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ABSTRACT.   In this paper, we begin a classification of simple totally anti-

flexible algebras (finite dimensional) over splitting fields of characteristic 42, 3.

For such an algebra  A   let  P   be the largest associative ideal in A      and let  N

be the radical of P.   We say that  A   is of type  (m, n)   if N   is nilpotent of class

m  with dim A =72.   Define  N¿ = zV¿_ j ■ N,  N j = N,   then A   is said to be of type

(m, n, d j, d2, ■ ■ ■ , d„) if A   is of type  (m, n), dim(A'¿ — zV,-_ j) - d{  for  1 < i; < q

and  dim(/V¿ — 7V¿ + j) = 1   for   q < i < m.    We then determine all nodal simple totally

antiflexible algebras of types  (zz, n), (n — k, n, k + 1), (n — 2, n) (over fields of

characteristic 4 2, 3) and of type (3, 6) (over the field of complex numbers).   We

also give preliminary results for nodal simple totally antiflexible algebras of type

(zz — k, n, k, 2) and of type  (m, n, <7i,- • • , d„)  in general with m > 2  (the case

m = 2   has been classified by D. J. Rodabaugh).

1.   Introduction.   A totally antiflexible algebra is a nonassociative algebra

(finite dimensional) satisfying

A) (x, y, z) = (z, y, x)

and

t \        r,(2) U,   *>   x)  =   0

where (x, y, z) = (xy)z - x(yz).   Totally antiflexible algebras have been studied

by C. Anderson and D. Outcalt [l], F. Rosier [3] and D. Rodabaugh [4], [5], [6],

[7], [8].   These are known to be related to the algebras of commutative nilpotent

matrices [8].   There is not much known about the algebras of commutative nilootent

matrices.   In this paper we complete the classification of simple nodal totally anti-

flexible algebras that are related to the algebras of commutative nilpotent matrices

discussed by D. A. Suprunenko and R. I. Tyskevic [10] and certain other types.

Define x   = x,   x        = x x  and x '     = x,   x'        = x'     ■ x.    It is known [6] that

a totally antiflexible algebra need not be power-associative when  char. 4 0-   How-

ever, A     is power-associative so x' m ■ x' " = x' m  "  for all positive integers   ztz

and ?2.    We will call y  nilpotent or nil if y'" = 0 for some  72.    If x  in A   implies
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x = a ■ l + z  fot a  in the base field and z  nil,  we say that A    is nearly nodal.

A nearly nodal algebra is nodal if the set of nil elements do not form a subalgebra.

2.   Preliminaries.  We will state some known results on the structure of sim-

ple totally antiflexible algebras.   We also need (see [l], [7])

Definition 2.1.  A field K is said to be a splitting field for an algebra A   if

every primitive idempotent of A„  is absolutely primitive and if every element in

ÍA A)   Ae)  fot e  primitive can be written as  ke + y with  k  in  K and y  nil or

y = 0.

Definition 2.2.   Let A   be an algebra over a field  F  of char. /= 2, 3.   The

mapping cf>: A x A   —, B  for B C A   will be called an antiflexible map provided

B C jx: xy = yx  for all y  in A}  and

(3) c¡>  is bilinear over  F,

(A) <p(x, y) + <piy, x) = 0,

(5) 0(x2, x) = 0,

(6) c5(x, y) = 0  if y  is in  B,

(7) </>((*, y), z) = 0.

For  a, ß   in F  and antiflexible maps   cß   , </>     define  aci    +ßcj>-   by

0jcpx + ßcf>2ix, y) = a ■ <f>xix, y) + ßcf>2ix, y).

It is clear that  a.0    + ßcf>     is an antiflexible map.

Delinition  2.3.  Let A   be an algebra over a field of  char. / 2, 3  and cf>  be

an antiflexible map.   Define A(c5)  as the algebra formed from A   with multiplica-

tion replaced by

x * y = xy + </>(x, y).

Tt is known [4] that A   is totally antiflexible if and only if A(c6)   is totally anti-

flexible.   Furthermore, if xji  is an antiflexible map on A(cS),  then AicpAixfj) =

Aicf> +xfj).

We now summarize certain results in [l], [4]  by the following theorem.

Theorem 2.1.  7/ A   is a simple not associative totally antijlexible algebra,

over a splitting field F  of char. / 2, 3  then A     is associative, A has an identity

element and A =■ A , + ■ ■ • + A     where  A . = A , ,(e .)  for  e .  primitive.    Further-
1 zz z 1 1     z    ' z   r

more,  </>(x, y) = (l/2)(x, y)  is an antiflexible map and A = A  (c/>).

We will then be interested in those algebras from which simple algebras can

be constructed.   We say that a totally antiflexible algebra A   is nearly simple if

there is an antiflexible map </>  such that A(</>)  is simple.

Theorem 2.2 [81- Let A be a totally antiflexible algebra over a field of

char. j¿ 2, 3 and assume A is associative. Then A is nearly simple if and

only if A     is nearly simple.
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As a result of Theorems 2.1 and 2.2, to find all simple algebras, we need

only consider the nearly simple associative and commutative algebras.   These are

known to contain an identity element.   For, if A   is a nearly simple associative

commutative algebra then there is an antiflexible map cp  with A(cp)  simple.   So

by Theorem 1.1,  A(cf>)  contains an identity element.   Therefore  A   contains an

identity element.   Hence, throughout this paper unless specified we will assume

that A   is a totally antiflexible algebra with identity element over a splitting field

K  of char. 4 2, 3  and that A     is associative.   Consequently,  A = A .+•■•+ A

with A . = A , Ae.) fot e .  primitive and  A A . = 0  if  i 4 /•    For, since A     is asso-2 11     2 i   r i    j '

ciative, A   Ae) + A     (e) = 0 for any idempotent  e  (see also [5], [7]).    In addition,

since  K  is   a splitting field, each element  in A .  has the form  ae . + z  fot  a  in  K

and z  nil.   Thus A   has a basis consisting of primitive idempotents and nil ele-

ments.   We define the following sets:

(8) N = {x: x  in A   and x  is nill,

(9) N. = N:      • N with N%=N,

(10) TV . = N . - N + .   (quotient or difference algebra),

(ll)(V. = ix:xisin/V.  but not in  N ., , !,
2 l 7 + 1

(12) AI. = {x: x ■ N Ç M._   } with A1Q = 0.

Al    (= Ai)  is called the annihilator of N.

For each x  in A     define  T  :  y —»y • x  and note that, since there is an

identity element   1   in A   and A     is associative,  x —» T     is an isomorphism of

A     onto {T  \.   Thus, if dim/l = ?z,   we can think of either A   or one of its subalge-

bras as an algebra of commutative  n x n  matrices.

For some  m, N    =0 with  N      , 4 0 and so zV, D N „ 3 • • • D N    = 0 = AL C
777 772-1 1—2— — 772 0   —

M, C • • • C M CM    = N  and N . C M       .  for all  i.   We say that A   (or  iV)  is of1— —772—1—772 2—772—2 > x

type  (ttz, tz)  if A     (or  N  )  is isomorphic to an algebra of commutative  n x n

matrices for ?z = dimA with  N    = 0 4 N       , •   The algebra A   (or N)  is said to be
772 772— 1 °

of class  ttz.   An algebra A   (or N,  the radical of A   )  is of type (m, n, d  , ■ ■ • , d )

if A   (or N)  is of type  (ttz, 72),  dim TV. = d.  fot   I < i< q   and  dim/V. = 1   for q <

i< m - 1.   Note that if N. = N...   then  N . = N .  fot all  j > i.   Hence either  N . = 0
— _ l ; + l l_; '  — _        z

or dim/V. > 1.   It is known [8] that if  dimN. = 1   for some   i then  dim/V.., = 1   for
l   — l 2+«

k = 0, • • • , m - z' — 1.   Hence we can assume that d. > 1   for  1 < 1< q.

By Theorems   2.1 and 2.2  the problem of classifying all simple totally anti-

flexible algebras is reduced to finding

(i) a characterization of all nearly simple associative commutative algebras,

(ii) all possible antiflexible maps ctj that give rise to simple antiflexible algebras.

The following two theorems summarize results from [8].

Theorem 2.3.  Let  P  be an associative, commutative algebra over a field of

char. 4 2, 3 and let cf>  be a bilinear map from  P x P —► B C P such that cf>(P, B) - 0.
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Then çS   is an antiflexible map if and only if, for every n; y .,-•-, y   ,

zz

(13) IL^i/A-- yi) = 0-

If x  is in M . ,  y  in N .,  z  in  N .+  ,  j > i > 1,  and r/>  an antiflexible map,

then x ■ y = 0 and </>(x, z) = 0 [8].   Now we state necessary and sufficient condi-

tions for a totally antiflexible algebra to be simple.

Theorem' 2.4.  Let A   be a totally antiflexible algebra over a splitting field of

char. ¡¿2,3 with A     associative.   Then A   is simple if and only if

(14) for every nonzero x   in M     there is a  y  in N with ix, y) / 0,

(15) no element of \eix, y)\ generates a proper ideal where  e   is a primitive

idempotent,

(16) for each primitive idempotent e  in A, je(x, y)|  is not nil.

The proof of the following theorem is similar to that of Theorem 2.4.

Theorem  2.5.    Let   A   be a  totally antiflexible  nodal algebra,   over a

field of char. /= 2, 3 with A     associative.    Then A   is simple if and only if

(17) for every nonzero x   in M     there is a y  in N with ix, y) / 0,

(18) for each x  in M     and y  in A/.,    (x, y) does not generate a proper ideal

of A.

Proof.   If A   is simple, then the conclusion follows from Theorem 2.4.

Conversely, suppose A   satisfies (17) and (18)  and  /   is a proper ideal of A.

Let x  be in /, x /- 0;  then x = a •  I + z  for some   a in  F  and z  nil.   If  a 7= 0,

write  u = (- l/a).   Then for some  m,   u m = 0 / u  ^m~      and so  1 = (l - u)

■ (1 + u +■ ■ •+ u  (m~   ')  is in  /.   Hence  J = A   which is impossible.   Therefore

suppose  a = 0.   If z  is in  M,   let  u = z and if z   is not in M   ,  then there is a  y

in N  with  u = z ■ y  in M    O /.    Hence by (17) there is a  v  in N  such that iu, v)

/= 0 and  iu, v)  is in /.    Therefore by (18) it follows that J = A,  which is a con-

tradiction.   Consequently A   is simple.

