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ABSTRACT. In this paper, we begin a classification of simple totally anti-
flexible algebras (finite dimensional) over splitting fields of characteristic £2, 3.
For such an algebra A let P be the largest associative ideal in 4~ and let N
be the radical of P. We say that 4 is of type (m, n) if N is nilpotent of class
m with dim A =n. Define N; =N,;_y-N, Ny =N, then 4 is said to be of type
(m, n, dq, dyy-+s dq) if A is of type (m, n), dim(N; = N;_y) =d; for 1<i<gq
and dim(V; — N;4+1) =1 for ¢ <i<m. We then determine all nodal simple totally
antiflexible algebras of types (n, n), (n — k, n, k + 1), (n — 2, n) (over fields of
characteristic # 2, 3) and of type (3, 6) (over the field of complex numbers). We
also give preliminary results for nodal simple totally antiflexible algebras of type
(n — k, n, k, 2) and of type (m, n, dy,- -+, dq) in general with m > 2 (the case
m =2 has been classified by D. J. Rodabaugh).

1. Introduction. A totally antiflexible algebra is a nonassociative algebra

(finite dimensional) satisfying

(1) (x, y, 2) = (2, y, %)
and
@) (x, x, x) =0

where (x, y, z) = (xy)z - x(yz). Totally antiflexible algebras have been studied
by C. Anderson and D. Outcalt [1], F. Kosier [3] and D. Rodabaugh (4], [5], [6],
[7], [8]. These are known to be related to the algebras of commutative nilpotent
matrices [8]. There is not much known about the algebras of commutative nilotent
matrices. In this paper we complete the classification of simple nodal totally anti-
flexible algebras that are related to the algebras of commutative nilpotent matrices
discussed by D. A. Suprunenko and R. I. TySkevi¢ [10] and certain other types.

Define x! = x, x**1 = x*x and x 1= x, x** 1 =x % . x. It is known [6] that
a totally antiflexible algebra need not be power-associative when char. # 0. How-
ever, A* is power-associative so x'™ - x'™ = x'™*" for all positive integers m
and n. We will call y nilpotent or nil if y'” = 0 for some n. If x in A implies
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x =a -1+ 2z for a in the base field and z nil, we say that A is nearly nodal.

A nearly nodal algebra is nodal if the set of nil elements do not form a subalgebra.

2. Preliminaries. We will state some known results on the structure of sim-
ple totally antiflexible algebras. We also need (see (11, (7D

Definition 2.1. A field K is said to be a splitting field for an algebra A if
every primitive idempotent of A, is absolutely primitive and if every element in
(AK)ll(e) for e primitive can be written as ke + y with £ in K and y nil or
y = 0.

Definition 2.2. Let A be an algebra over a field F of char. # 2, 3. The
mapping ¢: A x A — B for BC A will be called an antiflexible map provided
B Cix: xy = yx forall y in A} and

(3) ¢ is bilinear over F,

4) ¢(x, y) + #ly, x) = 0,

(5) ¢(x2, x) =0,

(6) ¢(x, y) =0 if y is in B,

(7) ¢(x, ), 2) = 0.

For a, B in F and antiflexible maps ¢, ¢, define ap, + B¢, by

a, + Bp,(x, y) = - ¢,(x, ¥) + B, (x, y).

It is clear that a¢, + B¢, is an antiflexible map.

Definition 2.3. Let A be an algebra over a field of char.# 2, 3 and ¢ be
an antiflexible map. Define A($) as the algebra formed from A with multiplica-
tion replaced by

x xy =xy + ¢lx, y).

Tt is known [4] that A is totally antiflexible if and only if A($) is totally anti-
flexible. Furthermore, if { is an antiflexible map on A(g), then A(¢)y) =
Alp + ).

We now summarize certain results in [1], [4] by the following theorem.

Theorem 2.1. If A is a simple not associative totally antiflexible algebra,
over a splitting field F of char. # 2,3 then A% is associative, A has an identity
element and A = A + - + A, where A, = A“(ei) for e, primitive. Further-
more, ¢(x, y) = (1/2)x, y) is an antiflexible map and A = A*().

We will then be interested in those algebras from which simple algebras can
be constructed. We say that a totally antiflexible algebra A is nearly simple if

there is an antiflexible map ¢ such that A(¢) is simple.

Theorem 2.2 [8]. Let A be a totally antiflexible algebra over a [ield of
char. £ 2, 3 and assume A% is associative. Then A is nearly simple if and

only if At s nearly simple.
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As a result of Theorems 2.1 and 2.2, to find all simple algebras, we need
only consider the nearly simple associative and commutative algebras. These are
known to contain an identity element. For, if A is a nearly simple associative
commutative algebra then there is an antiflexible map ¢ with A(¢) simple. So
by Theorem 1.1, A(¢) contains an identity element. Therefore A contains an
identity element. Hence, throughout this paper unless specified we will assume
that A is a totally antiflexible algebra with identity element over a splitting field
K of char. £ 2, 3 and that A% is associative. Consequently, A=A, +--+ A
with A = A“(ei) for e, primitive and AiA]. =0 if i#£j. For, since A% is asso-
ciative, A 10(e) + AOl(e) = 0 for any idempotent e (see also [5], [7]). In addition,
since K is a splitting field, each element in A, has the form ae; +z for a in K
and z nil. Thus A has a basis consisting of primitive idempotents and nil ele-
ments. We define the following sets:

(8) N={x:x in A and x is nil},

(9) N,=N;_,-N with N, =N,

(10) Ni = Ni -- Nl.“ (quotient or difference algebra),
(11) N;. ={x:x is in Ni but not in Ni+l§’
(12) M;={x:x - NCM,_,} with M = 0.

M, (= M) is called the annihilator of N.

For each x in A define T :y —y - x and note that, since there is an
identity element 1 in A and At is associative, x — Tx is an isomorphism of
A% onto {Tx}. Thus, if dimA = n, we can think of either A or one of its subalge-
bras as an algebra of commutative n x n matrices.

For some m, N =0 with N #0 andso N,DON,D..-2N_=0=M,C
M C---CM__,CM_=Nand NCM__, forall i. Wesaythat A (or N) is of
type (m, n) if A* (or NM) s isomorphic to an algebra of commutative n x n
_1- The algebra A (or N) is said to be
of class m. An algebra A (or N, the radical of A%) is of type (7_71_, mod, dq)
if A (or N) is of type (m, ), dimN,=d, for 1 <i<q and dimN; =1 for ¢ <
i<m -—L Note that if N, =N_,,  then Nl;_——_-_N’. for all j > i. Hence e_ith_er N.=0
or dimN;> 1. It is known (8] that if dimN, =1 for some i then dimN,,, =1 for

matrices for n = dimA with N =0#N
m m

k=0,..-,m—-i-1. Hence we can assume that d;>1 for 1<i<gq.
By Theorems 2.1 and 2.2 the problem of classifying all simple totally anti-
flexible algebras is reduced to finding
(i) a characterization of all nearly simple associative commutative algebras,
(ii) all possible antiflexible maps ¢ that give rise to simple antiflexible algebras.

The following two theorems summarize results from [8].

Theorem 2.3. Let P be an associative, commutative algebra over a field of
char. £ 2,3 and let ¢ be a bilinear map from P x P — B C P such that ¢(P, B) = 0.
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Then ¢ is an antiflexible map if and only if, for every m; y 5---5 ¥ ,
n
(13) Z¢("i£"yi: yl) = 0.
j=1

If x isinM,, y in N, z in N j>i>1, and ¢ an antiflexible map,

it
then x - y = 0 and qS(x, z) = 0 [8]. Now we state necessary and sufficient condi-

tions for a totally antiflexible algebra to be simple.

Theorem 2.4. Let A be a totally antiflexible algebra over a splitting field of
char. £ 2, 3 with AY associative. Then A is simple if and only if

(14) for every nonzero x in M, there isa y in N with (x, y) £ 0,

(15) no element of {e(x, y)} generates a proper ideal where e is a primitive
idempotent,

(16) for each primitive idempotent e in A, fe(x, y)} is not nil.
The proof of the following theorem is similar to that of Theorem 2.4.

Theorem 2.5. Let A be a totally antiflexible nodal algebra, over a
field of char. # 2, 3 with A" associative. Then A is simple if and only if

(17) for every nonzero x in M, there is a y in N with (x, y) # 0,

(18) for each x in M, and y in N;, (x, y) does not generate a proper ideal
of A.

Proof. If A is simple, then the conclusion follows from Theorem 2.4.

