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SOME RESULTS ON PARAFREE GROUPS

BY

YAEL ROITBERG

ABSTRACT.    We obtain some theorems concerning parafree groups in certain

varieties, which are analogs of corresponding theorems about free groups in

these varieties.   Our principal results are:   (1) A normal subgroup  N of a para-

free metabelian group  P  of  rank>2  such that  zV • y-¡P  has infinite index in

P   is not finitely generated unless it is trivial.   (2)  If x   and  y  are elements

of a parafree group  P   in any variety containing the variety of all metabelian

groups which are independent modulo  J2P, then the commutator [x, y]  is not

a proper power.

Introduction. In this paper, we shall prove analogs, for parafree groups(') in certain

varieties, of some theorems concerning free groups in these varieties.   These latter

theorems, in turn, are generalizations of classical theorems about absolutely free

groups, i.e. free groups in the variety of all groups.   We shall not be specifically

concerned here, however, with absolutely parafree groups, although some of our

results do hold in this case.   In fact, we shall be dealing mainly with certain

types of product varieties.

The bulk of the paper, following a brief preliminary section, consists of two

chapters.

In Chapter I, we consider a well-known theorem of O. Schreier [10], asserting

that a nontrivial normal subgroup of an absolutely free group of finite rank is

finitely generated if and only if it is of finite index.   G. Baumslag [3] considers

possible generalizations of this theorem for certain relatively free groups and

obtains the following result:

Let U  and 93   be varieties of groups, 11   720/ the variety of groups of order 1,

and let  F be a noncyclic freee group in ÏÏÏ3.    Let   VÍF) denote the iunique) mini-

mal normal subgroup of F such that  F/VÍF)  lies in 93.   Suppose that  N  is a non-

trivial normal subgroup of F such that  F/VÍF)N  is infinite.    Then N  is not

finitely generated.

Note that in the case where  11  and   53 are both the varieties of all groups,

Baums lag's theorem reduces to the "only if" part of Schreier's theorem.   Our
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contribution is to prove a form of Baumslag's   theorem, replacing the free group  F

by a parafree group  P.   However, we must make a drastic restriction on the vari-

ties  U  and  S.   More precisely we shall prove:

Let  P  be a parafree group of rank > 2   in the variety  u    of all metabelian

groups.   Let  N  be a normal subgroup of P such that   \P/N ■ y2P\   is infinite.

Then, either N = 1   or N  is not finitely generated.

Notice that the free groups in  u    are actually parafree, being residually nil-

potent, and therefore   our result can be viewed as a partial generalization of

Baumslag's theorem.

In Chapter II, we shall prove the following theorem:

// P   is a parafree group in any variety 8  containing the variety of all

metabelian groups, and if x and y are any two elements of P which are indepen-

dent modulo y2P, then the commutator [x, y]  is not a proper power.

This result generalizes the analogous result for free groups, provided  S  is

either the variety of all groups (G. Baumslag [2]; W. Magnus, A. Karrass and D.

Solitar [8]) or the variety of all metabelian groups (G. Baumslag, B. H. Neumann, H. Neu-

mann and P. M. Neumann [6]).   If 11 is a variety which lies strictly between the variety

of all groups and the variety of all metabelian groups, then a free group in 11   is

not necessarily a parafree group, and therefore our theorem does not apply directly

to free groups in such varieties.   Nevertheless, the result is still true for free

groups   F  in U, 11 > v.  .   Indeed, we need only observe that   F/y„F is free in   51   .

We would like to mention that the techniques developed in this paper can be

used to prove the following result:

A parafree group of infinite rank in the product variety  v-U    has a trivial

center.

The proof is, unfortunately, very complicated, and, moreover, does not seem

to generalize to other varieties (not even to  "-^L, P an odd prime); thus it has

not been included here.   It should be noted, however, that the analogous result

for free groups is known to be true for a class of varieties including all the   XX ii.

p prime; see e.g., M. Ausländer and R. C. Lyndon [l].

