Hence,

8iRx, Ti2) < i\\Cx\\/cx)8(Mx, JR2) + ||C, -C2\\/c2.

From this inequality and the one obtained interchanging the roles of R    and R  ,

the result follows.     Q.E.D.

A point  A  of a metric space  J\ is called inaccessible if the only continuous

map  y from the closed unit interval [0, l] into  J\ such that  y(0) = A   is the con-

stant map  yit) = A, 0 < / < 1.   Using Lemma 4.2 and the proof of [6, Theorem 1]

we obtain

Theorem 4.3.  Let JR  be an inaccessible point of $•    Then JR £$, the lattice

of invariant subspaces of the commutant algebra 21    of 21.

Corollary 4.4 (cf. [6, Corollaries 1.2 and 1.4]).  // ft £ 5  is isolated or it is

a "pinch point" (i.e., for every   R £ $, either R C ft  or ft C R), then ft £ $'•

Proof.   The result is clear for isolated points.  Now, if JR C R (or R C JR) and

ft /= R, then  <5(ft, R) = 1; hence, every "pinch point" of 5  is isolated.     Q.E.D.

Theorem 4.5  (cf. [6, Theorem 2]).   Let 21  and 8  be two similar subalgebras

of x(X) (i.e., there exists an invertible operator S £ X.(X) such that  T —' S~   TS

is a bijective map from 21  onto  8), then the lattices of invariant subspaces of

21 and 8  are homeomorphic topological spaces.

5.   A decomposition of invariant subspaces.  Let  21 be a subalgebra of =l(a)

and let  21, 21" be its commutant and its double commutant, respectively; then

21 C 21" (2Í" C 21'  if and only if  21" is commutative, if and only if 21 is commutative,

if and only if 21 C 21').   Let  5, J> j" be the corresponding lattices of invariant

subspaces.   We shall need two simple lemmas whose proofs are left to the inter-

ested reader.
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Lemma 5.1  (generalization of Lemma 2.3).  // A £ 21',   B £ 21"   5H £ fj and R £

j, then

(i) ker (A) £5",  ker(ß) £ 5';

(ii) c1[A5H] £l  cl[ß5l] £5';
(iii) z/ 511 €$", then  cl[AÎB]  £5".

Lemma 5.2.   Le/  P    £ x(Jj   be an idempotent and let   P   =I-P  ;  set  y =

maxtllPjH, ||P2||).    Then, for every 5)1, 31 £ 5p ,   (=5p2)  we have

(1/y)   max   SXP.5R, P .31) < S()ll, 31) < 2y   max   8(P %, P.5l).
7=1,2 ' ' 7=1,2 ' '

Definition 5.1.  Let  X    and  X    be two subspaces of  X such that  X = X   ©

A    (i.e., there exist idempotents   P. £ X(cX), /' = 1, 2, such that P . + P    = I  and

X. = P.X;  P    is called the projection of X onto  X. along  X      .,  j = I, 2).   We

shall say that a subalgebra  SI of x(J.)  splits with respect to (w.r.t.) X     X     if

there exist subalgebras  21. of x(X.) (/ = 1, 2) such that 21 = 21   © 21,.   Also, we
¿v I 12

shall say that the lattice  oL  splits w.r.t. X     X    if, for every lei, we have

5H = (5R n *,) e (5R n *2).

Theorem 5.3.   Le/  A    zzzzzi A     ¿e /iz/o subspaces of X such that X = X   © A   ;

/7ze72

(i)  A subalgebra SI  o/ x(X) sp/z'z\s K>.r.t. 3C , 3L   if and only if P . £ SI   f|

«'.7-1,2;

(ii)  zz lattice J\ splits w.r.t. X , X    if and only if Ä C $P   ;

(iii)  if SI  splits w.r.t. X , X , so does its lattice j;

(iv)  if 5 splits w.r.t.   X , X    and X , X    e ß, then .X     X    £ 5'; A     zztzz/

JL   «re isolated points of 5  awz7 j   is homeomorphic to the topological product

5i x 52> "'¿ere

(5.1) ay = M «3: » Cit.}

z's a lattice of subspaces of X , j = 1, 2;

(v) «/ SCt, ï2e^n  á'/í¿en SI', SI", 5', 5" sp/z'zs v.r.«.  %v ^2; «*¿ 3C.

z's 072 isolated point of $    and ß', j = 1, 2.