Conversely, suppose A satisfies (17) and (18) and | is a proper ideal of A.
Let x bein J, x# 0; then x=a - 1 + z for some a in F and z nil. If a =0,
write z = (— 1/a). Then for some m #™m=04£a ™D and so 1=(1-2)
(1 +u+---+u ™ 1) is in J. Hence J = A which is impossible. Therefore
suppose a = 0. If z is in M, let =2z and if z is not in M,, then there is a y
in N with =z -y in M, N ]. Hence by (17) there is a v in N such that (z, v)
#0 and (», v) is in J. Therefore by (18) it follows that | = A, which is a con-
tradiction. Consequently A is simple.

In a similar way we can prove the following.

Lemma 2.1. If A is a nodal totally antiflexible algebra over a field of
char. £ 2, 3 and if for ¢lx, y) = (1/2Xx, y), NN {p(x, y)} = 0, then A is simple
if and only if for every nonzero x in M, there exists a y in N such that ¢(x, y) £ 0.

Proof. We only need to prove that the condition is sufficient. Hence suppose
that for every nonzero x in A there is a y in N such that ¢(x, y) £ 0 and | is a
proper ideal of A. Let x be in A, x #0. Then x=a - 1 + z with a in F and
z nil. If a £ 0, define u = (-~ 1/a)z, then for some m, (1/a)x - (L +u+ -+ ™ =1
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is in | which is impossible. Therefore, suppose that a = 0, for every x in |
and JCN. Let x bein J, x #0. If x is not in M, then for some x, x - z is in
M, and so there is a y with ¢(x - z, y) £ 0. But then ¢(x - z, y) is not nil with
é(x - z, y) in ], which contradicts the fact that | C N. Hence A is simple.

For an antiflexible map ¢ on an algebra A we define

H(@) ={é(x, y): x, y are in A} and (x¢by) = x xy — y xx

where x *y = xy + ¢(x, y). Thus (x¢y) = (x, y) + 2¢(x, ).
If H(¢) = Z(A) (the center of A) and if Z(A) £ {0} then Z(A) is a field [9].
Hence H(¢)N N = Z(A) N N = {0} and we have proved the following lemma.

Lemma 2.2. Let A be a nodal totally antiflexible algebra over a splitting
field F of char. #2,3. If H(¢) = Z(A) then H(¢p) N N ={0}.

The following two theorems summarize the results on algebras of class 2 [8].

Theorem 2.6. Let P be a nearly nodal associative commutative algebra over a
field of char. £ 2,3 with N - N=0. Let {x}7_, beabasis for N. If ¢ is an
antiflexible map them P(¢p) is simple if and only if there is a nonsingular matrix
X = (xi,j) with gb(xi, xi) =%

Theorem 2.7. Let P be an associative commutative algebra over a splitting
field F with N - N=0. Then P is nearly simple if and only if

(19) there is an identity element in P,

(20) for every primitive idempotent e, dimP”(e) >3,

(21) either 1 is not primitive or dimP is odd.

Next, three theorems summarize results on algebras of types (n, n) and
(n—k, n, k+1) from [8].

Theorem 2.8. Let N be an associative commutative nilalgebra of dimension
n~1 overa field F. If N is of class m and if chat F =0 or char F > m or
char F>n-m+ 2 or dim;\l—:= 1 with char F > k then there is an x in N with
x™=1 Lo,

Theorem 2.9. Let P=F .1 ® N where N is an associative commutative
nilalgebra of type (n, n) over a field F of char. #2,3. Then P is nearly simple
if and only if char F divides n.

Theorem 2.10. Let P=F -1 & N where N is an associative commutative
nilalgebra of type (n—k, n, k+ 1) with n— k> 2 over a field F of char. 2, 3.
The algebra P is nearly simple if and only if the following holds:

(22) N is spanned by a,-- -, an=k-1 bl" “+y b, where ab, = bib]. =0; i,
i=1, 2,...,[3,
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(23) either n— k = char F with k even or n~ k =m char F for m> 1.

3. Nodal algebras of type (n, n), (n ~ &k, n, k + 1) and (n -2, n). We now
focus attention on nodal algebras. If A is such an algebra then dimA =1 + dimN.
Since all simple antiflexible algebras of class 2 have been determined {8], in
classifying simple antiflexible algebras of type (m, n), we can assume m > 2.
The following theorem gives an answer to the second question for algebras of

type (n, n). Notationally we use a° for 1.

Theorem 3.1. Let P=F .1 ® N be a nearly simple, associative, commuta-
tive, nearly nodal algebra of type (n, n) over a field of F of char. #2,3. If ¢
is an antiflexible map on P and if a is chosen in N so that a®~! £ 0, then P(p)
is simple if and only if

(24) H($) is a subset of the algebra generated by 1 and a®, and n = mp,

(25) pla"" 1, a) = 37LB, 0P, B,, in F with B #0.

Proof. By Theorems 2.8 and 2.9 (see also Theorem 5.3 of [8]) there is an
element a in P such that P is generated by 1 and a and n = mp for some posi-
tive integer m. Also using Theorem 2.3 we have ¢(a’, a’) = jp(a’*'*), a) =
— ip@*’"1, @). Hence, ¢(a’, a’) = 0 if either p|i (p divides i) or p|j or
pfG+7) or i+ j>n

Now suppose P(¢) is simple. Then ¢(a”~ 1, a) £ 0. Let x, y be in P. Then

n—1

¢(x, )= Y aa, a,inF,i=0,---,n-1
i=0
Since ¢ is an antiflexible map on P, we have 0 = ¢(¢(x, y), a" ) = aqu(a. a™h.
But ¢(a™ 1, a) £ 0, so a, = 0. Suppose a;=0 forall i<k with 128 and pfk.
Then

0 = ¢loplx, y), a® %) = o, plak, a® k) = - kak¢(a”‘l, a),

which implies that a, = 0. Hence by mathematical induction, a ;=0 for all :

with £47 and so ¢(x, y) = Z;.';’(')l aipaip. This proves (24).

If x=a"""! and y =a, we get p(a"" !, a) = 2:';'(')1 l.paip,Bip in F. If B,
=0, then a generates a proper ideal of P(¢). Hence BO # 0 and so (25) is satis-
fied.

Conversely, suppose ¢ satisfies (24) and (25) and ] is an ideal of P(¢).
Let x be in J, x # 0, then x = E:.’;llaiai, a,in F, i=1,--.,n~1. Let j

be the least integer such that a, #£0. Tf plj then

m—1
Sx xa, a7 = plxa, a" TN == (G + l)aj ( ;} Bipai").

Therefore (- 1/(j + l)ajBO)qS(xa, a* "V =1-zisin J, z is nil.
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On the other hand, if p}j then
(- 1/jo Bo)elx, a7y = (- 1/,-30).;5(,,;‘, a® i) =1-z

is in | for some z; z is nil. Hence in either case for some positive integer r,
(1-2)1+2z+--- +2")=1 isin J. Therafore | = P(¢) and so P(¢) is simple.
In a similar way we prove the following theorem.

Theorem 3.2. Let P=F . 1®N be a nearly simple, associative commutative
nearly nodal algebra of type (n—k, n, k+ 1), n— k> 2, over a field F of charac-
teristic p£2,3. Let ¢ be an antiflexible map and let a, b
Theorem 2.10. Then P(¢p) is simple if and only if

(26) H(p) is contained in the algebra generated by 1 and a®, n - k = mp,

27) $a™*=1, a)=3 ’”"lapa’p, @, in F, i=0,--,m-1, with ag# 0.

(28) d)(bl., bj) =%, . i, j=1, , 1, where X = (x. ]) is the matrix of Theorem
26, 1=k if k isevenand I =k -1 if k is odd. Furtbermore, if k is odd and
¢(bk’b,‘) =0 for all j, then for any a, B in F, ¢(aa® k=14 Bb,, a) £ 0.

1""’bk be as in

Proof. As in the last theorem we note that ¢(a’, ') = 0 if either p|i or plj
or p‘f(i +j) or i+j>n. Also, since azbz. = 0, using Theorem 2.3 it follows that
#(a®, b)) = 0 if either s>1 or r>1, i=1,.--, k. Now suppose P(¢) is simple.
Then ¢(a""*~1, a) £ 0. Let x, y be in P. Then

n—k—1

Blx, y) = E Y4 +E8b yi,Siarein F.

Since @(p(x, y), a"~*~1) is an antiflexible map, we have 0= ¢((x, y), a®—k-1)
=y $la, a®=*=1) which implies that y, = 0. Suppose that y, =0 for all i <!
with pfi, p{1 and n— k- 1> 1. Then

0 = ¢lglx, y), a® =) = _ Iy d(a" k"1, a).