In a similar way we can prove the following.

Lemma  2.1.   If  A    is a nodal totally antiflexible algebra  over a field of

char.   /  2,   3  and  if for  çS(x, y) = (l/2)(x, y), N n jr/)(x, y)S = 0,   then  A   is simple

if and only if for every nonzero x  in M     there exists a y in N such that cpAx, y) / 0.

Prool.  We only need to prove that the condition is sufficient.   Hence suppose

that for every nonzero x  in A   there is a y  in N  such that 0(x, y) /= 0 and J   is a

proper ideal of A.    Let x be in A,  x /= 0.   Then  x = a ■ 1 + z  with  a in  F  and

z  nil.   If  a/0,  define  u = Í- l/a)z, then for some m, (l/a)x • (l + u+ ■ ■ ■+ u m) = 1
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is in /  which is impossible.   Therefore, suppose that  a = 0,  for every x  in J

and ] Ç N.   Let x  be in  /,   x 4 0.   If x  is not in  Al,  then for some x,  x ■ z   is in

Al,  and so there is a y  with cp(x ■ z, y) 4 0.   But then cp(x ■ z, y)  is not nil with

cf>(x ■ z, y)  in /,  which contradicts the fact that J Ç N.   Hence  A   is simple.

For an antiflexible map cf> on an algebra A we define

H(tp) = {cp(x, y): x, y ate in  A \    and     (x<7jy) = x *y — y *x

where x * y = xy + cf>(x, y).   Thus  (xcßy) = (x, y) + 2cf>(x, y).

If H(ep) = Z(A) (the center of A)  and if Z(A) 4 {0\  then Z(A)  is a field  [9].

Hence  H(cf>) CI N = Z(A) Cl N = J0|  and we have proved the following lemma.

Lemma 2.2.  Let A   be a nodal totally antiflexible algebra over a splitting

field F  of char. 4 2, 3.   If H(cf>) = Z(A)  then H(ep) O N = {0\.

The following two theorems summarize the results on algebras of class 2 [8].

Theorem 2.6.   Let  P be a nearly nodal associative commutative algebra over a

field of char. 4 2,3 with N ■ N = 0.   Let  {x ■!"_.   be a basis for N.    If cf>   is an

antiflexible map them  P(cp)  is simple if and only if there is a nonsingular matrix

X = (x . .) with cb(x ., x .) = x . ..i.j r    i     i i.j

Theorem 2.7.   Let  P  be an associative commutative algebra over a splitting

field F with  N • N = 0.   Then  P  is nearly simple if and only if

(19) there is an identity element in  P,

(20) for every primitive idempotent e,   dimPM(e) > 3,

(21) either  1   is not primitive or dim P  is odd.

Next, three theorems summarize results on algebras of types  (zz, 72)  and

(n - k, n, k + I)  from [8].

Theorem 2.8.  Let  N  be an associative commutative nilalgebra of dimension

72-1   over a field F'.    // N  is of class  m and if chat F = 0  or chat F > m or

char F >n — m + 2  or dim/V, = 1  with  chat F > k  then there is an x  in N with

x7"-1 4 0.

Theorem 2.9-  Let  P = F ■ 1  © N where  N  is an associative commutative

nilalgebra of type  (n, n)  over a field F  of char. 4 2, 3.   Then  P   is nearly simple

if and only if char F divides n.

Theorem 2.10.  Let  P = F ■ 1 © N where N  is an associative commutative

nilalgebra of type (n — k, n, k + l) with n - k > 2   over a field F  of char. 4 2, 3-

The algebra  P  is nearly simple if and only if the following holds:

(22) N  is spanned by a , ■ ■ ■ , a"~        , b   , ■ ■ ■ , b,  where ab . = b b . = 0;   1,

7=1, 2,-.., k,
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(23) either n - k- char F  with  k even or n — k = m chat F for  m > 1.

3.   Nodal algebras of type  (ra, n), in - k, n, k + l) and  (n - 2, ra).    We now

focus attention on nodal algebras.   If A   is such an algebra then dimA = 1 + dim/V.

Since all simple antiflexible algebras of class 2 have been determined [8], in

classifying simple antiflexible algebras of type  im, ra),  we can assume  m> 2.

The following theorem gives an answer to the second question for algebras of

type  (ra, ra).   Notationally we use  a     tot  1.

Theorem 3-1.  Let  P=F-1©/V¿ea nearly simple, associative, commuta-

tive, nearly nodal algebra of type  in, ra)  over a field of F  of char. /= 2, 3.   '/ ci>

is an antiflexible map on  P and if a  is chosen in N so that an~    /= 0,  then  PicpA

is simple if and only if

(24) Hieß)  is a subset of the algebra generated by  1  and a   ,    and n = mp,

(25) ¡pia"'1, a) = lmAQl ß .paip, ß.p  in F with ßQ ¿ 0.

Proof.   By Theorems 2.8 and 2.9 (see also Theorem 5.3 of [8])  there is an

element a  in  P  such that  P   is generated by   1   and a  and  n = mp  for some posi-

tive integer  m.   Also using Theorem 2.3 we have cpia', a1) = jcßia'  '     ,   a) =

- icßia' !~ , a). Hence, cf>ial, a1) = 0  if either  p\i ip divides   i)  or p\j or

p\ii + j)  or  i + j > ra.

Now suppose  P(c/>)  is simple.   Then cf>ia"~   , a) /= 0. Let x, y  be in  P.    Then

ZZ-1

t/>(x, y) =  2_. a a',       a . in  F,   i = 0, • • •, n — 1.

z = 0

Since </>   is an antiflexible map on  P,   we have  0 = cßicßix, y), an~ ) = a cpXa, an"  ).

But cj>ian~   , a) /= 0,   so  a    = 0.   Suppose   a   = 0 for all  i < k with pVi and  pYk.

Then

0 = cpicjiix, y), an~k) = akcß(ak, an~k) = - ka^ia"-1, a),

which implies that  a,  = 0.   Hence by mathematical induction,  a. = 0  for all  i

with  p\i   and so </>(x, y) = S™^1 aipa'P-   This proves (24).

Ifx-z?"-1   and y - a,   we get cpia"" l, a) = ££" lß. aip, ß.    in F.   \ißQ

= 0,  then a  generates a proper ideal of P(ç6).   Hence ß    /= 0 and so (25) is satis-

fied.

Conversely, suppose 0 satisfies (24) and (25) and / is an ideal of P(r/>).

Let x be in /, x /= 0, then x = £""/. a.a1, a. in F, i~ 1, ■ • ■ , ra — 1. Let /'

be the least integer such that  a. / 0.   Tf p\j then

cj>ix*a, a"-'-A = cpixa, a""'"1) - - (/ + l)ay / ^ ß ipa'P\

Therefore  (- 1/(7+ l)a .ßAcßixa, an~'~1)= 1 - z  is in  /,   z   is nil.
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On the other hand,   if p\j then

(- l/jaßQ)cp(x, a"-i) = (- l/jß  )cp(a>, a"~') = 1 - z

is in /  for some z; z   is nil.   Hence in either case for some positive integer r,

(l - z)(l + z +■ ■ ■  + zr) = 1   is in  /.    Therafore  / = P(cf>) and so  P(cf>)  is simple.

In a similar way we prove the following theorem.

Theorem 3-2.  Let  P = F • 1 ©/V  be a nearly simple, associative commutative

nearly nodal algebra of type  (n - k, n, k + l),  n - k > 2,  over a field F  of charac-

teristic p 4 2, 3.   Let cp  be an antiflexible map and let a, b.,-■•, b,   be as in

Theorem 2.10.   T/?e?2  P(cf>)  is simple if and only if

(26) H(cp)  is contained in the algebra generated by   1  and ap,  n - k = mp,

(27) 4>(a"~k-\ a)=  ^m~X a.alp,   ah   in  F,   i = 0, ■ • ■ , m - 1,  with  an 4 0."^i-O ip ip ' 0

(28) d>(b ., b.) = x. ., i, j = 1   • • ■ , /,   where   X = (x .  .)   is the matrix of Theorem
l       J z.7 2,7 '

2.6,   /= k if k  is even and I = k - 1   if k is odd.    Furthermore, if k  is odd and

<p(b,,b ) = 0 for all j,   then for any  a,  ß   m  F,  cp(aa"-k-1 + ßb,, a) 4 0.
7 k

Proof.   As in the last theorem we note that tf>(al, a1) = 0  if either p|z   or  p\j

or p\(i + j)  or  i + j > 72.    Also, since  ab. = 0,  using Theorem 2.3 it follows that

cp(as, bT) = 0  if either s > 1   or  r > 1,   i' = 1, • ■ • , k.   Now suppose   P(cf>)   is simple.

Then cp(a"-k-\ a) 4 0.   Let x, y  be in  P.    Then

n-k-l k

cp(x, y) =     £     Yf* + XI 8ibt;        yC 8)  are in  F'
z=0 7=1

Since q>(cf>(x, y), a"~        )  is an antiflexible map, we have  0 = cß(cp(x, y), a"~   ~   )

= y.(p(a. a"~k~l) which implies that y    = 0.   Suppose that y. = 0 for all  i < /

with pjfi,   pAfl and  n - k- l> 1.   Then

0 = cp(cp(x, y), a"-k~l) = - lylcL(an-k-1, a).

Therefore, y, = 0.   Thus by mathematical induction y. = 0 for  1 < i < 72 - k - 2

with pjfi  and we have cp(x, y) = 2^'=~1y.palp + Ï,   where   y, = y n_k_ 1a"~k~ !

+ lk = lSb-   is in  M-   For any  z   in  P-   0 = cf>(cp(x, y), z) = rp(y,, z),   so   Y { = 0.

Consequently, (26) is satisfied.

On taking x = a"~   ~   ,   y — a,   we get

cp(a"-k~l, «)= X  aipa'P'       a,p   1S in  F-

7=0

If  a   = 0 then a generates a proper ideal of  P(d>).   So  aQ ¡c 0  and we have (27).