Proof,  (i)  Assume that  21  splits w.r.t. 7, J7,   It is clear that  %l,l(.2 £ $

and  / = /. © /.,, where  /. e SI.,  / = 1, 2; using these facts it follows that   P x = 7

© 0,   P2 = 0 ®/2  e2I.

Let  A  £ 21  and x £ X; then  x = x    + x  , with  x. £ -X.  and  PjAx =

P XA(P x + P2)x = P\Axx + PyAx2 = P.^Xj = APyX (Ax2 £ %2  and therefore

P,Ax^ = 0).   Hence  P., P, £ SI'.
1 ¿ I Z

Now suppose that P . e SI  f]  «',   7 = 1,2.   Then Ï. £ 5-
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Let  21. = 2I|j£ ; then the map A -^ A|j- © A|^.     is an isomorphism from  ÏÏ  onto

Ux®U2,ánd 21 ¿puts w.r.t. 3Cj,9C2. ' 2

(ii)  Assume that  5\ splits w.r.t. X     X    and let  ft £ ÍR.   Since  ft = (ft   f|   XA

© (ft  fl  ^' there exist idempotents  P'. £ £(JR), ; = 1, 2, such that   P\ + P'2 =

¡r   P'JlUft   f   X..   Since   P. and  P'. coincide on ft   fl   %-,  7 = 1, 2, we see

that Í  fl   ï. e5Pi-   /-L 2'™¿  P'/= P;lr   Hence  ft £ iP y
The reverse implication is clear.

(iii) We observed in the proof of (i) that  X y X2 £ 5 and  P y P2 £ 21   f)   21'.

Let ft £fj  and let ft. = ft  fl  ^.; it is clear that ft.   £ i  j = 1, 2.   By (ii), ft, ft.

£ 5p .  and therefore   P .ft C ft; hence   P .ft C ft., / = 1, 2.   Thus we have°^i i i i   '

ft, © ft2 C JR C P,}R © P2\ C 5R, © JH2.

We conclude that  ft . = P .ft   and   ft = ft, © ft,.
11 12

(iv) If 5 splits w.r.t. X     X    and  X., X    £ $, then every ft £ 5 can be

written as  ft = ft, © ft2, where  ft. = ft   f]  X. € & j = 1, 2.   Therefore, 5 = 5, x

5?, where 5- is given by (5.1); this equality clearly works both as sets and in the

sense of lattices; i.e., 5  is lattice-isomorphic to the direct product (as defined in

[1]) of the lattices  ¿J,   and  52-

Let ft =ft1© ft2 e& then

(a) if JRCÜC,.   ft ¿Xx, then  SOU, 9C,) - 1;
(b) if ft £ X1   (i.e., ft2 / j0|), then (by Lemma 5.2)

SOn, Xx) > (l/y)8(P2JR, P2XX) = (l/y)o(ft2, 10!) = 1/y,

where   y = max (||P , ||, \\P 2\\).

Hence,  .X    and  X    ate isolated points of 5  and therefore  X     X    £ 5

(Theorem 4.3).

Finally, observing that 5    is  zi-isometric to a closed subset of the metric

space  (5, d) (/' = 1, 2), it is not hard to prove that J = 5t x 52  as a topol°gical

space.

(v)  Since  XX    £ 5, it follows that   P y P2 £ 21'  and, therefore (by Lemma

5.1), X. = P X £ 5", 7 = 1, 2; repeating the argument with %■ replaced by  21    and

21'  replaced'by  21" = (21')' we conclude that  P y ?2  £ 21'   f]  21".   According to

(i), this implies that  21'  and 21"   (recall that  (21")'  = 21')  splits w.r.t. A,, X2.