Therefore, y, = 0. Thus by mathematical induction y, =0 for 1< i<n - k-2
with pfi and we have ¢(x, y) = ”’_'61)/ at? + Y, where Y =y, _, ,a" ~k-1
+ 2?":13].1)]. is in M. Forany z in P, 0 q’)(c,‘b(x, y), 2) —qb(Yl, z), so Y =0.
Consequently, (26) is satisfied.

n-k-1

On taking x = a , y=a, we get
m-1
—k—1 _ ip. ‘e in F
Pla” , a) = Z a,af; a, isin F.
i=0

If a; =0 then a generates a proper ideal of P(¢). So a, # 0 and we have (27)
The fxrst part of (28) follows from Theorem 2.7. Now if k is odd, ¢(b b ) =
for 1< j<k, and if a and B are arbitrary elements of F, then Hlaa™*-1 4 ,Bbk, b ) 0
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for 1< i<k Since aa® *~1 1 Bb, isin M, ¢(aa" %1+ Bb,, a) £ 0.
Conversely, suppose ¢ satisfies (26), (27) and (28) and ] is an ideal of
P((i)) Let x be in J, x # 0. Then

n—k—1

Z Y@ +Z§b yi,BiateinF.

Since x # 0, at least one of the y; or one of the 5]. is different from zero. Thus
we have two cases:

Case 1. Suppose y, # 0 for some i, 1 <i<n—k=-2. Let j be the least
mteger such that y, £0. If p*] then since n—~k —j> 1, ¢(x, a”~ k=) _

2 Hla’, a"=*=7) =-7y, (372 a a'p) Therefore (- 1//y a )¢(x, n-k-i)_1-2
is in | with z nil. Slmllarly xf pl; then (-1/(j + 1)y ao)¢'(x xa, a® kT 1.2
is in | with z nil. Thus, in either case, for some positive integer r we have
1=(1-2)01+z+---+2""1) isin J. Hence J = P(¢) and so P(¢) is simple.

Case 2. Suppose y, =0 for 0<i<n-k-2 and 3’.;40 for some j, say j=
L. If 1<k, then by Theorem 2.7 there is a j such that ¢(b,, b,.)' =x, isin JOF
and xl'].;é 0. Hence 1 is in J and so J = P(¢). On the other hand, jf 5, £ 0 then
if & is even then there is a j such that qS(bk, bi) =%, isin [NF, x, ;é 0 and
so ] = P(p). If k is odd and if ¢(b,, b].) # 0 for some j then as in Case 1it
can be shown that | = P(¢>) Therefore, let us now assume that k is odd and
¢(bk, b)=0 forall j=1,.--, k. Thensince x=y, _, la""k"l +8,b,, by (28),
o(x, a) ,4 0 and once again it can be shown that | = P(¢). Hence P(¢>) is simple
and the proof is complete.

Having determined all nodal simple antiflexible algebras of f types (n, n) and
(n—k, n, k+1), our next interest is those of type (n—2, n). If dim N =2 and dim N
=1 then d1mN =1 for all 2<l<n—3 so that dim N = n— 2. Since dme—n—-lwe
conclude that exther dim N, = 3 and dim N =1 for 2<i<nm-3 ordim N =2,
dim —N—z_= 2 and dim N, =1 for 3<i<n- 3 We have proved the followmg lemma.

Lemma 3.1. If N is of type (n— 2, n) then N is either of the type (n—2, n, 3)
or of the type (n -2, 2,2).

We have determined all simple nodal totally antiflexible algebras of type
(n--2,7n,3). Sonow we will be interested in algebras of type (n-2,m 2,2

and in general of type (n - &, n, k, 2).

Theorem 3.3. Let N be an associative, commutative nilalgebra of type
(n~k, n, k, 2) over a field of char. # 2, 3. Then there exist a, b, c, i= 1,---,
k ~ 1, such that bi is in Nl', c is in Nz' and {a,- Pl bl"" , bk-l' cl
is a basis of N with a’b.=0, ab.b. =B, a"~ k=1 bbb, =y.. a"mk-1 i

i ij 1,] il 11,1
l=1,.--,k=1. Furthermore, c can be chosen to be either abl or b% or blbz‘
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Proof. By Theorem 2.8, since dim —I\Z= 1, there is an element ¢ in N with

a"*=110. Let CpsnrraCp s € be chosen so that ¢

e
c in Nz' and {a, .-, a”"k'l, Cyrtts Cpyr c} is a basis for N. (This is pos-

sible since dim N—Iz k and dim N—‘z_'_‘ 2.) Then N, is spanned by a3,y atRe

. ’
“5 €, are in Nl ,

so
n—k—1 n—k—1
2. ji_ ,2 i—2. - -
a‘c,= z a, @’ =a Z a, @75 i=1, ,k—1.
j=3 j=3
Define bi=Cl~"27__'_'3k—la. .af'z; i=1,---,k~-1. Clearly azbi=0, i=1,

i,
., k-1, and ia,---,a"'é", bl""’bk
N'. Si:ce abb. zif in N, abb, =27:3k-lﬁi,j,lal' Then we have 0 = azbibj
= El';; "ZBian 1 and so Bl;l=0 fOf l: 3,...,n_k_2; i:j=l,"',k~l.
Defining 'Bi,j = Bi,j,n-k-l one gets “bib,‘ = Bi’ja""k"l; i,j=1,..-, k=1,
Also, abbb, =B, ia”‘k'lbl= 0 (since n—k>3); i, j, I=1,--+,k=1.
L ’ k=11 n-~k<2 t+1
Now bibjbl is in N, so bibjbl= t"=3 a' and 0= abib’.bl= S5 Yain®
Hence yl.].“=0 for 4, j, I=1,---, k-1 and t=3,...,n—- k- 2. Defining
b N n—k=1
Yiia=Vijln-k-1> W€ have bbb =y, ja :

To prove the second part of the theorem, we only need to show that at least

Y c} is a basis of N with bi in

one of ab,, bf, b,b, is not in N,. If either ab; or b2 or b.b. is not in N, for
3 z ] 1] 3
some i or j then one can rearrange the bs and the proof will be complete.

Hence assume that ab,, bib]. are in N, forall 4, j=1,---, k—1. Since c is in

N’ we have
k—1 k—1
c= (aa+2 aibl.>(,8a+z Bibi +2z; zin Ng;
i=1 i=1
=a/3a2+z'; z' in N
Therefore, c, a%, a3,---,a" %=1 are linearly dependent which is impossible and

we are done.

Lemma 3.2. Let ¢ be an antiflexible map on an associative commutative
algebra P of char. # 2, 3 with a’b = 0. Then

(29) ¢lab?, a®) =0 for s >0,

(30) ¢(a®, b) =0 for s> 2,

(31) ¢lab, a®) =0 for s> 1,

(32) ¢la’”, ) =0 for r>1 and s > 1,

(33) 2¢(ab, a) + pla?, b) = 0,

(34) 2¢(ab, b) + $(b2, a) = 0.

Proof. (29) is obvious for s = 0. If s > 0, consider ab, b, a°, then, by
Theorem 2.3, ¢(ab?, a®) + p(a®b, ab) + $(a*1b, b) = 0. Since a*b=0 for s > 1
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and for s = 1, ¢plab, ab) = 0, ¢p(a®b, ab) = 0 = ¢(a®*'b, b). Therefore $(ab?, a*)
= 0. To prove (30) let s > 2 and consider a,---,a_, b where a,=a for i=1,

-+, s. Then using Theorem 2.3 we have ¢(a®, b) + s¢(a® ~1b, a) = 0 which
implies that ¢(a®, b) = 0. Similarly, to prove (31) consider @, b, @° and apply
Theorem 2.3.

Now suppose r = 2 and s > 1. Consider a2, b+, b with b, =b for i=
1,---,s. Then by Theorem 2.3 we have ¢(b°, a?) + s¢(a?6°~ 1, b) = 0. Since
a?bs=1-0, #(a?, b%) = 0. If r> 2, consider ap,-sa, b° where a;=a for
all i=1,...,r, then using Theorem 2.3, ¢(a’, b%) + rp(a”~ 1b%, @) = 0 which
implies ¢(a”, °) =0. Considering a, a, b and applying Theorem 2.3 we get (33),
and (34) follows immediately by using Theorem 2.3 for a, b, b.

We are now ready to prove the following theorem.

Theorem 3.4. Let P=F -1 & N where N is an associative commutative
algebra of type (n -k, n, k, 2) with n— k>3 over a field F of char. £2,3. If
P is nearly simple then N is spanned by a,- -, am Rkl b,_,» ¢ where
azbi=abibi= bbb =0, 4], I=1,---, k=1, c, is either ab, or bl or b b,

and n -k =m chatr F for m> 0.