The first part of (28) follows from Theorem 2.7.   Now if  k  is odd, (f>(bk, b) = 0

for 1 < 7 < k, and if a and ß ate arbitrary elements of F, then cp(aa"~  ~   + ßbk, b) = 0



166 M. C. BHANDARI [November

for 1 < i < k.   Since  aa"'*- l + ßbfe  is in M, cf>iaa"-k- 1 + ßbk,  a) ¿ 0.

Conversely, suppose ci   satisfies (26), (27) and (28) and  /   is an ideal of

PicpA.    Let x  be in  /, x/■ 0.   Then

n-k-l k

x =     y.     y a* + 2_7 $-b ■',        y ■» 8. ate in  F.

z"=0 /'=!

Since  x / 0,   at least one of the y.  or one of the 5.   is different from zero.   Thus' ' i

we have two cases:

Case 1.  Suppose y. /= 0  for some  i,   l<i<n — k— 2.   Let  /  be the least

integer such that y . / 0.   If pf/' then since  ra - k - j > 1, cpix, a"~k~') =

y.cßia', a"-k~n =-jy.i2">-01 a.paip).   Therefore (- 1/jy .a Q)cßix, a"-*"') =l-z

is in / with z nil.   Similarly if p\j then i-l/ij + l)y .aQ)c}>ix * a, an~k~'~1) = I - z

is in  /   with z  nil.   Thus, in either case, for some positive integer r we have

1 = (1 - z)(l + z +■ ■ ■+ zT~ ')  is in /.   Hence / = P(<p)  and so  Picp)  is simple.

Case 2. Suppose y. = 0  for  0 < i <n - k - 2  and 8 . / 0 for some  /',   say  / =

/.    If  / < k,  then by Theorem 2.7 there is a  /'  such that t/>(¿., b.) = x. . is in / O F

and x, A 0.   Hence   1   is in  /  and so / = PicpA.    On the other hand, if 8, / 0 then

if  k  is even then there is a  /  such that 0(¿^, ¿ ■) = *¿ .  is in  ] Cx F, x¡ . /= 0  and

so / = P(c/>).   If ¿  is odd and if cpib,, b .) /= 0 for some  /' then as in Case 1 it

can be shown that / = PicpA.   Therefore, let us now assume that  k  is odd and

<pibk, ¿ .) = 0 for all  j =!,■■• ,k.   Then since x = yn_k_ xa"~k~ ! + 5fe¿jt,  by (28),

r/j(x, a) / 0 and once again it can be shown that / = P(c/>).   Hence  PicpA  is simple

and the proof is complete.

Having determined all nodal simple antiflexible algebras of types  (ra, ra)  and

in - k, ra, k+ l), our next interest is those of type (ra - 2, ra).   If dim A'   = 2 and dim N

= 1 then dim N. = 1 fot all 2 < i < n - 3 so that dim N = n - 2.   Since dim /V = « - 1 we

conclude that either dim Nx = 3  and dim N . = 1   for 2 < í < « — 3   or dim N   = 2,

dim N = 2  and  dim N . = 1   for  3 < 2' < ra - 3.   We have proved the following lemma.

Lemma 3.1.  '/ N  is of type in - 2, ra)  ¿¿era  N   ¿s either of the type in— 2, n, 3)

or of the type (ra — 2, 2, 2).

We have determined all simple nodal totally antiflexible algebras of type

(ra -- 2, ra, 3).   So now we will be interested in algebras of type (ra - 2, ra, 2, 2)

and in general of type  in - k, n, k, 2).

Theorem 3-3-  Leí  N  be an associative, commutative nilalgebra of type

in - k, ra, k, 2)  over a field of char. / 2, 3.   T¿era there exist a, b ., c,   i = 1, • • ■ ,

k - 1, such that  b .  is in   N'x,    c  is in   A/'   and [a, ■ ■ ■ , a"~   ~   , bx, ■ ■ ■ , b,_   , c\

is a basis of N with a2b . = 0,  ab.b. = ß.   a"~k~l, b.b.b, = y. . ,an~h-X,   1, j,
' 1        '       1   j     ~t,j 1  j   I     ' 1,1,1 '

I = 1, ■ • ■ , k — 1.   Furthermore,   c can be chosen to be either ab     or b     or b  b  .
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Proof.   By Theorem 2.8, since  dim TV    = 1,  there is an element a  in  N  with

a"~ 4 0.   Let c   , ■ ■ ■ , c, _ .,   c be chosen so that  c   , ■ ■ ■ , ck        ate in zVj  ,

c in N2 and {a, ■ ■ ■ , a"~ , c.,■■•, c, , ci is a basis for zV. (This is pos-

sible since dim N = k and dim N7 = 2.) Then N is spanned by a , • • • , a"~ ~ ,

so

n-k-l n-k-l

a  c . =     >        a .   .a' = a      >        a .    a7;        i = 1, • • • , k — 1.
'        i—t i, j i—' i, j

7=3 7=3

Define  b. = c. - S?"*"1 a    .zz'-2;  z = 1, • • • , k - 1.   Clearly zz2/>. = 0,   i= I,
i        i 7-3 ''I

■ ■ ■ , k - 1,  and |zj,••■,«", b   , ■ ■ ■ , b,_   , c\  is a basis of N  with  b.  in

/V' .   Since abb.  is in  ZV,,   ab .b. = S."~k~1ß. ■ ,al.   Then we have  0 = a2b b.
1 z  7 3 z  7     ^/-3        <!,;.' z  7

= S/=~3 /3¿ y /« and so /3.     /= 0 for  1= 3, • • • , 77- k- 2; 1, ;= 1, - - - , /fe - 1.

Defining ß. . = ß . ¡j¡n_k_ ,   one gets  abb. = ß ijan~k"'i ; i, j = 1, • • • , k - 1.

Also, ab.b.b, = ß . .a"-k-1b, = 0 (since 72 - k > 3);  i, j, I = 1, ■ ■ ■ , k - 1.'       1  j  1     '  i,j I —     '       '

Now  b.b.b,  is in  zV,   so  b b b, = Z"-k~la'  and  0 = ab.b.b. = 2,"-~     2y   . , ,«      .
2   7   z 3 2   ;    Z Z=3 z   7    I       "^7-3 z.Z.'.z

Hence y .  . ,    = 0 for  1, j, I = 1, • • • , k - 1   and  t~3,---,n-k~2.   Defining

y . . , = y. . ,       ,    ,,  we have  b b b, = y . . ,«""   ™   .
1 i.j.l      ' i.j.I,n-k-l' 1   j   I      'i.j.l

To prove the second part of the theorem, we only need to show that at least

one of ab,, b2, b ,b,   is not in zV„.   If either zzTz.  or  b.   or b b.  is not in  N,   fot
1112 3 2727 3

some  z  or 7 then one can rearrange the  b.'s  and the proof will be complete.

Hence assume that ab ., b b. ate in N,   for all  i, 1' = 1, • • • , k — 1.   Since  c  is in
1      1  j 3 '        '

N       we have

/ k-l \    / zfe-l

+ 2;        z   in  zV, ;

aßa    + z' ;       z' in   N

Therefore,  c, a  , a  , • • ■ , a" ate linearly dependent which is impossible and

we are done.

Lemma 3-2.  Let cp  be an antiflexible map on an associative commutative

algebra  P  of char. 4 2, 3 with ab = 0.   T/>e72

(29) cp(ab2, as) = 0 for s > 0,

(30) cß(as, b) = 0 for s > 2,

(31) d>(ab, as)= 0 for s > 1,

(32) fp(ar, bs) = 0 for r > 1  and s > 1,

(33) 2cp(ab, a) + cp(a2, b) » 0,

(34) 2ep(ab, b) + cp(b2, a) = 0.

Proof.   (29)  is obvious for s = 0.   If s > 0,  consider ab, b, as,  then, by

Theorem 2.3, cp(ab2, as) + cp(asb, ab) + cf>(as + 1b, b) » 0.   Since  asb = 0 for s > 1



168 M. C. BHANDARI [November

and for s = 1, cbiab, ab) = 0, cßiasb, ab) = 0 = cf>(as + lb, b).   Therefore cf>(ab2, as)

= 0.   To prove (30) let s > 2  and consider a   , ■ • ■ , a  , b where a . = a  fot  i — I,

■ ■ ■ , s.    Then using Theorem 2.3 we have cpias, b) + scßias ~   b, a) = 0 which

implies that cf>ias, b) - 0.   Similarly, to prove (31) consider a, b, as  and apply

Theorem 2.3.

Now suppose  r = 2  and s > 1.   Consider a  , b .,■••, b    with  b . = ¿   for  i =

1, • • • , s.    Then by Theorem 2.3 we have ef>ibs, a2) + scf>ia2bs~ l, b) = 0.   Since

a2bs~1 = 0,  cpia2, bs) = 0.    If r > 2,  consider a.," • , a,  bs   where  a. = a   for

all  i = 1, • • • , r,   then using Theorem 2.3, </>(a'', bs) + rcf>iar~   bs, a) = 0 which

implies cpiaT, bs) =0.   Considering a, a, b and applying Theorem 2.3 we get (33),

and (34) follows immediately by using Theorem 2.3 for a, b, b.

We are now ready to prove the following theorem.

Theorem 3-4.  Let  P = F ■ 1 © N where  N  is an associative commutative

algebra of type  in — k, n, k, 2) with ra - k > 3  over a field F  of char. /= 2, 3.   //

P  ¿s nearly simple then N   is spanned by a, ■ ■ • , a"~   ~   , b   , ■ • ■ , b,_   ,   c where

a  b. = ab b. = b b .b, = 0,   i, j, I - 1, • • • , k - 1,   c,   is either ab,   or b,   or b,b,
itjljl'' 1112

and n — k = m  chat F for m > 0.