The remaining statements are clear.    Q.E.D.

If X = Xx © X2  and  21 = 1(1), then  5 = jj0|, X\ clearly splits w.r.t.  3C,, %2,

but 9C., 9L ^5 (unless one of these subspaces is trivial).   We do not know

whether the condition X  , X    £§ permits one to "reverse" the statement (iii)

of Theorem 5-3; this is possible under some additional hypothesis.
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Theorem 5.4.   Let X = %1 © %2, X     %2 £ 5 and assume that  SI  is relatively

reflexive w.r.t. SI'   f|   SI"; then SI  splits w.r.t. X     X    if and only if 5  splits w.r.t.

X     X

Proof.  Assume that  X     X2 £ 5  and  5 splits; then, by Theorem 5.3 (iv) and

(v),P.£2T   f]  21", / = 1, 2.   From Theorem 5.3 (ii), we also see that  P. £21";

therefore  P . £ SI" f|   21'   f]   SI" = SI   fl   SI'.   Now, the result follows from Theorem

5-3(i).    Q.E.D.

Remarks, (a) If SI (= 21 ¡ © 2^) splits, then  21'  = 2T   © 21'2, where  SI',  is pre-

cisely the commutant of 21.,   ; = 1, 2.

(b) In general, it is not true that the condition   "X     X    £§  f]  5'"  implies

"5 splits w.r.t. A     •X2-"   In fact, if 21 = SI     is as in Example 2 and   K = K     \J

K    is a disjoint union of K into two measurable subsets of positive measure,

then  X   = L2(K., p) £ 5   D   5'  = ñ'T, but  5 cannot be decomposed (e.g., H2   f)

Xj = {0\, fot j=l, 2).

(c) If 21, 8, £  are subalgebras of £(3C)  such that  SI C 8 C £ C SI"   and  8

splits w.r.t. a pair of subspaces   X     X     then  £  has the same property.   To see

this, observe that, if P.   is the projection of  X onto  X    along  X     then  P.,  P

£ 8   fi   35'; hence   P,,  P\  £ £.   Since  SI C SI" implies that  21'  = 8'  = £', it fol-

lows that   P y P    £ £   fi  £ , from which the result follows.

Corollary 5.5.  If T £ x(JL), o(T) = a    \J  o    (disjoint union into two compact

subsets) and P., P'_   are the projections associated with a., o~7, resp., then  X.

= P  X £ 5'T  (/ = 1, 2), 212., 21"     21 _ split w.r.t.   X , X    and the corresponding

lattices 5", 3"T. Jf split w.r.t. this pair of subspaces.

In addition, if P ., P2 £ SI^., /7>e?2 the analogous results are true for 21^,  and

Of

Proof.   Py P2 £-21*  CSI''   C2I'T  (see [11, p. 419]).     Q.E.D.

Remark.  The disconnectedness of o(T) is not necessary for 21 ̂   to split

w.r.t. a pair of nontrivial subspaces.   In fact, if  T is a normal operator in a

Hilbert space  K, and a(T) = o     U   a     is a disjoint union of o(T) into two Borel

subsets such that the associated spectral projections (P y P 2) are nontrivial,

then K. = P.M £ 5'T  and  SI     splits w.r.t. M  , K2.   However, for a suitable nor-

mal operator  T it is possible to get a partition of o(T) such that  cKcj)   fl

c1(o2)t=  0.

Given a compact subset  K  of the plane, the polynomial hull  K    of K  is the

complement of the unbounded component of the complement of  K.

Corollary 5.6 (Crimmins and Rosenthal [5]).  // o(T) = ct]   U   <7   and «7   Ç]

a   = 0, then every invariant subspace 511 of T has a unique decomposition of
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the form ft = ft,  V K. where \.£$T  and  ft. C X   = P . X,   i = 1, 2 (P . is the

projection associated to ct).' ;

Proof.  Let   V.   and   V2  be two disjoint compact neighborhoods of ct.   and a

such that  V x   f)   V2 = 0 ■   By Runge's theorem, the analytic function (on

interior (V.   \J   V A) which is equal to one on int(V.) and zero on int(V?) can be

uniformly approximated by polynomials on a.   \J a  .   Therefore  P   , Py £ 21    C

21 _, from which the result follows.     Q.E.D.