Proof. By Theorem 3.3, there are elements a, b . bk v € with N

spanned by a,---,a" k=1 v by by c Furth;rmore azb =0, ab, b
B;, ]a""k"l bzb,bl yi‘j’la” k=1 for 4, j,I=1,- -, k=1 and c is exther ab,
or b2 or b b,. From this it is clear that M is a subspace of the space spanned
by fan-k=1, abi bbiiyj=1,---, k=1

Assume P is nearly simple. Then there is a ¢¢ with P(¢) simple. We first
show that for every 7 and j, ab; and bibj are in M. To do this it is necessary
and sufficient to prove that each Bz‘,j = 0 and each Vil = 0. If x#0 is in M,
Theorem 2.5 assures the existence of a y in N with ¢(x, y) £ 0. Thus, if x in
M has the property that ¢(x, y) = 0 for all y in N then x = 0. Since n—-k—-1>
2 by (28), ¢(a""*=1, )= 0 for all i. Hence plabb, b) = B, ¢>(a" k-1, 5) =
0 and (bbb, b )_ L@@kl 5,) = 0 for all boiq 1=1, /‘e—l
Also by Theorem 2.3, qS(ablb’ a) = - ¢(a2b b ) - ¢(a2b b,)=0 and ¢(b b bl’ a)
—-gb(ab b b )-—qS(ab bl’ b )—¢(ablb1, b]) 0. Smce ab, b b b b are in M, ab, b
b, b b;=0 fot i, j,l=1,--+-, k=1. Thus we have shown that M is the space spanned by

{"k°1,ab bb;z,]—l , k= 1}.
Since a"‘ k- £0 isin M there isa y in N with ¢(a®=*=1, y) £ 0. For
g>1, a? is in N,and ¢(a"" k-1 ,b)=0 for i=1,---, k- 1; so we conclude

#(a""*=1 4) £ 0. But by Theorem 2 3, (n- k)(j)(a" k'l, a)=0, son—k=
m char F for some m > 0.

As an immediate corollary, we have
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Corollary 3.1. Let P=F - 1® N where N is an associative commutative nil-
algebra of type (n—2,n, 2,2) with n—2>2 over a field F of char. £ 2, 3. Then
there are elements a, b, ¢ such that b is in N'1 , C is in NZ', and N is spanned
by a,--+,a" 3, b, c with a’b=0, ab?=Ba""3, b3 =ya""3 and c is either ab
or b2. Furthermore, if P is nearly simple and n—- 2> 3, then B=0=y and

n—-2=m char F for some m > 1.

Theorem 3.5. Let P = F . 1 ® N be an associative commutative nearly nodal
algebra of type (n~2,n, 2, 2) with n—2>3 over a field F of char. £ 2, 3. Then
P is nearly simple if and only if

(35) N is spanned by {a,---,a""3, b, ab} with a’b=ab?=b3=0 and b? =
aa™ 3 for some a in F,

(36) n~ 2 = m char F for some positive integer m and if b* =0 then m > 1.

Proof. Suppose P is nearly simple. Then there is an antiflexible map ¢ with
P(¢) simple. To prove (35) we only need to show that ¢ = ab and b2 = ag""3
Corollary 3.1. 1If ¢ = b? then ab = Z;;;S aiai + Bb% and so 0=4a?b =2i"=';4 a.l.a“'I .
Therefore, a, =0 for i = 2,-.-,n~-4 and ab = an_3a"'3 + Bb%. Thus ¢lab, b)
= an_3¢>(a"’3, b) + Bp(b?2, b) = 0. Consequently, by Lemma 3.2(34), ¢(b?, a) = 0.
Since b2 is in M, b2 = 0 which is impossible. Hence c = ab and b’ = Ei'f__’ég’ﬁiai
+yab. Now 0= ab? = Zl."g’;“ﬁia s ,81. =0 for i=2,---,n—4. Thus b% =
B,_3a""% +yab and 0=¢(6% b) =B, _,p(a""3, b) + yplab, b) = yplab, b). If
¢(ab, b) = 0 then, by Lemma 3.2(34), ¢(b?%, a) = 0 and consequently b% = 0=
0 - a™ 3. On the other hand, if (ab, b) £0, then y = 0 and defining a = B,_; we
have b2 = a - 2"~ 3.

By Corollary 3.1, n — 2 = m char F for some m > 1. Suppose that 4% = 0 and
m=1. Then it is easy to show that H(¢)C F - 1. Since b% =0, by Lemma 3.2(34),
¢(ab, b) = 0. Therefore, since ab# 0 is in M, ¢p(ab, a) = B #£ 0. Let ¢(a”"3, a)
=8,8 #£0. Define x = Ba™3 — 8ab, then x £ 0, x is in M and ¢(x, z) =0 for
all z in N. This is a contradiction. Hence m > 1.

Conversely, suppose P satisfies (35) and (36) and b2 £ 0. Define ¢ on the

basis of P as follows:

in

S(ai, o) 0 if i+vjdn-2,
’ joif it j=n-2;

$(b2, a) = 2 = — ¢(a, b2);

@lab, b) = - 1 = — p(b, ab);

o(x, y) =0 for any other pair of basis elements x and y.

Extend ¢ bilinearly to P x P. Then it is easy to verify that ¢ is an anti-
flexible map and that (17) and (18) are satisfied. Hence, by Theorem 2.5, P(c,z‘))
is simple.
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If b2 =0, then by (36), m> 1 so a? £ 0. Define ¢ on the basis of P as

follows:
sty {01 ividn-2,
joifivj=n-2
Plab, a) = a? = - ¢(a, ab);
dla?, b) = - 2a® = - $(b, a?);
#(x, y) = 0 for any other pair of basis elements x and y.

Extend ¢ bilinearly to P x P, then it is routine to verify that ¢ is an anti-
flexible map and (17) and (18) hold. Therefore, by Theorem 2.5, P(¢>) is simple.
Having determined nearly simple algebras of type (n — 2, n) our next interest
is to find all possible antiflexible maps that give rise to simple antiflexible alge-

bras of type (n - 2, n).

Theorem 3.6. Let P = F . 1 ® N be an associative commutative nearly sim-
ple, nearly nodal algebra of type (n— 2, n, 2, 2) with n—2>3 over a field F of
characteristic p £ 2,3 and let ¢ be an antiflexible map on P. If a and b are as
in Theorem 3.5, then P(¢) is simple if and only if

(37) H(}) is a subset of the algebra generated by 1 and a,n-2-= mp,

38) ¢a"~3, a) = 3725 a, a®, a,, in F for i=0,-..,m~1 with ag#0,

(39) if b% =0, then plab, a) = Zi';';lyipa“’ £ 0 and, for any 8 in F, $lab, a)
£ 8¢p(a™" 1, a).

Proof. Since P is nearly simple (35) and (36) of Theorem 3.5 hold.

Assume P(¢) is simple. By Theorem 2.3, &, @) = - ipla'¥~1, a) = a1, a),
so dla’, @) =0 if plior p|j or pf(i+ ) or i+j>n~2. Since a”=3 isin M and
#(a""3, b) = 0 (by Lemma 3.2), ¢(a”"3, @) £ 0. Let x, y be in P, then

n—3

plx, y)=2 Biai+Bb+yab, Bsy, B, in F for i=1, ..., n—3.
7=0
Now, 0 = ¢(p(x, y), a®"3) = B ,#(a, 4"~ 3) which implies B, = 0. Suppose B,
=0 forall i<k with p{7, p{k and k< n - 3. Then we have

0 = dloplx, y), a” *72) = aqu(ak, an~k=2) - _ kak¢(a"_3, a).

Therefore, a, = 0 and hence, by mathematical induction, a,= 0 forall i<n-3
with pJi. Thus ¢(x, y) = 37251 ,Bl.paip +Bb+ Y where Y = Bn-3an—3 +yab
isin M. If b2 £ 0, then by Lemma 3.2, ¢(ab, b) £ 0 and 0 = ¢(p(x, y), ab) =
Bop(b, ab). Consequently, B = 0. On the other hand, if b? = 0 then ¢lab, a) £ 0
and so qS(az, b) # 0 (by Lemma 3.2). Since a? isin Nz’ we have 0= ¢(p(x, y), a?)
= Bop(b, a?) which implies B = 0. Now for any z in P, 0 =(h(x, y), 2) = p(Y, 2),
so Y = 0 and we have (37).
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Let x = a" 3, y = a, then we have ¢(a""3, a) = 2:.’;51 aipaip. If aj=0
then a generates a proper ideal of P(¢), so o, # 0. Now suppose b’ = 0, then
é(b?%, a)=0= ob(ab, b). Since ab is in M, ¢(ab, a) # 0. If there is a § in F with
élab, a) = 8¢(a""3, a), define x = ab —8a™ 3. Then x is in M and ¢(x, z) = 0
for all z in P which is a contradiction. Hence for any 8 in F, ¢(ab, a) £
dpla™" 3 4).