Proof.   By Theorem 3-3, there are elements  a, b  , • • ■ , ¿,      ,   c  with  N

spanned  by a, ■ ■ ■ , a""  ~   , b,, • ■ ■ , ¿,    ,, c.    Furthermore,  a2¿. = 0,  ab b. =
. x, ^— 1 l l   1

ß . .an~        ,   b.b.b, = y. . ,an~k~1   for  i, j, I = 1, ■ ■ • , k - 1  and  c  is either ab,
"i.i i i   l     ' i,i,1 ' 1

or  b     or ¿  ¿   .   From this it is clear that M   is a subspace of the space spanned

by \an-k~l, ab., b b.;  i, j = 1, • • • , k - l\.
' l        z    7 ' '

Assume   P   is nearly simple.   Then there is a </>  with  PicpA  simple.   We first

show that for every  i and ;,  ab. and  b .b .  ate in  M.    To do this it is necessary

-aid sufficient to prove that each ß . . = 0 and each y . . . = 0.   If x / 0  is in  M,

Theorem 2.5 assures the existence of a  y   in  N with 0(x, y) / 0.   Thus, if x   in

M  has the property that </>(x, y) = 0 for all y  in N  then x = 0.   Since  n - k - 1 >

2  by (28), cf>ian-k- ', ¿ .) = 0 for all  i.   Hence eßiab.b., b¡) = ß. <j>ían~k- ', b¡) =

0 and cß(bbbl, ¿¿) = y    . ^(a"-*-1, ¿¿) = 0  for all A. i, /", /«'l, • • . , k - I.

Also by Theorem 2.3, cb'iab b., a) = - chia2b., b.) - cbia2b., ¿.) = 0 and tbib.b.b,, a)' i  i i     j       ^ i      i ^   i i I

=-cbiab b., b)-cbíab b., b)-óíabb„ b) = 0.   Since abb., b.bb. ate in M, ab b  =

b.b.b,= 0 fot i, j, I = I,• • •, k- I.   Thus we have shown that M is the space spanned by

{a"-*-1, ab., b.b.; i, /= 1,- •• , k- 1\.
xx       i   i

Since  o"~fe_1 ¡^ 0  is in M  there is a y   in  N  with c/zia""*-1, y) / 0.    For

a > 1,  a?   is in  N   and cf>ian~k~ l, b) = 0  for  i = 1,- • • , k- 1;  so we conclude

cf>ia"-k- \ a) / 0.   But by Theorem 2.3,  (« - k)cßian~k- \ a) = 0,  so ra - * =

772 char F  for some  m > 0.

As an immediate corollary, we have
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Corollary 3-1.  Let  P = F ■ 1 ffi zV  where  N   is an associative commutative nil-

algebra of type (n - 2, n, 2, 2) with  n - 2 > 2  over a field F  of char. 4 2, 3.  Then

there are elements a, b, c such that b  is in N ^ ,   c  is in AL ,   and N  is spanned

by a, • • • , zz"~3, b, c with a2b = 0, ah2 = ßa"~^, Z>3 = y a""3  and c   is either ab

or b  .   Furthermore, if P  is nearly simple and n - 2 > 3,  then ß = 0 = y  and

72 — 2 = zz?  char F for some m > 1.

Theorem 3-5.  Let P = F ■ 1 © N  be an associative commutative nearly nodal

algebra of type (n - 2, n, 2, 2) with n - 2 > 3  over a field F  of char. 4 2, 3- Then

P   is nearly simple if and only if

(35) zV  is spanned by  {a, ■ ■ ■ , a"~3, b, ab\ with a2b = ab2 = ¿>3 = 0 and b2 =

aa"~     for some   a   in  F,

(36) n - 2 = m char F for some positive integer  m and if b    =0  z7ie72  zzz > 1.

Proof.  Suppose  P  is nearly simple.   Then there is an antiflexible map cp  with

P(ch)  simple.   To prove (35) we only need to show that c = ab and  b    = aa"~     in

Corollary 3.1.   If c = b2  then ab = V""5a.fl' + ßb2 and so 0 = a2b = S "~A a..ain .
J i-2 i ' ** z-2        l

Therefore,   a. = 0  for  i = 2, • • • . 72 - 4  and ab = a.  _,a"~i  + ßb2.   Thus cp(ab, b)

= an_  0(a""3, b) + ßcp(b2, b) = 0.   Consequently, by Lemma 3.2(34), cp(b2, a) = 0.

Since  b     is in  M,  b    =0 which is impossible.   Hence  c = ab  and  b    = £ "~  ß .a1

+ yab.   Now  0 = ab2 = S *=~4/3;.a iH, so   /3; = 0  for  z = 2, • • • , zz - 4.   Thus  b2 =

ßn_ia"~ 3 + yab and  0 = cp(b2, b) = ßn_icp(a"- 3, b) + ycp(ab, b) = ycp(ab, b).   If

cf>(ab, b) = 0 then, by Lemma 3-2(34), cf>(b  , a) = 0 and consequently  b    = 0 =

0 • zz"-3.   On the other hand, if cp(ab, b) 4 0,    then y = 0  and defining  a = ß we

have  b2 = a ■ zz"-3.

By Corollary 3.1,  n — 2 = m char F  for some  772 > 1.   Suppose that b    =0  and

777 = 1.   Then it is easy to show that H(cf>) C F • 1.   Since  b    = 0, by Lemma 3.2(34),

cf>(ab, b) = 0.   Therefore, since  ab 4 0  is in  M, cf>(ab, a) = ß 4 0.   Let c/j(a"-3, a)

= S, S 4 0.   Define x = ßa"~ 3 - Szzè,  then x / 0,  x  is in  M  and 0(x, 2) = 0  for

all z  in  N.    This is a contradiction.   Hence  tzz > 1.

Conversely, suppose   P   satisfies (35) and (36) and  b2 4 0.   Define cf>   on the

basis of P  as follows:

0     if  1 + 1 4 n - 2,
cp(a', aJ) =

7'     if  z + ;' = zz - 2 ;

<p(è2, a) = 2 = - <p(«, ¿>2);

cM.zz/z,  Z>) = - 1 = _ çp(b, ab);

cp(x, y) = 0    for any other pair of basis elements  x and y.

Extend ó  bilinearly to  P x P.    Then it is easy to verify that r¿>   is an anti-

flexible map and that (17) and (18) are satisfied.   Hence, by Theorem 2.5, P(cp)

is simple.
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If b   =0,  then by (36),  772 > 1   so ap / 0.   Define ç6   on the basis of  P  as

follows:

0    it  1 + j/n-2,

j     it  i + j =. n - 2;

cpiab, a) = ap = - </>(a, a¿);

</>(a2, b) = - 2ap = - cßib, a2);

cßix, y) = 0    for any other pair of basis elements  x and y.

Extend r/>   bilinearly to P x P,   then it is routine to verify that eS   is an anti-

flexible map and (17) and (18) hold.   Therefore, by Theorem 2.5,  P(</>)  is simple.

Having determined nearly simple algebras of type (ra - 2, ra) our next interest

is to find all possible antiflexible maps that give rise to simple antiflexible alge-

bras of type  (ra - 2, ra).

Theorem 3-6.   Let  P = F •  1 © N  be an associative commutative nearly sim-

ple, nearly nodal algebra of type  in — 2, n, 2, 2) with ra - 2 > 3  over a field F  of

characteristic p / 2, 3  and let </>   be an antiflexible map on P.    If a and b are as

in Theorem 3.5,  then  PicpA  is simple if and only if

(37) HicpA  is a subset of the algebra generated by  1  and a   , n - 2 = 777p,

(38) cßia"-\ a) = I^q1 CLipaip,   a      in F for 2 = 0, • • • , 772 - 1  with  aQ / 0,

(39) if b2 = 0, then cßiab, a) = ï™~ ' y aip / 0 and, for any 8 in F, cpXab, a)

/Scbia"-1, a).

Proof.  Since  P  is nearly simple (35) and (36) of Theorem 3.5 hold.

Assume PicpA is simple.   By Theorem 2.3, cbia', a1) = - icf>ial+,~ l, a) = /ip(aI+;" \ a),

so 0(a\ a') = 0 if p I z'or p\j or p\ii + j) or i + j> ra- 2.   Since a"-3  is in M and

<pian~3, b) = 0 (by Lemma 3.2), cA(a"-3, a) / 0.   Let x, y  be in  P,  then

zz-3

cA(x, y) = y^ ß.a' + ßb + yab,        ß, y, ßi  in   F  for  i = 1, • • • , ra - 3.

, = 0

Now,  0 = cßicßix, y), a"" A = ß yj>ia, a""3)  which implies ß x = 0.   Suppose ß.

= 0  for ail   i < k  with  p\i, p\k  and  k < ra - 3.    Then we have

0 = 0(çS(x, y), a"-k-2) = afec/)(öfe, a"-fe-2) = - k^/"', a).

Therefore, a, = 0 and hence, by mathematical induction, a. = 0 for all 1< ra - 3

with pjz. Thus <p(x. y) = I™"1 ßipaip + ßb + Y where Y = ßn_^"~i + yab

is in AI. If ¿2 / 0, then by Lemma 3.2, tßiab, b) /= 0 and 0 = 0(çMx, y), a¿) =

ßcßib, ab). Consequently, ß = 0. On the other hand, if ¿2 = 0 then c4(a¿, a) /= 0

and so </>(a2, ¿) ^ 0 (by Lemma 3-2). Since a is in N , we have 0 = cpAcpix, y), a )

= ßcßib, a2) which implies ß = 0. Now for any z in P, 0 = 0(çS(x, y), z) = çS(V, z),

so   Y = 0 and we have (37).

4>ía\ a') =
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Let x = zz""3, y = a,  then we have ch(a"-i', zz) = y"!"1 a.V*.   If an = 0
J ^-2-0 2/J 0

then a generates a proper ideal of  P(cfA,  so  a. / 0.   Now suppose  b    = 0,  then

cf>(b , a) = 0 = cf>(ab, b).   Since ab  is in M, cp(ab, a) 4 0.   If there is a §  in F with

cf>(ab, a) = 8cf>(a"~   , a),  define x = ab - 8a"~ 3.   Then x  is in M  and cf>(x, z) = 0

fot all z  in  P  which is a contradiction.   Hence for any 8  in  F, cp(ah, a) 4

8cf>(an-\ a).