Remark.  The condition ct     f]   ct   = 0  is not necessary for the idempotents

associated with o.   and  a.  to be in 21        In fact, if, in Example 1, we take   qiz)

= zpiz), where piz)  is a singular inner function whose natural boundary is the

unit circle, then ct(T) = ct     (J   ct  , where  a   = jOj and  ct   = ¡z:  |z| = 1), and there-

fore  ct     f|  ct    / 0.   However, 21     - 21     contains the idempotents associated with

ct    and  ct.,.

6.   Quotients and restrictions.

Theorem 6.1.  Let ft £ 3T>   R = T\     and let R  be a subspace of JR.    Then

the following hold:

(i) Jl £ 5R   if and only if R £ 5t-    Moreover, 5R   can be identified with the

closed subset

\R £$T: Jlcft|c5T-

This identification is an isometry (with respect to the metrics d).

(ii)  // ft £ <SaT and R £ <¿\R, then R £ 5«.

(iii)  // ft £<Ar  and R£[\'R,  then  R £ ̂ \.

Proof.  The statement (i) is immediate.

(ii)  If ft £ %., R £ $a, then (by Lemma 2.2) o(R) C ct(T)  and oiR^) C ct(R),

and therefore  oiR\n) = ^(7\) C ct(T).   Hence (by Lemma 2.2), R £ 5" .

(iii)  If  B £ 2I'T  and ft £ 5'T> it is clear that   B\% £ WR   and therefore  R £

5ßl   , for all R £ 5'R; according to (i) this implies that  Jl £ 3B-

^Since  3"'r =  f]   \ñB- B £ 21'T|, it follows that  $'R C 5'T-     Q-E-D-

Theorem 6.2.   Let ft £ 5r   a"^ 'e'  T^ ^e tbe °Perator in the quotient space

X = X/%  induced by  T; i.e., if rr: X  ~^ X  is the canonical map of X onto its

quotient space, then

(6.1) Tinx) = rriTx).

Let R  be a subspace of X and let R = n~1(R)  be the inverse image (which

is a subspace of X) of R in  X.    Then

(¡) R £ 5-  if and only if R £ 5T-
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Moreover, 5^ c<3t2 be identified with the closed subset

j3l £5t:51d511!c5t-

This identification is a homeomorphism of topological spaces (with respect

to the topologies induced_by the metrics d).

(ii) // 3H £ 5»   and R £ 5f, then R £ $«..

(iii)  // 511 £ 5'T  and 51 £ $j, then R £ $T

The first part of the proof of (i) follows immediately from (6.1).   It is also

clear that  5^  can be identified with  j3l £ 5T: 31 I)5ll!, as a partially ordered set.

Finally, observe that if 3l, X £ 5T,  31  f]  X ? 5H, then

S(5l,x)(inïrg(5l,F)(inS).

Using this equality and (4.1) the result follows.   To complete the proof we shall

need the following lemma:

Lemma 6.3.  Let M £ jT  and let  T  be as above.    Then m £ fyL  if and only

if a(T) C o(T).

Proof.  Let  M £ j^Nj?-; then (Lemma 2.2) there exist  À £ p(T) such that

3l = (T-A)-1 5)1 ¿1.   Since  (T - A)5H C 5«, it follows that  3)1 ̂ 5l  and  (T-A)5l =

511.

3l £ 5T  and therefore  51 = 77(31) £ ^ (Theorem 6.2 (i)); moreover,  77[(T - A)3l]

= 77-ÎTÏ = ¡0¡.   It is not hard to conclude that 51 = ker(T - X) 4 JO!; hence À e a(T).