Conversely, suppose ¢ satisfies (37), (38), and (39). We first note that M is
spanned by {a"~3, ab}. Let x be a nonzero element in M. Then x = Ba”~ 3 +
yab, B,y in F, such that either 8 £ 0 or y #.0. By Theorem 3.5, b% = aa"">
for some a in F. Now suppose y # 0. If a# 0, then ¢(x, b) = Bp(a™"3, b) +
yblab, b) =(— 1/2)yaa™ 3, a) £ 0, and if o= 0 then, by (39), Hx, @) = BHa" 3, a) +
yé(ab, a) # 0. On the other hand, if y = 0, then x = Ba”" 3, so ¢(x, a) = B
- a3, @) £ 0. Thus (17) is satisfied. Also, it is easy to verify that (18) holds.
Hence by Theorem 2.5, P(¢) is simple.

Thus we have determined all nodal simple totally antiflexible algebras of
type (n— 2, n) with n = 2> 3. The case n- 2 =3 will be solved in §IV of this
paper. In the rest of this section we will try to generalize some of the results

obtained so far.

Theorem 3.7. Let N be an associative commutative nilalgebra of type

(m, n, d, ) over a field of char. £2,3. Then there exists a, by c;
(i=1,... dl s i=1,-0, a’—l)sucbtbatb isian', < in N, and
{a,- -, a™ 1,b1,c,z._l d—l ]_1 ,dz-liisahasiso/Nwitb
a’b, =0, abb. - a, a"! bbb =B, @™ forall iy, l=1,---,d - 1.
Furtbermore, d < (1/2)d (d + 1) c; isin A forall i where A = {abi, bl.b].: Z
i=1, d, - 1}, and z/ d2 = (l/Z)a'I(d1 +1) then AN N, is a null set.

Proof. Since dim ﬁ;: 1, by Theorem 2.8 there is an a in N with ™~ 1 £ 0.
Also since N is of type (m, n, d, d) there exists a, g, < (z—l sd =1 j=1,--+,
dz-l)suchthatgl.isin Nl',cjxsmN and {a,---, a” ,g c; ,---,dl—l;
j=1,---,d, -1} is a basis of N. Then N, is spanned by a,. ~-,a'""1 and so

m—1 m—1
- i= g2 =2 ;
“Z)’i.f“ =’ 2y, @7y F
' i=3

Defmmg b =g, —-2’" 5 y a"'z we get that {a,---,a™ ], b ¢ i=1,- dl—l;j=

d - 1} isa ba51s of N with azb =0 for all 7. Since ab b is in N3, ab b =

2’"' a, .- Then 0= azbb _E'"' a . a'*! which implies that a,. =0 for i j=
PR L,7,t
Leeosd =Lit=3,...,m- 2 Hencedefmmga ;= % i moy One gets abb
al.].a lforz,;—l »d, - 1. Smcem>3 abbb_a a'"'lb_O Since
m—-l t -2 t+1
bib].bl is in N3, bibjbl p it Bl il ta. Then O—ab b b, -Em Bl L

which implies Bi L= 0 for 4,7, 1=1,. d -1; 3,- -+, m— 2. Therefore,
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.. -1 .

defining Bi,j,l = Bi,j,l,m-l’ we get bbb, = 'Bi,j.lam for i, j, [=1,---,d, - 1.
To prove the second part of this theorem we note that the number of ways of

picking two distinct elements out of d, elements is (1/2)d (d, - 1) and b%,- cey
b,%l_,, are in A. Therefore, the cardinality of A = (1/2)d1(d1 -D+ d +1=
(I/Z)Lil(d1 +1) - 1. Since N, is contained in the space spanned by Aufa?,...,
a™ 1, dim N,</2)d(d +1)~1+m=-2. ButdimN,=d,+m—-3, sod,<
(I/Z)a'l(a/1 + 1). Also, since dim N,=d,+m~3, A has dz -1 linearly inde-
pendent elements. Assume, there are only ¢ linearly independent elements in A

=y, to be these elements.

that are not in N3' t < d2 — 1. We can choose Cyoe

Since €41 is in N'z,
€41 = (aa +Zaibi>(ﬁa +ZBibi> +2,  zin Ny,
= aBa’ +Zyc +z',  z'in N,.
Therefore, Clatets Cpppr a’,...,a™" ! are linearly dependent, which is impossible.

Hence A has a’2 — 1 linearly independent elements that are not in N3 and so c;
can be chosen in A for i=1,---,d,~-1. If d, = (I/Z)dl(dl + 1) then dim N, =
dy+m-3=(1/2d (d +1) -1+ m-2= cardinality of A + m - 2. Therefore

Autia?, ..., a™ 1} is a basis of N2 and hence A hN3 is a null set.

Theorem 3.8. Let N be an associative commutative nilalgebra of type
(m, n, dl, d,, d3) over a field F of char. # 2, 3. Then there exists a, b, c, [,

(i=1,- ,dl—l;j=l,---,d2—l;k=1 <ovsdy = 1) such that b, is in N'l,

.anz,/kinN' and {a,---,a™ 1, b Z,c,/k,z._l d—-lj-l

dy-1; k=1,-. d—l} zsabaszso/Nwltba3b—0 azbb_a]a m=1
-1

abibjbk=Bi,j,k bzb,b b yl‘]'k'la for all Lok I=1,---,d, -—l

Furthermore, c, is in A = {ab]., b].bk: jok=1,..., l -1} fi is in B = {azbi,
abb bbby j, L= 1,0, dy =1} dy < (1/d)(d + 1), dy < (1/0d,(d, + 1) (d, + 2);
if d,=(1/2)d (d, +1), d, = (1/6)d (d, + 1) (d, +2) then A NN, and BNN,

are null sets respectively.

Proof. Since dim W: 1 and char F £ 2, 3, by Theorem 2.8 there is an 4 in
N with @™~ 1 £ 0. Also, since N is of type (m, n, d,, d,, d,) there exists g,
o /k (i = l,~--,a’1-l; j= l,~~-,d2—l; k= 1,-~,d3~1) such that g is in

Nl', c; in N'z, fp in N; andNisspannedby {a, -, a™" ,g,c,/k'z sty

di=1;j=1,---,d,=1; k=1,---,d, - 1}. Then N, is spanned by a*,..-,
-1 3 -1 3 i=3

a™ " and so a gi—Z’” Vi, ]a’—a 2’"4 yz 1a7 3, Defmmg b,=g;~ 2_4 Vi@

wegetthat{a,---,a 1, Z,c] /k’z-l : dl—l,]_l, ,dz—l,k_l,

»dy 1} is a basis of N with a3bi= 0for i=1,---,d ~1. Since azbib]. is
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in N, a’bb,=3""Va. . 4' Then 0=a’bb.=3">20a . 4'*! which implies
4 1] t=4 1,7,t 17 t=4 i,7,t

a; . =0for i j=1,-cv,d —1;1=3,---,m-2. Iriencédefininga].=OL”m_1
one gets azbb =a, ]a”"l for i, j=1,---,d, ~ 1. Since m> 4, azbbb

a, ]a’"'lb —O Also since abbb; is in N4, abbb —Em""l z,],l,tat' Then
_azbbb Dl 2 ”“at+1 which implies '81.], =0 for i, j,1=1,

d, - 1; t_1,~-,m—2 DefmmgB B]lmlonegetsabbb—ﬁ A
Now abbbb, =B, . a ”‘"b —Oand bbb b, =217y, Ik“a‘. So 0~

ab b b b _Et 42)/1 ik ® ! which 1mphes yi'j'k'l'l_o for i, j, k, I=1,---,
d, - 1, =4,...,m— 2. Defining Yiikd=Viiklm-1 V€ 8t bibjbkbl =
Viia@ i ko I=1,0,d 1

As in the last theorem, ¢, is in 4, d, < (l/Z)a'l(a'1 +1) and if d, =
(1/2)d (d +1) then A N N, is a null set. Since the number of ways of picking
3 dxstmct elements out of d elements is (dll (1/6)11'1(51'1 - ll(dl - 2) and df -
1 elements a b b2 b], i ]— 1, s dl - 1, are in B, cardinality of B =
( )+ d2 1= (1/6)d1(d1 + l)(a’l +2) - 1. Also since N; is contained in the

space spanned by BU {a3,---,a™ "} and dim N, = d3 +m—4,dy+m~4<

(1/6)d (d + Dd| +2) -1+ m - 3. Therefore, d; < (176)d,(d  + 1)(d, +2) and
B has c:!3 — 1 linearly independent elements. Assume there are only ¢ linearly
independent elements in B that are not in N, t< d3 — 1. Then we can choose

/1,- S /t to be these elements. Since [i41 1s NIS’

t+l (aa+2a b) <Ba + Zﬁibi) (ya +Z)’ibi) + z, z in Ny
t
=afya® +3 8/, +2',  zin N,
i=1

Therefore, a3, a%,..., a™ !, s+ +s/[,4; are linearly dependent, which is a con-
tradiction. Hence B has d3 — 1 linearly independent elements that are not in N,
If dy = (1/6)d,(d, + 1)(d, +2), then BU {a’,..., a™ !} is a basis of N, so
BN N, is a null set.