Conversely, suppose cp   satisfies (37), (38), and (39).   We first note that M  is

spanned by {a"~   , ab\.   Let x  be a nonzero element in M.   Then x = ßa"~^ +

yab,  ß, y in F,  such that either ß 4 0 or y 4 0.   By Theorem 3-5,  b   = a.a"~

tot some  a  in  F.    Now suppose y 4 0.   If a ,= 0, then r/3(x, b) = ßcf>(an~7', b) +

ycp(ab, b) =(- l/2)yasà(a""~3, a) 4 0,  and if a = 0 then, by (39),  (fix, a) = ßcp(a"~\ a) +

ycf>(ab, a) 4 0.   On the other hand, if y = 0,  then x = ßan"   , so çi(x, a) = ß

■ cp(a"~ , a) 4 0.   Thus (17) is satisfied.   Also, it is easy to verify that (18) holds.

Hence by Theorem 2.5,  P(q>)  is simple.

Thus we have determined all nodal simple totally antiflexible algebras of

type  (?7 - 2, zz)  with 72 - 2 > 3.   The case  ?z - 2 = 3  will be solved in § IV  of this

paper.   In the rest of this section we will try to generalize some of the results

obtained so far.

Theorem 3-7.  Let N be an associative commutative nilalgebra of type

(m, 72, d,, dA over a field of char. 4 2, 3-   Then there  exists   a, b.,   c.
12'' 27

(i = 1, • • • , d.— 1;    i = 1, • • • , a7 — l)  such that  b ■   is in  N, ,    c.   in   N'   and
.1 2 * 1 ; 2

|zz, • • • , am~   , b ., c .;  i = 1, • • • , d   - 1;  j = I, ■ ■ ■ , d   - l\  is a basis of N with

a2b.= 0, abb.= a. .a"1"1, bbb, = ß. . ,am-x for all i, j, I = 1, • • • , d, - 1.
2 Z   J l,j l   f   I       ~ 1,1,1 ' ' 1

Furthermore,   z7„ < (l/2)d,(d, + l),  c.  is in A   for all i where A ={ab., b b.: i,
2—11 2 ' 1      1  j

7 = 1, • ■ •, d. - 1 i,  and if d   = (l/2)d (d   + l)  then A Cl zV     is a null set.

Proof.  Since  dim zV    = 1,  by Theorem 2.8 there is an a  in  zV  with am~X 4 0.

Also since zV is of type (m, n, d., d A there exists a, g., c. (i = 1,« • ■ , d. - 1; 7= 1, • • ■ ,

z/„ - l) such that e. is in  N!, c. is in /V_,   and {a, ■ • ■ , am~  , p., c.: i = 1, • • • , d, - 1;
2 °t 1       7 2 z      7 1

7 = 1, ■ • ■ , d   — 1 i is a basis of N.   Then zV    is spanned by a  , • • • , am~    and so

772— 1 777— 1

a2gi = Z Vi, ia'= *2 X y% ia'~2'   y;j in F-

7=3 7=3

Defining b. = g. - 1rn.~^yi .a1'2 we get that \a, ■ • • , a"*"1, b., c.: i = 1, • • ■ , ¿7 - 1 ; 7' =

1,- • • , ¿7 - li  is a basis of zV with a2bi = 0 for all z.   Since cz/p./z. is in N     abb.=

^7=^   aij,ta'-   The" 0=a2bb. = S™"2 a. . (z2m which implies that a. .    = 0 for z, 7 =

1, • • • , d   - 1; / = 3, • ■ ■ , 772 - 2.   Hence defining a. . = a. .       ,   one eets ab b .=
\ 6 I./ Z.7,772-1 6 27

a¿ .am        for  z, 7 = 1, •••, zij - 1.   Since  772 > 3,  abbb¡ = a.  .am~1b¡ = 0.   Since

*.*.*, is in ZV3, W/= S^'/S.,,,/.   Then olab.b.b^^ß..^/*1
which implies ß      { (= 0 tot  1, j, I = 1, • • • , ¿j - 1; r = 3,. . . , m - 2.   Therefore,
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z

aßa2 + /y4C + z',       z' in  N,.
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defining ß . . , = ß . . ,        ,,  we get  b b .b. = ß . . ,am'      tot  i, j, I = 1, ■ ■ • , d   - 1.
6   r   1,1,1      r  i,;,/,m—1' ° ill      rt,J,l ' 1

To prove the second part of this theorem we note that the number of ways of

picking two distinct elements out of a"     elements is  il/2)dAd   - 1)  and   b   ,•••,

bd,-\   ate in A.   Therefore, the cardinality of A = (l/2VAdx - l) + d   + 1 =

il/2)dAd   + l) - 1.   Since  N     is contained in the space spanned by All ja   , • • • ,

cim- ' !,  dim N   < il/2)dAd   + 1) - I + m - 2.   But dim NJ= dj + m - 3,  so a^ <

il/2)dAd   + 1).   Also, since  dim N    = d   + m - 3,  A   has  d. — 1   linearly inde-

pendent elements.   Assume, there are only  /   linearly independent elements in A

that are not in  N  , t < d   — 1.   We can choose  c   , • • • , c    to be these elements.

Since  c ..   is in  N

aa +     o-b^yßa + ¿JÍM.) + z,       z in Ny

z'=l

Therefore,  c x, ■ ■ ■ , c +,, a   , • ■ • , am~     ate linearly dependent, which is impossible.

Hence A   has  d   — 1   linearly independent elements that are not in  N     and so c.

can be chosen in  A   for  i = 1, • • • , d   - 1.   If d   = il/2)dAd    + l)  then  dim N    =

d7 + m — 3 = (1/2)^.(0?   +l)-1+777-2 = cardinality of A + 777 - 2.   Therefore

A U ja2, ■ • • , am~ " S   is a basis of A'     and hence A n A'     is a null set.

Theorem 3.8.  Let  N  be an associative commutative nilalgebra of type

im, ra, d,, a\, dA  over a field F  of char. /  2   3.   Then there exists a, b., c., f,
12      3 ' 1      1   ' k

(z = 1, ■ • • , a. - 1 ;  /' = I, • • • , d. — 1; k = 1, • • - , d   — l) such that  b .  is in  N',

c.  in N' ,  f,   in N     and ja, • • • , am~   ,  b., c., f,;  1 = 1, • • • , d   - 1 ; j = 1, • • • ,

d   - 1;  k = 1, ■ ■ ■ , d   - l\  is a basis of N  with a/'bi = 0,  a2b.b. = a. .am~ l,

abib,bk = ßl.1.k"m-• bib1bkbi = yi,,k,iam=l f<»«l¡ l> /• *■ /'-'i.---".'-*, - 1.

Furthermore,   c.  is in A = \ab., b b,: j, k — 1, • • • , d, — lj; /,   is in  B = \a  b .,

abb., b.b.by 1, j, 1=1,. ■ ■ , dx - IS; d2 < íl/2)dxídx + l), d^ < (l/6)a'1(a'1 + l) (a'2 + 2);

if d^ = il/2)d,id, + 1),  i/, = (1/6)0", id. + 1) id, + 2)  then A  HN1  and B D N.
I 113 III 3 4

are null sets respectively.

Prool.  Since  dim N,-\   and char F / 2, 3,  by Theorem 2.8 there is an a   in

Af  with am~    / 0.   Also, since  N   is of type  im, n, d , d , d A  there exists  g .,

c., j,   (2' = 1, • • • , d   — 1 ;  j = 1, • • • , d   — 1 ;  k=l,---,d-l)  such that g .  is in

N"    c.  in  N1     f,   in  N"    and  N  is spanned by ja, • • • , am~   , g ., c., f  ■ i = 1, ■ • ■ ,

d   — 1;  j = 1, • • ■ , d   — 1;  & = 1, • • • , d, — l\.   Then  A/     is spanned by a   , • • • ,

a""1   and so a3g; = ^•y,./ = «'^V,-, /"'•   Defini"g bi ' *< ~ ^Vi./"3

we get that ja, ■ ■ • , a"3" ', ¿., c ., /, : z = 1, • • • , rf   - i; 7 = 1, • • • , d   - 1 ; k = 1,

• • • , i/, — lj   is a basis of N with a3¿ . = 0 for  i = 1, ■ • ■ , d, - 1.   Since ab b .  is
3 z 1 z   7
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in  N,, a2bb. = 2m.-1 a. .   a1.   Then  0 = a'ib b . = If' 2 a . .   a'*1   which implies
4 i   7 t-A        i.j.t i   J Z-4        z,7,Z r

a . .    =0 for  i, j = 1, • • • , d, - 1 ;  / = 3, ■ ■ ■ , m - 2.   Hence defining a. . = a. .
2,7, t ' 1 b      i.j i,j,m—l

one gets  a   b b . ~ a .   am~     for   i,  / = 1, • • • , z7, - 1.   Since   m > 4,  zz   b b b . =
fc 2  7 2,7 ' 1 —   -' 2  7   z

a. .zz777-1/?, = 0.   Also, since ab.b.b.  is in N,, ab.b.b. = Sm_~ ' ß . . ,   a1.   Then
2,7 l i   J   l A i   j   I t-A    <^i,j,l,t

0 = a2bbb,= 2"L"2/3.  . , ,at + 1   which implies  ß .  . , , = 0  for  i, j, I = 1, ■ • • ,
2    7     Z Z-4     I     1,1,1, t r '     l,l,l,t '

- 1, • ■ -, 772 - 2.   Defining ß    . , = ß    . ,       ,   one gets ab.b.b, = R. . /zm     .
1 6  r*i,i,l      "i.j./.m-l 6 77/     ^ i.j.r

Now ab.b.b^^ ß. . ¡am-lb¡= 0 and b b bkb{ = 2™J * y. . ¿ , fÄ*.   So 0

abib.bkbl = 2™-2yuX¡tatn   which implies  y;. .^ = 0  for  z, 7, A, / = 1, -

flfj-1;  7=4,..., 772-2.   Defining ^;>i</= yj>/>i>/im_,   we get  b b b ¡b r

Yi,i.h.fm~X>  «W. A. '-I. — .',-I-

As in the last theorem,  c.  is in A, ¿7., < (1/2)í7(í/, + l)  and if z/, =
2 2—11 2

(l/2)dAd   + l)  then A O zV     is a null set.   Since the number of ways of picking

3 distinct elements out of d    elements is  (   ') = (l/6)dAd   - l)(d. - 2) and d. -

1   elements   a   b ., b ■ b ., i, j = 1, • • • , fl, — 1,    are  in  B,   cardinality of B  =

( 3 ) + d2 - 1 = (l/6)dl(d1 + l)(dl + 2) - 1.    Also since  N?   is contained in the

space spanned by Su !zz3, • • • , z7m~ ' i  and  dim zV    = d   + m - 4, d^ + m - 4 <

(l/6)dl(dl + l)(d1 + 2) - 1 + m - 3.   Therefore,  d   < ( 1/6WjUj + l)(dl + 2)   and

73  has  z^   — 1   linearly independent elements.   Assume there are only  /   linearly

independent elements in 73   that are not in  N  ,   t < d   — 1.   Then we can choose

/.,•••, /    to be these elements.   Since /  ,.   is  zV

/i+,= (^+I>a) (ßa + Z/3A-) (»• +1,yA)
z

= aßyzz3 + ̂ 2 Vi + z'• z' in  N4 ■

+ z,        z  in  TV, ,

2=1

Therefore, « , a ,•■■ , am" , /.,-•-, / ,. are linearly dependent, which is a con-

tradiction. Hence B has d — 1 linearly independent elements that are not in N .