Now assume that 5)1 £ fyL; it is obvious that, if (T - A)  maps  X  onto X, then

(T - A) maps  X onto  X.   Moreover, if A £ p(T), then  (T - A) HI = 5H and this im-

plies that (T - A) is one-to-one.   Hence a(T) C c/(T).    Q.E.D.

Now we can complete the proof of Theorem 6.2.

(ii) Let 5ll_£ 5" , 5Î = 5f and_ A £ p(T); by Lemma 6.3, A £ p(f) and therefore

(T - A)" ' 51 = 51; hence 31 = 77" H51) D(T - A)" % i.e., 51 C (T - A) 5l.

On the other hand, (i) implies that  (T - A) 51 C 51; hence  51 = (T - X) 51 =

(T - A)"1 51.   Since this is true for all A £ p(T), we conclude that 51 £ ^.

(iii) Let 51 £ 5'T and let_B £ 21' The operator B defined by B(rrx) = tt(Bx)

belongs to % therefore, if R £ $'T = Di^ L e ^T1' then Ä £ ™~B: B 6 U>Tl

Using this fact and (i), it follows that

51 £flS5ß:ß e«'l = 5;.       Q.E.D.

Remark. It is natural to ask whether the same statements of Theorems 6.1

and 6.2 hold in the case of 5"t-   ^e ^° not know the answer to that question,

even in the case  when 5)1  is assumed to be a hyperinvariant subspace.   On the

other hand, none of the statements of (ii) and (iii) of Theorems 6.1 and 6.2 can

be "reversed"; in fact, we have
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Example 6.  Let   U and  5 be the bilateral and the unilateral shift (both de-

fined as "multiplication by  elx") acting on  L2(dD)  (D = jz: |z| < 11)  and  H2,

respectively, and let   T = U © S £ £(L2 © H2).   Then ct(T)  is the closed unit dis

D  and therefore 21^. = 2IT (and  <J" = 5r)-   We have

(a) 5R_= L2 © {0|,  R = H2 © j0¡ £ 5« , but Jl i %^  because ct(T|,.) = dD p

CT(T|n) = D ÍT\%SéU);
(b) ft = jO|©H2, Jl =

ct(T|^) (f^U; T\-^S).

Example 7.   Let

h¡

,2 B H2 £ <\Ar, but Ti ¿ 5f because  ct(T) = r3D '7J

T =
0 1 0
0 0 0
0    0    0

_ _ ~_  and, by Lemma 4.2,acting on  X = VS*,> x , xA; then  21"    = 21

JT = V \xx, x3S = kernel T £{\~,

\ = Vlx,! = range T €$'■

However

(a) R = r|„ = 0 and therefore  ft d $'R.

(b) If  T  is defined as usual on ï/ft,then  T = 0  and  R = tt(JI) ¿ ¿J'y-

The restriction of  T to an invariant, but nonanalytically invariant subspace

is very particular.

Theorem 6.4.  Let ft £ 5T,  ft ¿ 5^  ««¿ ¿e/ R = T|r   Le/ A £ct(R)\ct(T)

W ¿e/z'rae ft^ k = (T - A)feft, for k = 0, ±1, ±2, . ■ . .   Then

(i)  A £ cr(T|^j      )\ct(T), /or a// integral k, and ft    ,  f¿ ft    ,   for all k > h.

(ii) // ftx =nîr.oû \v t*« A ¿ a(T|,x).
Moreover, ¿/ /a  belongs to the component of X in p(T) and m     . = (T — p) M

ik  integral), JRu = f)^ I    ., then ft. = ft ,
fd,t fz AfJ,

T     ft, ... K ■V M,ze
, ¿¿era Jl\ = Jl,,  ûrari(iii) Similarly, if R^ = \/

A i oiT\n).
(iy)  5'd   contains a denumerable chain of subspaces.

Moreover, the same result is true for 5'^. where  T  is defined by (6.1) on

ï/ft.
Proof,  (i)  If ftx x = ftx 0  (= ft), then ft = (T - A)" ' ft  and therefore  A £

piR), contradicting our hypothesis; hence, ft^     / ft^ Q.   Similarly, we can prove

that ft / ft  and, by induction, we conclude that ft^ k ^ ft^ h for all  k > h.