A necessary condition for nodal nearly simple algebras of type (m, n, d,, dz)

is given by the following theorem.

Theorem 3.9. Let P=F . 1@® N where N is an associative commutative nil-
algebra of type (m, n, d,, dz) over a field F of char. £ 2, 3. If P is nearly sim-
ple and m > 3 then abibj = bz.b].bk =0 for i, j, k=1,---,d ~1, where a and

bi are as in Theorem 3.7 and char F divides m.

Proof. Suppose P is nearly simple then there is an antiflexible map ¢ such
that P(¢) is simple. Since a™~! is in M, pla™" L bi) =0 (Lemma 3.2) for all
i, $a™1, a) £ 0. Considering a, a, b, b, and using Theorem 2.3 we have
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2p(abb, @)+ pla’b, b))+ pla’b, b) = 0. Since a’b, =0 = a’b., plabb., a) =
0. Thus q.'>(ab1.bj, a) = ai,jcf)(am"l, a) (Theorem 3.7) which implies a, =0 for
i, j=1,--+,d ~1. Similarly it can be shown that qS(bl.b].bI, a) = 0 and hence
bibfbl =0 forall 4,7, I=1,---,d, - 1. Also, using Theorem 2.3 we have
m@(a™~ 1L, @) =0, so char F divides m.

The following lemma follows from Theorem 2.3.

Lemma 3.3. Let ¢ be an antiflexible map on an associative commutative
algebra P over a field F of char. £ 2, 3 in which a3b =0 for some a, b in P.
Then

(40) ¢(a?b?, a®) =0, s> 0,

(41) ¢lab?, a%) =0, s > 1,

(42) ¢(a®, B) =0, s> 3,

(43) pla’b, a®) =0, s> 1,

(44) ¢lab, a®) =0, s> 2,

(45) pla’, b°) =0, r>2 and s> 1,

(46) ¢(a?b3, a®) =0, s >0,

(47) plab3, a®) =0, s> 1.

We are now ready to give a necessary condition for nearly simple nodal alge-

bras of type (m, n, d, d,, d3).

Theorem 3.10. Let P=F - 1 ® N where N is an associative commtative nil-
algebra of type (m, n, d, dz’ da) with m > 4 over a field F of char. £2,3. If
P is nearly simple then azbib]. = abib;‘bk = bib,’bkbl =0 for i, j, k, I=1,---, dl

-1 where a, bi’s are as in Theorem 3.8 and char F divides m.

Proof. Suppose P is nearly simple. Then there is an antiflexible map ¢ with
P(¢) simple. Since a™~! is in M and, for each 7, ¢p(a™" !, b)) =0 (Lemma 3.3),
éa@™=1, a) £ 0. Considering a, a, a, b, bj and using Theorem 2.3 we get
qS(aZbl.bj, a) = 0. But qb(azbibi, a) = ai’iqS(a'"'l, a), so a,;=0fori j=1,--,
d, — 1. Similarly it can be shown that abibjbk =0 and bibjbkbl =0 for i, j, &
I=1,---, d1 - 1. By Theorem 2.3, md(a™" 1, a) = 0. Therefore, char F divides m.

4. Algebras with N . N . N=0. We have determined all nodal simple anti-
flexible algebras of type (n — 2, n) with n — 2 > 3. In this section we get a few
preliminary results for algebras of class 3 and then determine all nodal simple
totally antiflexible algebras of types (3, 3 and (3, 6). These are the only types
discussed in [10].

Let N denote a commutative associative nilalgebra of class 3 over a field F
and let n ~ 1 denote the dimension of N. If v ,---, v, is a basis of M (the

annihilator of N) we write a basis for the algebra N in the form {ul, cees U,
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v uq}. Since N is of class 3, N2 C M. Therefore uu, = 21 ak Uy
where af‘j = af’i is in F.

Up to isomorphism, the algebra N is given by gr? elements akj or g sym-
metric matrices A%) = (ak ) of degree 7. We shall call the matrices A% the

structural matrices of the algebra N. Tt is known [10] that if we change the basis

of N, the new structural matrices are congruent to the one obtained previously.
Since N2 C MC N, there is a basis {ul,u

N such that {vl" Sy vl} is a basis of N? and {v

"uS'U ‘9v19w17"‘7wt}0f

l,---l, Up Wyt wtf is a
basis of M. Let V be the space spanned by {ul,- e U Uittt vl} and W be
the space spanned by {w,,---,w,}. Then N=V +W, V W=W2=0 and the
annihilator of V is V2. Hence N =V @ W where V is of class 3 and W is of
class 2. Since commutative nilalgebras N of class 2 have been determined [10],
the description of commutative nilalgebras of class 3 reduces to the case in which

M=NZ,

Lemma 4.1. Let A=V @ W be an associative commutative algebra over a
field of char. £ 2,3. If ¢, and ¢, are antiflexible maps on V and W respectively
then there exists an antiflexible map ¢ on A such that ¢(v, v') = ¢ (v, v) for
all v, v* in V and ¢pw, w') = ¢ (w, w') for all w, w' in W.

Proof. Let x, y be in A; then there exists vy, v, in V and w), w, in W

such that x = v, +w, and y=v Define ¢ on A as follows:

1 1 2 2°
Plx, y) = ¢ (), v,) + @, (w0, w,),
é, w)=p(w, v) =0 for v in V and w in W.

Then it is easy to verify that ¢ is an antiflexible map.

+ w

In a similar way we prove the following lemma. We need first to define qSlV
If A=V +W and ¢ is a map on A, define ¢lv by ¢o|v(v1 +w
¢>(v1, UZ) for v, v

vyt w)=

, in V and w,, w, in w.

Lemma 4.2. Let A =V @ W be an associative commutative algebra over a
field F. If ¢ is an antiflexible map on A such that $lv, w) =0, lv,, v2) isinV and
qS(wl, wz) isin W for v, v, v, inVand w,w, w, in W then ¢=¢>|v+¢>lw; gblv,
@ |y, are antiflexible maps on V and W respectively.

Proof. We need to show that ¢ = ¢|,, + Let x, y be in A. Then x =
\% W

in V and for some w,, w, in W. Since ¢

vi+w,, y=v,+w, forsome v, v, W,

1 2
is bilinear on A,

élx, y) = ¢y, v,) + dv,, w,) + dlw, v)) + Plw,, w,)
= ¢|V(x' )’) + ¢|W(x' y).

Now suppose M = N2. Then the matrices A1?,..., A1) are linearly inde-

1’

pendent and it follows that two commutative nilpotent algebras of class 3 over a
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field F are isomorphic if and only if corresponding spaces of bilinear forms deter-
mined by the matrices of the algebra are equivalent [10]. The proof of the follow-

ing two lemmas are also found in [10].

Lemma 4.3. If (1/2)(r + 1) = q then up to isomorphism there is exactly one
associative commutative nilalgebra N of class 3 over a field F such that the
dim N over F is q +r and M = N2,

Lemma 4.4. If M= N? then q < (1/2)r(r + 1).

Lemma 4.5. Let P=F-1®N where N is an associative commutative nilalge-
bra of type (3, n) over a splitting field F of char. # 2,3 with M= N2, If CPPERE

v, us7c,u is abasis of N such that v v, is a basis of M and, for each

.
i, ui2 = Z].ﬁai vy then P is nearly simple.
Proof. Define ¢ on the basis of P as follows:
0 if i £7,
¢, Ui) =8, =~ qS(ui, v,) where 5, = o ]
1 if i=j.

&(x, y) = 0 for any other pair of basis elements x and y.

Extend ¢ bilinearly to all of P x P. Then it is routine to verify that ¢ is an
antiflexible map and P(¢) is simple.

Now we consider algebras of type (3, 5). Note that if P is a nodal simple
totally antiflexible algebra of type (3, 5) then it is either of type (3, S, 3) or of
type (3, 5, 2, 2). By Theorem 2.10, there is no nodal simple totally antiflexible
algebra of type (3, 5, 3) over a field of char. # 2, 3.