It zi3 - (l/6)dl(dl + l)(d: + 2),  then  73 U |zz3,- ■ ■ , am-l\  is a basis of /V?   so

73 n N,   is a null set.
4

A necessary condition for nodal nearly simple algebras of type  (m, n, d , d A

is given by the following theorem.

Theorem 3.9.  Let  P = F • 1 © N where N   is an associative commutative nil-

algebra of type   (ttz, 72, d , dA  over a field F   of char. 4 2, 3.    //  P   is nearly sim-

ple and  ttz > 3  then ab b. = b b b,  =0  for  i,  j, k = 1, • • ■ , d, - 1,  where  a  and
r 1  j        1   7   k ' ' 1

b. are as in  Theorem 3.7 z772ri char F  divides  m.

Prool.   Suppose   P  is nearly simple then there is an antiflexible map cp  such

that  P((p)  is simple.   Since z7m- l   is in  Al, cp(am~ ', b.) = 0 (Lemma 3.2) for all

i, cp(am"   , a) 4 0.   Considering a, a, b., b.  and using Theorem 2.3 we have
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2cbiab.b., a) + cbia2b., b.) + é>ia2b., b.) = 0.   Since a2b.= 0 = a2b., cbiab b., a) =
"       z  ; zj"jz z ;    ~       t )

0.   Thus cbiab b., a) = a . .óíam~ 1, a) (Theorem 3-7) which implies   a . . = 0  for
^       z  7 z.; »./

z, /' = 1, • ■ • , d   — 1.   Similarly it can be shown that cbib b .br a) = 0  and hence

b b .b, = 0  for all  z,  /, / = 1, • • ■ , d, - 1.   Also, using Theorem 2.3 we have
til ' 1 °

mcbiam~ , a) = 0,   so  char F  divides   772.

The following lemma follows from Theorem 2.3.

Lemma 3-3.   Le; <b  be an antijlexible map on an associative commutative

algebra  P  over a field F  of char. / 2,  3   in which a^b = 0 for some a, b  m  P.

Then

(A0) cbia2b2, as) = 0,  s > 0,

(41) cbiab2. as) = 0, s > 1,

(42) cbiaA  ¿) = 0, s>3,

(43) cbia2b, aA= 0, s> 1,

(AA) cbiab, as) = 0, s > 2,

(45) cbia',  bs) = 0,   r > 2  and s > 1,

(46) <¿(a2¿3, as)= 0, 5 > 0,

(47) cbiab"', as) = 0,  s> 1.

We are now ready to give a necessary condition for nearly simple nodal alge-

bras of type  im, n, d  , d  , d).

Theorem 3.10.  Let  P = F ■ 1 © A1  where  N  is an associative commtative nil-

algebra of type  im, ra, d , d , dA with  m > A  over a field F  of char. /= 2, 3.   If

P  is nearly simple then a  b b . = ab b .b, = b b b ,b. = 0 for i, j, k, /= 1, •. • , d

— 1  where a, b.'s  are as in Theorem 3.8 and char F  divides  m.

Proof.  Suppose  P   is nearly simple.   Then there is an antiflexible map cb with

P(</>)  simple.   Since am~     is in M  and, for each   i, cbiam~   , b.) = 0  (Lemma 3-3),

cbiam~   , a) / 0.   Considering a, a, a, b., b.  and using Theorem 2.3 we get

cbia2b b ., a) = 0.   But cbia2b b ., a) = a . .cbiam~  , a),  so  a.  . =0  for  i, j = 1, • ■ • ,
z 7 ii i,r '■!

d, - 1.   Similarly it can be shown that ab.b.b. = 0  and  b.b.b.b, = 0  for  i, j, k,
1 J i  i  k i  ]  k   I '

I = 1, ■ ■ ■ , d   — 1.   By Theorem 2.3,  mcbiam~~   , a) = 0.   Therefore, char F divides z??.

4.   Algebras with  N ■ N ■ N = 0.   We have determined all nodal simple anti-

flexible algebras of type  (ra - 2, ra)  with  « - 2 > 3.   In this section we get a few

preliminary results for algebras of class 3 and then determine all nodal simple

totally antiflexible algebras of types (3,   5l and (3, 6).   These are the only types

discussed in [l0].

Let N  denote a commutative associative nilalgebra of class 3 over a field  F

and let ra -   1   denote the dimension of N.    If v,, ■ ■ ■ , v     is a basis of M  (the
1 1

annihilator of N)  we write a basis for the algebra  N  in the form  jzz   , ■ u



1972] CLASSIFICATION OF SIMPLE ANTIFLEXIBLE ALGEBRAS 175

v  f.   Since  N  is of  class 3,  N2 C M.    Therefore  u.U. = 2f_, ak .v,
q — l   j k-l      i , j   k.

fe«
where  a     , = a?  .  is in F

i,i        i.i

Up to isomorphism, the algebra  N   is given by qr    elements  a.   .  or q  sym-

metric matrices  A(   ' = (a.   .)  of degree  r.   We shall call the matrices  A1      the
i,i

structural matrices of the algebra  N.   It is known [10] that if we change the basis

of N,  the new structural matrices are congruent to the one obtained previously.

Since  N   C M C N,  there is a bas is  \u ,,-■■, u , v ,,■■■, v,, w ,,■■■, w A  of
— 1 s 1 I 1 t

N  such that \v  ,■ ■ ■ , v A  isa basis of N     and \v  , ■ ■ ■ , v., w x, ■ ■ ■ , w \  is a

basis of M.    Let  V  be the space spanned by xu  , ■ • • , u , v  , • ■ ■ , vA  and  W  be

the space spanned by \w   , ■ ■ ■ , w \.   Then  N = V + W,   V ■ W = W    =0 and the

annihilator of  V  is   V   .   Hence  N = V © W  where   V  is of  class 3 and  W  is of

class 2.   Since commutative nilalgebras  N  of class 2 have been determined [l0],

the description of commutative nilalgebras of class 3 reduces to the case in which

M = A/2.

Lemma 4.1.   Let A = V © W  be an associative commutative algebra  over a

field of char. / 2, 3-   // </>.   araa7 t/j     are antiflexible maps on V and W respectively

then there exists an antiflexible map </>  on A  such that cßiv, v') = </>  iv, v') for

all v, v'  in  V and cbiw, w') = cf>  iw, w') for all w, w*  in W.

Proof.   Let x, y be in A;  then there exists  v , v,   in  V and w , w     in  W

such that x = v    + w     and  y = v    + w   .   Define  c/z   on  A   as follows:

4>ix, y) = tbxivx, v2) + cb2ÍWy w2),

cbiv, w) = cbiw, v) = 0     for v in   V and  w in   W.

Then it is easy to verify that cb   is an antiflexible map.

In a similar way we prove the following lemma.   We need first to define </>],,•

If A = V + W  and cb   is a map on  A,  define cb\v   by rrS|„(t7    + tzz      v    + w A =

cbiv., vA for  z-., zy     in  V  and zíz., iíz     in  W.

Lemma 4.2.   Let A - V © W  be an associative commutative algebra over a

field F.   If cb is an antiflexible map on A such that cbiv, w) = 0, cbiv., vA is in V and

cpiwx, wA is in W for v, v., v    in V and w, w., w    in W then qb = cf>\    + cf>\   ; qb\    ,

cb\w are antiflexible maps on V and W respectively.

Prool.   We need to show that cb = cb\ v + cb\w.   Let x, y  be in  A.    Then x =

v. + w ,  y = v    + w     tot some  f,, v.   in  V and for some w  , w     in  W.   Since cb

is bilinear on A ,

</>(*, y) = cbiv y  v2) + cbiv y  w2) + cbiwy  vx) + cbiwy w2)

= cb\vix,y) + cb\wix,y).

Now suppose  M = N2.   Then the matrices  A'' \ • • • , A(<?)  are linearly inde-

pendent and it follows that two commutative nilpotent algebras of class 3 over a
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field   F  are isomorphic if and only if corresponding spaces of bilinear forms deter-

mined by the matrices of the algebra are equivalent [lO].   The proof of the follow-

ing two lemmas are also found in [lO].

Lemma 4.3.   // (l/2)r(r + l) = q   then up to isomorphism there is exactly one

associative commutative nilalgebra  N  of class 3 over a field F such that the

dim N  over F  is  q + r and M = N  .

Lemma 4.4.  // Al = zV2   then q < (l/2)r(r + l).

Lemma 4.5- Let P = F-1 © N where N is an associative commutative nilalge-

bra of type (3, n) over a splitting field F of char. 4 2,3 with M = N . If v , ■ ■ ■ ,

v , u,,-- ■ , u    is a basis of N such that v,,- • ■ , v     is a basis of M and,- for each
q 1 r ' I q ' '

i,   u.  = S...a.  .27.,   then  P  is nearly simple.1 7^7    2,7   7 J r

Prool.  Define cp   on the basis of  P  as follows:

ch(v ., v.) = 8.   . = - ch(u ., v .)    where  8 .. = I^    '     1 '. j ^    j      1 27       ) .