It is clear that A £ cr(T|^¡      ), for all k.

(ii) Observe that  (T-A)ftx = ftA  and therefore  ftA = (T - A)' l \.   Hence,

ft.   is invariant under  (T - A)  and  (T -A)-1, and  A / a(TL   ).   It follows (see
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comments following Lemmas 2.1 and 2.2) that  511 x is invariant under  (T - p)~ *

and p. 4 ct(T|i^); thus  (T-p)fe5l¡x = 5HX, for all integers  k, and

+oo +<x>

5nx= n (T-p)k\c n (t-^511 = 511^
fe = — oo &= —OO

By symmetry, we get 5llx = 5)1   .

(iii) This can be proved by a formal repetition of the argument given in (ii).

(iv)If k > 0, 5HX k = (T - A)fe5ll = (R - A)fe5U.   By Lemma 2.3, 5HX t e 5'R.

Similarly, if k > Ó, then  7r[5HÄ _fe] = zr[(T - X)~k%] = 5Hx _fe  is the kernel of

(T - A)*1; by Lemma 2.3, 5llx _k £ 5'^.   It is clear that  j5Hx _jfeS^l0   is a chain of

different hyperinvariant subspaces of  T.     Q.E.D.

Let  M £ 3t\jt> P = 7*1 )j a°d let  9 = {p(z)/q(z): p, q ate coprime monic poly-

nomials with zeroes in  o(R)\o(T)\.  Q  is a partially ordered set under the relation

p/q, <P2/'q2  if and only if  (pxq2)/(p2qy) is a polynomial.

Theorem 6.5.   The mapping  $: Q —' 5r  defined by

<S>(p/q)=p(T)[q(T)Vl%

is an order isomorphism from Q   into jT\^i-

Proof.   (1)   Let  X, p £ o(R)\a(T), X 4 p, and let

5llx = (T - A)5R,       lM=(T-p)5H,

5KX = 5)1M, if and only if 5)1 = (T - A)" l(T - p.)3)1 = [/+ (A - p)(T - A)" l}%;  there-

fore, 5HX= 5H    implies that  (T - A)-1 5U C 5H, a contradiction.   We conclude that

5HX 4 îkm.
(2)^ Clearly, (T - A) (T-p)5R C 5HX   n  5H/x.

On the other hand, if X 4 p and x £ 5HX  7  5H     then x = (T - A)y = (T - p)z,

where  v, z £ .11.   Hence

y » (T - X)-1* = (T - A)" HT - p)z = [/ + (p - A)(T - A)" lz] £ 5ll

and therefore (T- A)- ' z £ 3)1; i.e., z £ 5HX.   Thus, we obtain

x = (T-p)z = (T-p)(T-X)z',    fot some z' £ 311;

i.e., x £ (T - A)(T - p.) 311.   We conclude that, if  A ̂  p, then

(T - A)(T-iz)5ll = 5llxn %.

(3)  Combining these two results and Theorem 6.4(i), it is possible to show

that  <£, restricted to the polynomials contained in Q, is an injective order-pre-

serving map.   Then, the final result follows immediately.     Q.E.D.
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We close this last section of the paper by studying the case of a subnormal

operator.

Definition 6.1.  An operator  R  acting on a Hilbert space  K  is called sub-

normal if there exist a Hilbert space  H DK and a normal operator  T £ oL(H)  such

that  K £fJT  and   R = TL.

Given a subnormal operator  R  there always exists a (unique, up to unitary

transformations) minimal normal extension  T  in the sense that

oo

K= v«;(K)= V ir*(K), r**(K)j.

Moreover, ct(T) C ct(R) (see [8]).

Example 8.  Let  p be a (Borel) positive measure on   C  with compact support

K, and let

R ÍK, p) = L (K, fi) — closure of the set of all rational functions with poles

outside   K;

H ÍK, ß) - L ÍK, p) - closure of the polynomials.