Theorem 4.1. Let P=F - 1 ® N be an associative commutative nearly nodal
algebra of type (3,5, 2, 2) over a field F of char. £2,3. Then P is nearly
simple if and only if

(48) N is spanned by {a, a®, b, c} with b in N'l, c in N; and c is either
ab or b?,

(49) if c = ab, then b2 = ya® + 8ab with 4y + 82 =0, and if c = b? then ab
= aa’® + Bb2 with 4aB = 1.

Proof. Suppose P is nearly simple. Then there is a ¢ with P(¢) simple.
By Corollary 3.2, N is spanned by a, a?, b, ¢ with b in N'l, c in NZ' and c¢ is
either ab or b2. Note that M is spanned by a?, ab, b2. So Hla?, b) £ O;éq‘)(bz, a)
and, by Lemma 3.3, ¢(ab, a) = (- 1/2)p(a?, b) £ 0, Plab, b) = (- 1/2)p(b2, a) £ 0.
If ¢ =ab then since b? is in N, b2 = yaz + 0ab, for some y,d in F. There-
fore, ¢(b2, a) = 8¢(ab, a) or equivalently ~ 2¢(ab, b) = (- 1/2)6¢(a?, b). Now

0 = 4(b2, b) = dygp(a?, b) + 46¢(ab, b) = (4y + 5))pla?, b).
Since ¢(a?, b) £ 0, we have 4y + 82 = 0.
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On the other hand if ¢ = b? then ab = aa? + ,Bbz; a, 8 are in F. So
@lab, a) = B(b?, a) or equivalently (- 1/2)p(a?, b) = — 2Bp(ab, b). Thus
#lab, b) = apla?, b) = 4a8¢(ab, b) which implies that 4a8 = 1.

Conversely, suppose P satisfies (48) and (49). If ¢ = ab, define ¢ on the

basis of P as follows:
Bla’, b) =4 = - $(b, a%),  Plab, a) = - 2 = - ¢la, ab),
$(ab, b) = &= - plb, ab), (b2 a)=-25=- Pla, b?),
é(x, y) = 0 for any other pair of basis elements x and y.

Extend ¢ bilinearly to P x P. Then it is easy to verify that ¢ is antiflex-
ible and P(¢) is simple.

If ¢ = b2, we define ¢ on the basis of P as follows:
dla?, b) = 2= Pb, a?), plab, @) =~ 1=~ Pla, ab),
#(ab, b) = 2a= - $(b, ab), $(b%, a) = - bda = - $la, b?),
¢(x, y) =0 otherwise.
Extend ¢ bilinearly to all of P x P. Then ¢ is antiflexible and P(¢) is

simple.

Theorem 4.2. Let P=F . 1@® N be an associative, commutative, nearly
nodal, nearly simple algebra of type (3, 5, 2, 2) over a field F of char. £2,3. If
¢ is an antiflexible map on P, then P($) is simple if and only if H($p)C F - 1
and (,'b(aZ, b) £ 0.

Proof. By Theorem 4.1, N is spanned by @, a2, b, ¢ where c is either ab
or b2. Also, if c = ab then b2 = ya2 + 0ab with 4y + 52 =0, and if c = b? then
ab = aa’ + Bb? with 4a8 = 1.

Now assume P(¢) is simple. Then since @? and b2 are each in M we have
#(a?, b) # 0 and (b2, a) £ 0. By Lemma 3.2, ¢lab, a) £ 0 £ ¢lab, b). Let x, y

be in P; then ¢(x, y)=a,  + a a+ a2a2

0 ) + a3b +a,c. Since ¢ is an antiflexible

map, we have 0= ¢(d(x, y), a?) = a3¢(b, a?). Thus a, =0. Also, 0 = ¢(p(x, y), b?)
= a,¢(a, b?) which implies a = 0. Therefore, ¢p(x, y) = a  + Y where Y =
cv.zaz2 +a,c isin M and, for any z in P, 0=¢(d(x, ), 2) = ¢(Y, z). Hence
Y =0 and so ¢(x, y) = a is in F - 1.

Conversely, suppose H(¢)C F - 1 and ¢(a?, b) =49 #£0. Note that M is
spanned by a?, c. If ¢ = ab then since ¢ is antiflexible, ¢(ab, a) = - 27,
(b2, a) = — 267 and ¢(ab, b) = 87. Let x be a nonzero element of M; then x =
pa’ +vab. If v£0, then ¢(x, a) £ 0, and if v = O then ¢(x, b) # 0. Hence (17)
is satisfied. Similarly if ¢ = b2, it can be shown that for each nonzero x in M
there is a y in N with ¢(x, y) £ 0. Hence in either case, by Theorem2.5, P(¢)

is simple.
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In the rest of this section we will restrict ourselves to the nodal algebras of
type (3, 6) over the field of complex numbers. The proof of the following theorem
is found in [10].

Theorem 4.3. The set of all associative-commutative nilalgebras of type (3, 6)
over the field of complex numbers contains only 13 algebras that are distinct up
to isomorphism:

u? and u4?), ug =

- 2 2
P, = [ul, Uy, Us, U, u2] (algebra spanned by Uy, Uy, Uy, U] 5

ui +u§, Uy = 0 for j, k=1, 2, 3;
_ 2 021 2 _ 5,2 2 _ RN )
P, = [ul, Uy Uy, u%, u3], u; _221432 ul, wuy ; 0 /(2)7 i kg, k=1,2,3;
P3 = [ul' Uy, Us, u%, u2u3], u% = u% +uyuy, uy = ulz— 1u22u3, wuy =uuy = 0;
P,= [ul‘ Uy, Uy, U, u2u3], uy =uj + (i- 1)u2u3, uy =uj - (i + 1)u2u3, ugu,
=u,u, =0;
173 ’
_ 2 2_.2_ 2 - _ 0.
P5 = [ul, Uy, Uy, u%, uluz], u% = u21 =y, Uty == iU, u12u3 = 0;
P6 = [ul’ 112, us. Uy u%u3],2u2 =2u1, 12¢2u32= zu1u3. ulu2 = u3 =0;
P7=[u1, Uy, Uy Uy, uI], uh=uy=uy=uj, uu, =0 for itk k=1,2,
3, 4;
_ 2 27.
Py = [ul, Uy UL U U, uz]’
P9= [a, 22, v vy US]’ v; in M, U= vy = 0 for j, k=1,2,3;
~ 5 . v ) _ L _0-
Plo = [u], Uy U3, v%, vZ], zzli zszm Mé uf = ul,uivk_O for j, k=1, 2, uu, = 0;
P, =[u1, Uy Uy, U, vl, uy =y =uy, wuy =uv = O for j#k;j k=1,2, 3;
vin M;
P, = [ul' u,, uf, ug, vl, v in M, U, =uv=u,v= 0;
_ 2 2_ 25 _ _
P13 = [ul, Uy, Up, U U, vl, uy = uj 21ulu2, u v =uv = 0.

Using this we have the following result.

Theorem 4.4. Let P=C . 1 ® N where N is an associative, commutative,
nilalgebra of type (3, 6) over the field of complex numbers C. Then P is nearly
simple if and only if N = P

Proof. Suppose P is nearly simple, then there is an antiflexible map ¢ with
P(¢) simple.

If N= Pl = [ul, Uy Us, ui, ui], ug = u% + ug, Ughy = UylUy = Ul = 0, then
¢(ulu2, ul) = ¢(ulu3, ul) = 0. So by Lemma 3.2, qS(u%, uz) =¢(u§, u3) = 0. Hence
¢(u§, z)=0 forall z in P. This is impossible as ui is a nonzero element of M and so
N#£ P,. The same reasoning also proves that N cannot be any one of P, P3 and P,.