/1      if  1 = j.

cp(x, y) = 0  for any other pair of basis elements  x  and y.

Extend cp  bilinearly to all of  P x P.    Then it is routine to verify that cp   is an

antiflexible map and  P(cf>)  is simple.

Now we consider algebras of type (3, 5).   Note that if P   is a nodal simple

totally antiflexible algebra of type (3, 5) then it is either of type (3, 5, 3) or of

type (3, 5, 2, 2).   By Theorem 2.10, there is no nodal simple totally antiflexible

algebra of type (3, 5, 3) over a field of char. 4 2, 3-

Theorem 4.1.  Let  P = F ■ 1 © N  be an associative commutative nearly nodal

algebra of type  (3, 5, 2, 2) over a field F  of char. 4 2, 3.   Then  P   is nearly

simple if and only if

(48) N   is spanned by {a, a  , b, c\ with  b  in  N"     c  in N'    and c  is either

ab   or  b   ,

(49) if c = ab,   then  b    = ya     + 8ab  with  4y + 8    = 0,  and if c = b     then ab

= a.a2 + ßb2 with 4aß = 1.

Prool.  Suppose  P  is nearly simple.   Then there isa (J  with  P(c/S)  simple.

By Corollary 3-2,  N  is spanned by  a, a  , b, c with  b  in  N1     c  in  A/'    and  c  is

either í7¿>   or  b   .   Note that M   is spanned by a  , ab, b2.   So cf>(a2, b) 4 0 4 cp(b2, a)

and, by Lemma 3-3, ó(ab, a) = (- l/2)0(z72, b) 4 0,   <p(ab, b) = (- l/2)cp(b2. a) 4 0.

If c = ab  then since  b     is in  N  ,   b    = ya    + 8ab,   for some y. 8   in  F.   There-

fore, cf>(b  , a) = 8cf>(ab, a)  or equivalently - 2<p(ab, b) = (- 1 /2)8cf>(a2, b).   Now

0 = 4cb(b2, b) = 4ycp(a2, b) + 48cp(ab,  b) = (4y + 82)cp(a2, b).

2 7
Since cf>(a  , b) 4 0,  we have  4y + 8=0.



1972] CLASSIFICATIONS OF SIMPLE ANTIFLEXIBLE ALGEBRAS 177

On the other hand if c = b    then  ab = aa    + ßb   ;  a, ß  ate in  F.   So

cp(ab, a) = ßcp(b2, a)  or equivalently  (- l/2)cb(a2, b) = - 2ßcf>(ab, b).   Thus

cb(ab, b) = cuf>(a2, b) = 4a.ßcp(ab, b) which implies that 4<xß = 1.

Conversely, suppose  P  satisfies (48) and (49).   If c = ab,   define cb  on the

basis of P  as follows:

cp(a2, b) = 4 = - ch(b, a2),       cb(ab, a) = - 2 = - <f>(a, ab),

cp(ab, b) = 73 = - cf>(b, ab),       <p(b2, a) = - 2S = - cp(a, b2),

cf>(x, y) = 0    fot any other pair of basis elements  x and y.

Extend cp  bilinearly to  P x P.    Then it is easy to verify that (f>   is antiflex-

ible and  P(cp)  is simple.

If c = b   ,  we define cb  on the basis of  P  as follows:

cp(a2, b) = 2 = - cb(b, a2),       cp(ab, a) = - 1 = - cb(a, ab),

cb(ab, b) = 2a = - cp(/>, zzè),     <p(è2, a) = - 4a = - <p(zz, ¿>2),

</j(x, y)   = 0     otherwise.

Extend cb  bilinearly to all of  P x P.    Then cb   is antiflexible and  P(cb)  is

simple.

Theorem 4.2.  Let  P = F ■ 1 © N  be an associative, commutative, nearly

nodal, nearly simple algebra of type (3, 5, 2, 2) over a field F  of char. 4 2, 3-   //

0   is an antiflexible map on  P,   then  P(cb)  is simple if and only if H(cb) C F ■ 1

and cb(a2, b) 4 0.

Prool.   By Theorem 4.1,  N  is spanned by zz, zz  , b, c  where   c  is either ab

or b  .   Also, if c = ab  then  b   = ya    + 8ab with  4y + 8    =0,  and if c = b     then

ab = azz2 + ßb2  with 4aß = 1.

Now assume   P(<b)  is simple.   Then since a     and  b    ate each in M  we have

çS(zz2, b) 4 0 and cb(b2, a) 4 0.   By Lemma 3-2, cb(ab, a) 4 0 4 cb(ab, b).   Let x, y

be in P; then cb(x, y) = a   + a.a + a a   + ab + a c.   Since cb  is an antiflexible

map, we have  0 = eb(cb(x, y), a2) = a cb(b, a2). Thus  a   = 0.   Also, 0 = ei(cj(x, y), b2)

= a cb(a, b ) which implies   a    = 0.   Therefore, cb(x, y) = a.    + Y  where   Y =

a. a    + a. c  is in A4  and,  for any z  in  P,  0 = cb(cb(x, y), z) = cb(Y, z).   Hence

Y = 0 and so cb(x, y) = a.     is in  F ■  1.

Conversely, suppose  H(cb) Ç F ■ 1   and fi(a , b) = 4r¡ 4 0.    Note that  Al   is

spanned by a  , c.    If c = ab then since cf>   is antiflexible, cb(ab, a) = - 277,

r/JÍe , a) = - 2o77  and cb(ab, b) = S77.   Let x  be a nonzero element of Al;  then x =

/i«2 + i/aí7.    If v 4 0,  then c/j(x, zz) ̂  0,  and if v = 0  then c/j(x,  Tz) 7^ 0.   Hence (17)

is satisfied.   Similarly if  c = b   ,   it can be shown that for each nonzero x   in  Al

there is a y  in N  with cb(x, y) 4 0.   Hence in either case, by Theorem2.5,  P(cb)

is simple.



178 M. C. BHANDARI [November

In the rest of this section we will restrict ourselves to the nodal algebras of

type (3, 6) over the field of complex numbers. The proof of the following theorem

is found in [lO].

Theorem 4.3-  The set of all associative -commutative nilalgebras of type (3, 6)

over the field of complex numbers contains only 13 algebras that are distinct up

to isomorphism:

P    = [u y u , u , Uy u]  ialgebra spanned by  u , u , u  , u    and zz2),  u    =

u2 + u2, u.u,= 0 for j, k = 1,2, 3;

P    =[u y u  , u  ,  Uy zz  1,   Z22 = 2z22-z/2,   u .zz,  = 0 for j / k;  j, k = 1,2, 3;

Uy u2, u , u y u2u A, u   = ux + iu2u , u   = u x - iu  u , u u   = u u   = 0;

P, = [a  , u., zz,, u,, u^uA,  u2 = u, + (z - l)u.u-, u, = u, - (z+  l)a,a,( u,u.
4 1 2 3    '    1 2    3 2 1 233 1 2312

= u u   = 0;
- r ,2    „   „   1     „2       „2       „2

P      =   [a.,   22    ,   K   ,   U y   UXU2\,    U      =   72      =   Z2 "2"3   =  ~   'U \U 2'    U \U \   =   ^'

P    = [u y u   , u  , Uy zZjZz  ],  222 = u  , au    = iuxu   ,   uxu    = u    = 0;

P-,   =   [Uy   U2,   U    ,   UA,   222],    222   =   222   =   222   =   72J,    22 .22^   =   0   /or    ;'^   ^ ;    /,    4=1,   2,

3,4;

P8 = [V "2'  "Î'  K1B2'  *2];

P. - [zz, 22  , v,, v., v A,  v ■   in  M,   UV . - i
9 - 1      2      3        7 7        ;   «

P ,. = [zz,,   Z2,,  222,   f ,,  12,],   27.   ZS  272   M,   U ̂  = U ,, U .V,  = 0 for j, k = 1, 2, u ,u ^ = 0;
10 12112; 2 1;ze'' 12

Pjj = ["j. "r "y a2, v],  u2 = u2, = u2, u.uk = u.v = 0 for j / k; j, k = 1, 2, 3;

27 in M;

P, ,   =   [«,,   «-,   Z22     72,   77],    77    272    M,     U,U^   =   U,V =  U.V =   0;
12 1212 121 2

P      = [z/j, «2> zz2, uxu2, v],  u2 = u2 - liu^u ,   uxv = u2v = 0.

Using this we have the following result.

Theorem 4.4.  Let  P = C ■ 1 © N where  N  is an associative, commutative,

nilalgebra of type (3, 6)  077er the field of complex numbers  C.    Then  P  is nearly

simple if and only if N = P  .

Proof.  Suppose  P   is nearly simple, then there is an antiflexible map cb  with

Picb)  simple.

If N = P, = [u,, 72.,, u,, u2, ul],  u2 = u2 + u2,   u,u   = u^u^ = u  u   = 0,   then
1 12312        3        1        212        23        31

qbiu u , u ) = cbiu u    u A = 0.   So by Lemma 3.2, </>(zz2, u A = cbiu2, u A = 0.   Hence

cbiu■ , z) = 0 for all z in P.   This is impossible as u2 is a nonzero element of M and so

N / P .   The same reasoning also proves that N cannot be any one of P , P    and P  .