Let   T = "multiplication by  z" on  L2(K, u)  and let  R = T|    ,  and  H = T\    .,.

Then   R  and H  are subnormal operators with minimal normal extension   T.

In [2] (see also [19]), J. Bram proved that any subnormal operator  L  with a

cyclic vector (i.e., there  exists    x £ K  such that  K = \/T=o ^  *)  1S unitarily

equivalent to an operator of the form  H in the above example.

The existence of analytically invariant subspaces for a class of operators

which include the case of the operator  R  of the example, as a particular case,

was studied by J. Brennan and J. Wermer [3], [4].   Here we present  a   "Bram's

type theorem" for analytically invariant subspaces of subnormal operators.

Theorem 6.6.   Let K  be a Hilbert space of dimension greater than one.    The

following two statements are equivalent:

(1) 5r  is nontrivial for any subnormal operator S.

(2) 5d   ÍP given by Example  8) is nontrivial■

F'roof.  (1) =» (2) is a trivial implication.

(2) => (1)  Let  S be a subnormal operator and let   T be its minimal normal

extension.   Then  S = T|K<  T £ £(H)  and ct(T) Cct(S).

(a) If ct(T) / ct(S), then (by Theorem 6.A(iv))$'s contains infinitely many

elements.

So, we can assume that  ct(T) = aiS).

(b) Let x be a nonzero vector of a  and let  Jl = VJßx: B £ 2I^.j £ ¿j^..

Claim.   Ti £ as-
ín fact, if  Jl £ 5^- then (by Lemma 2.2) R £ ^ and a(T|n) C ct(T) = o(S);
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thus  R £ 5S, o(S\n) C aiS), and (by Lemma 2.2) R £ $%.   U R / K, we are done.

Otherwise

JUJICJT=     V     \T*kThx\=\J\Bx:B£UT\£$:'rC$aT.

k, zb = 0

Since   T  is the minimal normal extension, R' must be equal to   K.    In this

case (see [17]), T acting in K  is an operator of the type described in Examples

2, 3, 4 (T is unitarily equivalent to "multiplication by  z" in a suitable   L2(K,pA

space; K = o (T) = sup (/i)), S = T\ K and

K = V \Bx: B £ 21^,! = L  (K, fi) - closure of the rational functions with poles

outside   K;

i.e., K = R2(K, ,j).     Q.E.D,

In the same lines as [19, Theorem 3 and Lemma 3.3] we can prove the follow-

ing:

Theorem 6.7. // R  and R  ÍK, a)  are defined as in Example 8, then

U'R = KR = \Mf:f£R2iK, tiClLTiK, p)l

Moreover, if A = M   £ ÏVR, then  \\A\\ = WfW^.

In particular, this means that all the invariant subspaces of [4] are actually

hyperinvariant.

Note. After this paper was written C. Pearcy and N. Salinas proved the fol-

lowing theorem, which generalizes a result of W. B. Arveson and J. Feldman.

Theorem.   Let  T be a quasitriangular operator on a Hilbert space, and sup-

pose that there exist a sequence of rational functions \r,\ and a nonzero com-

pact operator K such that  ||r,(T) - K|| —» 0.   Then  T has a nontrivial analytically

invariant subspace.

Moreover, this theorem is not vacuous in the sense that there exists a quasi-

triangular operator  T with the following properties'.

(1) the spectrum of  T  is connected;

(2) there exists no nonzero compact operator in the uniformly closed algebra

generated by the polynomials in  T; and

(3) there exists a quasinilpotent compact operator in the uniformly closed

algebra generated by the rational functions in   T.

Added in proof.   Regarding to Lemma 2.3 and comments following it,

R. Gellar and D. A. Herrero (Hyperinvariant subspaces of bilateral weighted

shifts (preprint)) have proved that, for two large families of bilateral weight-

ed shifts in Banach spaces, the kernel of every nonzero operator commuting

with the shift is  j0(  and the range is dense.
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