So assume that N=P_= [ul, Uyy Us, ui, uluz], ui = ug = ug, Uy, = iugu,,

143 = 0. Then (,i)(uf, u2) = qS(ug, uz) =0 and qS(ui, ua) = ¢(u§, u3) = 0. Conse-
quently, ¢(u§, z) = 0 for all z in P. Since ui is in M, uf = 0. This is impos-
sible, so N #£ PS'

Now suppose N = P7 = [ul. Uy, u

u

2 2_,2_ .2 _ 2 =
3 Uy ul], Uy =uy=uy =y, u].uk 0 for
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j#k;j, k=1,2,3,4. Then P is of type (3, 6, 4). But by Theorem 2.10 there
is no nearly simple algebra of type (3, 6, 4). Thus N # P,

It N=Pg=lu vy ui, uju,, u ], then since ui, u2 are in M, qS(uf, u2) £0
and qb(u , U );éO Also by Lemma32 ¢>(u . u )+2¢(u uy u;) =0 and
qS(u2, ul) + 2¢.(u1u2, u,) = 0. Therefore, gb(ul ;o u)#0 ;é ¢>(u1u2, u,). We will
first show that H(¢)C C - 1. Let x, y be in P, then

- 2 2
dlx, y) = ag+ o u + Q,u, + Quul+ U+ ogur,

a; in C for i=0,1,2,3,4,5. Since ¢ is an antiflexible map, 0 = ¢p(¢(x, y), 42)
= a1¢>(ul, u2) which implies a, = 0. Also, 0= o(o(x, y), uz) = aqu(uz, uz)
implies that a, = 0. Therefore #(x, y) = a; + Y where Y = a uf +auu, +
asug is in M. Now forany z in P, 0= q_’>(¢;(x, ¥), z) = (Y, z) so Y = 0. Hence
H(¢)C C - 1. Suppose ¢>(u1u2, ul) =a#0 and qS(uluz, uz) =B # 0. Then by
Lemma 3.2, qS(uf, u2) =~ 2a and d)(ug, ul) =~2B. Let x = 2Bulu2 + aug +
Bz/auf. Then x is a nonzero element of M and ¢(x, ul) = ¢lx, u2) = 0. Hence
for all z in P, ¢(x, z)=0 and so x = 0. This is a contradiction and so N # PB‘

Let N = P9 = [u, 42, vy Uy 113], v; in M, uv, = v, = 0 for j, k=1, 2, 3.
Since #? is in N,s é(u?, v].) =0 for j=1, 2, 3. Hence »? = 0 which is impos-
sible. Thus N # P9.

Next suppose N = P, = [ul, u., ui, v v ], v, in M, u% = ug, uju, =0=
g for j, k=1,2. Then ¢(u1, u ) = qS(ul, v ) =0 for j=1, 2. Consequently,
0 which is a contradiction.

2 el 2_ 2 _ 2 -
3 UY vl, v is in M, uy = uy=uy, wuy =
uv=0 for j£k; j, k=1, 2,3. By Theorem 2.1 it follows that ¢>(u%. ul) =
t;b(u%, v,.) =0 for j=1, 2, 3. Since ui is in M, uf = 0. This is impossible, so
N 74 Pll

fN=P = [ul, u,, ui, ug, v], v is in M, u,
qS(u%, u].) =- 2¢>(u1u]., ul) =0, q')(uf, v) = - 2¢(u1v, ul) =0 for j=1, 2. There-
fore u% = 0, a contradiction.

: _ _ 2 H 2 _ .2 ;

Finally, suppose N = F’13 = [ul, Upy U, U Uy, v], v in M, uy = uj - Zzuluz,
uy = 0 for j=1,2. Then H(@)C C - 1. For, if x, y are in P, then ¢(x, y) =
a + QU+ Qou, + asui +Quu,+ A, o inC, j=0,1,2,3,4,5. Since
P(¢>) is simple, ¢>(u1, uz) #£0, ¢(u1u2, ul) ;4 0% <;b(ulu2, uz), and either ¢(v, ul)
#0 or qb(v, uz) #0. Now 0= ¢>(¢>(x, ¥), uf) = a2¢(u2, u%) which implies a, = 0.
Similarly, 0= ¢(p(x, y), uu )= I<;zS(u s u u2) implies @, = 0. Thus we have
olx, y) = a,+ Y where Y- a3u:; +auu, +agv is in M. Forany z in P, 0=
oo (x, y), z) =@(Y, z) so Y = 0. Hence ¢(x, y) isin C . 1. Let ¢u Uy #y) =
a#0, ¢, u)) =B, $(v, u,) =y. Then ¢>(u€, u,)) = - 2a, ¢>(u§, u,)) = - 2ia and

¢(”1u2' ”2) =-ia. If B=0, define x = yuf +2av, x#£0, x is in M. Then

Now assume N = P11 = [ul, Uy, u

Uy=uy= 0 for j=1, 2, then
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¢(x, u)) = 0=¢(x, u,). Consequently, ¢(x, z) = 0 forall z in P and so x = 0,
which is impossible. On the other hand, if B # 0, define x = 2Bu,u, ~ 2av +
(iB - y)ui. Then x is a nonzero element in M and ¢(x, ul) = ¢lx, uz) = 0. Hence
¢(x, z) = 0 for all z in P and so x = 0. This is a contradiction.

Thus the only possibility left up to isomorphismis N =P = [ul, Uy, Uy, ui,
% = ug, uyuy = iuu,, ug 14, = 0. In this case qS(ui, u,) = qﬁ(ug, uz) =
0, qb(ug, u,) = 0. Since P(g) is simple, (;S(ui, u3) = qS(ug, us) =~ 2¢(u1u3, u)) #
0. By Lemma 3.2, 0= ¢>(u§, u3) + 2¢(u2u3, uz) = ¢(u§, u3) + 2i¢(ulu3, uz) and,
by Theorem 2.3, 0= ¢>(u1u2, u3) + ¢(u1u3, u2) + ¢>(u2u3, ul) = ¢>(ulu3, uz) +
i¢(ulu3, ul) = ¢n(ulu3, u, + iul).

Conversely, suppose P = C -1+ P . Define ¢ on the basis of P as follows:

u1u3]7 u =UuU

Sujug, u)) =1=-Plu, uuy),
¢(uf, uy)=-2=- Bluy, ui),
¢(ulu3, uy) =—i=-lu,, ujuy),
¢(x, y) =0 for any other pair of basis elements x and y.

Extend ¢ belinearly to all of P x P. Then it is a routine to verify that ¢ is
an antiflexible map and P(¢) satisfies (17). Hence, by Theorem 2.5, P(¢) is
simple and the proof is complete.

Having characterized all nearly simple nodal algebras of type (3, 6) over the

field of complex numbers we are now interested in finding all possible candidates

for ¢.

Theorem 4.5. Let P=C - 1 @ P, where C is the basefield of complex num-
bers and P6 = [ul, Uy, us, u:i, ulua], u% = ug, Uju, = iulu3, ug =uu, = 0 and
let ¢ be an antiflexible map. Then P(p) is simple if and only if

(50) for each x, y in P there exists a;, j=0,1, 2, 4,5, such that a, =
ia, and dlx, y) = Qo+ Qyuy + Qou, + a4u§ + azsulus, .

(51) d)(ulu}’ ul) =By + By, + ,32142 + B4u1 + BsuluS for some BJ. in C, j=
0,1,2, 4,5, with B,=if, and B #0.

Proof. Assume P(¢) is simple. Then qﬁ(uf, u3) =~ 2¢(ulu3, ul) £ 0. Let
x, y be in P, then ¢(x, y) = Qo+ Qg+ Qouy + Quuy + Qui + aguu,, A in C
for j=0,1,2,3,4,5. Since ¢ is an antiflexible map, 0 = ¢(p(x, y), ui) =
a3¢(u3. u%). Therefore, a, = 0. Also, 0= o (H(x, y), ulu3)= a, ¢lu,, u1u3) +
a2¢~(u2, ulus) and 0= ng(uluz, u3) + ¢»(ulu3, uz) + ¢(u2u3, ul) = ¢(ulu3, u,) +

i(;b'ﬂulus, ul). Consequently, (a, - ia.,)p(u u =ia,.

3 1 2

: 2
If x=uu; and y = u; we get q5(u1u3, u)=B,+ iByuy + Byu, + But + Bguguy
for some B]., 7=0,2,4,5in C. If B,=0 then ¢>(ulu3, ul) generates a proper ideal
of P(¢) so B, # 0. We observe here that for each x, y in P there isan a in C

, ul) = 0 which implies a
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such that ¢(x, y) = a¢(ulu3, u))s soif ¢lx, y) £ 0 then oy # 0.

Conversely suppose ¢ satisfies (50) and (51). Let | be an ideal of P(¢p)
with x in J, x #0. Then x =y +y u, +y,u, + Y3k + y4uf +YsUyUssy; in C
If y, # 0 then (l/yo)x =1-z isin | for some z with z3 = 0, and if Yo=0,
Y, £ 0 then (- 1/2y360)¢(x, u%) =1~z isin J. Now suppose y, =y, =0 and
¥, #0. Then (- 1/2y,B)d(x x u,, u,) = (- 1/2B)p(u3, u,)=1-z isin J. Let
y;=0for j=0,2,3 and y, # 0. Then (- 1/By Jp(x, uyu,) = 1/B)pluy, u,u,)
=1-2z If y; = 0 for j=0,1,23,y, # 0, then since ¢>(u1u3, u3) =
- 1/2¢3, u) = 0, (- 1/2y B )Mp(x, u)=1-z isin J. Finally, if y, =0 for
i=0,1,2,3,4 and y, # 0, then (1/y530)¢(x, u)=1-zisin J.

Hence in all cases 1 =(1 - 2)(1+ 2+ 22) isin | and so | = P(¢). There-

fore, P(¢) is simple and we are done.
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