So assume that  N = P    = [72  , 22      zz      222    u.uA,  u    = u    = u  ,   u  u    = iu  u  ,

u  u   = 0.   Then c4(z22, u A = cbiu2, u) = 0 and eS(z22, u A = cbiu2   u A = 0.   Conse-

quently, cbiu2, z) = 0 for all z  in  P.   Since  a2   is in  M,   u2 = 0.   This is impos-

sible, so N / Py

Now suppose  N = P? = [uy u  , u , u , u2],  u2 = u2 = u2 = u2, u.uk = 0  for
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j 4 k; j, k = I, 2, 3, 4.   Then  P  is of type  (3, 6, 4).   But by Theorem 2.10 there

is no nearly simple algebra of type (3, 6, 4).   Thus  N 4 P-,-

If N = P    = [u  , u  , u2, u  u , uA,  then since  u2, u2  are in  M, cb(u2, u  ) 4 0

and cb(u , u A 4 0.   Also, by Lemma 3-2, eb(u , u A + 2cb(u  u , u A = 0 and

cb(u2, Uy) + 2cb(u  u , u A = 0.   Therefore, cb(u{u     u  ) 4 0 4 cf>(u  u  , u ).   We will

first show that H(çb) C C ■ 1.   Let x, y  he in  P,   then

q>(x, y) = aQ + axux + a^2 + a^u2 + a-/UyU2 + a^2,

a.  in  C  tot i = 0, 1, 2, 3, 4, 5-   Since cb  is an antiflexible map,  0 = cb(cb(x, y), u A

= a cb(u , u2) which implies   a   = 0.   Also,  0 = cb(cb(x, y), u2.) = a cb(u , u2)

implies that  a, = 0.   Therefore, <b(x, y) = an + Y where   Y = a„zz, + a,zz,zz_, +r 2 ' y 0 31412

a  zz2   is in  zVl.    Now for any z  in  P,   0 = cb(cb(x, y), z) = cb(Y, z)  so  Y = 0.   Hence

H(cb) Ç C • 1.   Suppose cb(u .u , u A = a. 4 0 and cb(u  u , u A = ß 4 0.   Then by

Lemma 3.2, cb(u , u  ) = - 2a and cb(u2, u A = - 2ß.   Let x= 2ßu  u    + au   +

ß /au  .   Then x  is a nonzero element of zVl  and cf>(x, u A = cb(x, u A = 0.   Hence

for all z  in  P,  cb(x, z) = 0 and so x = 0.   This is a contradiction and so N 4 P„•

Let N = P    = [u, u  , v , v , v ],  v.  in  M,  uv. = v.v, = 0 for j, k = 1, 2, 3-
) 1237 J J    k.

Since  zz     is in  N   , 0(z7  , 77.) = 0 for  7=1,2, 3.   Hence  zv    =0 which is impos-

sible.   Thus  N 4 P9-

Next suppose N = P = [u , u , u , v , v ], v. in M, u = u , u u = 0 =

u.v, for 7, ze = 1,2. Then cb(u., u.) = cb(u2, v.) = 0 fot j = 1,2. Consequently,

u   = 0 which is a contradiction.

Now assume  N = P      = [zz  , zz  , u , u , v],  v  is in  M,   u   = u•   = u , u.u, =

u.v = 0 for j 4 k;  j, k = 1,2,3-   By Theorem 2.1 it follows that    cb(u  , u A =

cb(u , v.) = 0  for  7= 1, 2, 3.   Since  u     is in  M, u    = 0.   This is impossible, so

N4PX[.

If N = P      = [u , u , u2, zz2, v], v  is in A1,   zz  zz    = u.v = 0 for 7 = 1, 2,   then

cb(u,, u.) = - 2<b(u  u., u.) = 0, cb(u., v) = - 2cb(u  v, u A = 0  for 7 = 1, 2.   There-

fore  zz    = 0,  a contradiction.

13 ~ L"l' "2' "1" ~1"2'  "J'   "   ".'   "2 " "1      "~1~2
Finally, suppose  zV=P.=[zz, zz, zz«zz      tz],  y  inzVI,   u    = u    - 2iu  u  ,

u.v = 0 for  /= 1, 2.   Then  ll(cb) Ç C ■ 1,   For, if x, y  are in  P,   then 0(x, y) =

a. + a,zz    + a.u. + ol.u,   + a,«,«, + aw,   a.   in  C,   j = 0, 1, 2, 3, 4, 5.   Since
0 II 22 31 412 5 7

P(ct3)  is simple, cf>(u , u A 4 0, cb(u  u  , uA 4 0 4 cb(u  u , u A,  and either cb(v, u A

4 0 or 0(77, zz ) 4 0.   Now 0 = cb(cb(x, y), u2) = a cb(u , u2) which implies  a   = 0.

Similarly,  0 = cb(cb(x, y), u uA = a cb(u  , u.U.)  implies   a    = 0.   Thus we have

<b(x, y) = an + Y where  Y = a„&, + a,iz,a, + arv  is in M.   For any z in P,   0 =~       ' 0 314125 '

cb(cb(x, y), z) = cb(Y, z) so Y = 0. Hence c/>(x, y) is in C ■ 1. Let cb(u u , u A =

a j= 0, rp(t7, zz ) = ß, 0(i7, zz ) = y. Then <p(zz2, zz ) = - 2a, cj(zz2, «.)=.- 2za and

cb(u u , u A = - ia.    If ß = 0,  define x = yu   + 2a7z,   x ¡¿ 0,  x  is in  M.    Then
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cbix, u A = 0 = f/j(x, u).   Consequently, cbix, z) = 0 for ail z   in  P  and so x = 0,

which is impossible.   On the other hand, if ß /= 0,  define x = 2ßu  u   - 2a.v +

0/3 - y)u2.   Then x  is a nonzero element in M  and r/>(x, «.) = çS(x, u A = 0.   Hence

cbix, z) = 0 for all z   in  P .and so x = 0.   This is a contradiction.

Thus the only possibility left up to isomorphism is  A' = P    = [u , u  , u , u  ,

u  u 1,  u    = 22      u  u    = iu  u , u    = u  u    = 0.   In this case cbiu, u A = cbiu  , u A =

0, cbiu2, ",) = 0.   Since  P(cS)  is simple, cbiu2, u ) = çMzz2, uA = - 2cbiu{u , ux) /

0.   By Lemma 3-2,  0 = cbiu , u A + 2cbiu  u  , u A = cbiu , u A + 2icbiu  u , u A  and,

by Theorem 2.3 ,  0 = cbiu xu , u A + cbiu  u  , u A + cbiu u , u A = cbiu m  , u A +

iqbíu ai , uA = cbiu  u , u    + iu).

Conversely, suppose   P = C ■ 1 + P   .   Define cb  on the basis of P as follows:

cbiuxUy   Hj) = 1 = - çS(z2j,   Z2jZZ3),

cbiu2, Uy) = - 2 = - cbiu^, u2),

cbiu  u,, uA = - z = - cbiu     u  u ),'132 '213

qbix, y) = 0     for any other pair of basis elements  x  and  y.

Extend 0  belinearly to all of P x P.    Then it is a routine to verify that cb   is

an antiflexible map and  P(c4)  satisfies (17).   Hence, by Theorem 2.5,  Picb)  is

simple and the proof is complete.

Having characterized all nearly simple nodal algebras of type (3, 6) over the

field of complex numbers we are now interested in finding all possible candidates

for 0.

Theorem 4.5-  Let  P = C ■ 1 © P    where  C  is the basefield of complex num-

bers and P    = [zz     72., u., u,, u,uA,    u, = zz2,   u.u. = iu,u,, u, = u,u^ - 0 and
o 123113 1 lib 133 12

let cb  be an antiflexible map.    Then  Picb)  is simple if and only if

(50) for each x, y  in  P  there exists  ay, /' = 0, 1, 2, 4, 5,  such that  a    =

ia^  and cbix, y) = an + a,a, + a^a, + a ,u2 + au,u,,
2 ' U 11 22 41 513

(51) <biuxu  , ux) = ßQ + ß xux + ß  u    + ß  u2 + ß,uxu    for some ß .  in  C,   j =

0,1,2, 4, 5,  with ßx= iß2 and ßQ ¿ 0.

Proof.  Assume  P(ç4)   is simple.   Then cbiu y u A = - 2cßiu  u , u ) /= 0.   Let

x, y be in P,   then cbix, y) = a. + a,«, + a,a, + a_a, + a,a, + aru,u,,   a.  in CJ ' 011223341513;

for / = 0, 1, 2, 3, 4, 5.   Since c/>   is an antiflexible map,  0 = cbicbix, y),  u A =

a cbiu  , u A.   Therefore,   a    = 0.   Also,  0 = </>(</>(x, y),  u.U.) = a   cbiu, u  u A +

a cbiu , u  u A and  0 = cßiu  u  , u A + cbiu xu  , u A + cbiu  u , u ) = cbiu xu , «2) +

icbiu  u  , u  ).   Consequently,  (a   - z'aAcbiu u  , u)= 0 which implies   a    = z'a   .

If x = u.u    and y = u x  we get cbiu  u  , u  ) = ßQ + z/3a    + ß  u   + ß  u2 + ß u^u,

for some ß .,   j= 0, 2, 4, 5 in C.   If ßQ = 0 then   cbiu u , a  )  generates a proper ideal

of P(cS)  so ß./ 0.   We observe here that for each x, y  in  P  there is an  a in  C
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such that cf>(x, y) = acb(u  u , u A,  so if cb(x, y) 4 0  then  a    4 0.

Conversely suppose cp  satisfies (50) and (51).   Let /  be an ideal of P(cb)

with x  in J, x 4 0.   Then x = y.+ y .u   + y  u   + y ,u   + y  u   + y u.U., y.  in  C.

If y    4 0 then  (l/yAx = 1 - z  is in  /   for some  z  with 2=0,  and if y. = 0,

y   4 0 then (- l/2y ß Acb(x, u A =1-2   is in  /.    Now suppose yQ = y    = 0  and

y2 4 0.   Then (- l/2y2ßQ)cb(x * uy u$) = (- l/2ß0V>(zz2, Bj) = 1 - z  is in /.    Let

y. = 0 for 7 = 0, 2, 3  and yy 4 0.   Then  (- 1/ßQyy)cp(x, a^) = (- l/ßQ)cb(uy UyuJ

=  1-2.     If   y. =  0   for   / =  0,   1,  2,  3, y.   ^  0,  then  since d>(u.u ,   u A =

(- l/2)0(zz2, zzj) = 0,  (- l/2y4ß0)r/i(x, u ) = 1 - z  is in  /.    Finally, if y .= 0 for

7 = 0, 1, 2, 3, 4  and y5 4 0,  then (l/y^^ix, iij) = 1 - z  is in /.

Hence in ail cases   1 = (l — z)(l + z + z )  is in  /   and so / = P(z/j>).   There-

fore,  P(cf>)  is simple and we are done.
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