The content of this paper is based on the author's doctoral  thesis,  written

under the direction of Professor G. Baumslag.   I would like to take this opportun-

ity to express my deep appreciation to Professor Baumslag for his guidance and

encouragement.

Preliminaries.  We refer the reader to H. Neumann [9] for the definition of

varieties, product varieties, metabelian groups, nilpotent groups, residually nil-

potent groups, lower central series of groups, relatively free groups, basic commu-

tators and left normed basic commutators.   (The definition of basic commutators

in H. Neumann is given for finitely many generators only.   When infinitely many
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generators are involved, only obvious modifications are required, see e.g. [ll].)

Next we give certain definitions which were introduced by G. Baumslag and

can be found in his papers [4] and [5].

Let   G be any group and let  y  G be the nth term of the lower central series.

Then the sequence

G/y2G, G/y^G, ...

is called the lower central sequence of  G.   Let  H be another group.   Then  H and

G have the same lower central sequence if there are isomorphisms  6,   from

G/y,G onto  H/y,H suchthat  0,   induces   6,_1   on  G/y,_.G to  H/y,_lH for

¿ = 2,3, ••• .

A group  P is termed parafree in a variety  93  if

(i) P eî3,

(ii)  P is residually nilpotent, and

(iii)  P has the same lower central sequence as a free group in  93.

A subset  X of a parafree group  P  is called a parabasis for   P  if X  freely gener-

ates   P modulo y-.P.   It follows that if  X  is a parabasis of  P, then  X freely

generates   P modulo  y  P  for  72 > 2.

We now list the notation which will be used throughout this paper.

Notation.

xy   the transform  y~  xy of  x by y, x, y £ G.

x x    x      . . . x       \x, y .,•••, y     in the group  G).

[x , xA   the commutator  x~  x~  x.x2  of x.   and  x2.

[x,, x-,,••■, x ]   the left normed commutator [[x,, x,, • • • , x      ,],*].
1      2 72 LU   1       2' 7Z-1        n

[x,, &,x,, • • • , k x ]   the left normed commutator with   k. repetitions of x ■,
1       2    l n   n 1       v 1

z = 2, • • •  ,72, and k. > 0.   If k. = 0 the element  x. does not appear at all.
' z — z z rr

H < G   H is a subgroup of  G.

gp(X)   the subgroup of  G generated by  X, where  X  is a subset of  G.

gp^. (X)   the normal subgroup  G generated by  X.

[A, B]   the group generated by the commutators  [a, b], a £ A, b £ B.

y G   the 72th term of the lower central series of a group  G.

|5|   the cardinality of a set   S.

S\T   the set theoretical difference between S and  77, where  T is a subset of S.

{sv ■ • • • v • ■ • • sJ the set \sv ■•• ■ sJ\Ki-

Z   the set of integers.

7?z|?2   772 divides   /z im, n £ 7A-

mj-n   m does not divide  72 (722, 72 £ Z).

u   the variety of all abelian groups.

w     variety of all abelian groups of exponent dividing  n in > 2).
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CHAPTER I

1.  The purpose of this chapter is to prove a generalization of a theorem of G.

Baumslag [3].   Our result can be stated as follows:

Theorem 1.   Let  P  be a parafree froup of rank > 2   in the variety 21     of all

metabelian groups, let  N  be a normal subgroup of P such that  \P/N ■ y2P\   is in-

finite.   Then either N = 1   or N  is not finitely generated.

The main tool used in the proof of the theorem is a formula expressing an

arbitrary element of  P as an infinite product in an appropriate sense.   (This form-

ula will also be used in subsequent chapters.)   Aside from several special cases,

the proof of the theorem proceeds by contradiction, first reducing to the case when

P  is parafree of rank 2.   The assumption that  N is finitely generated, together

with the other assumptions, leads to (several) systems of  (k + l) linear inhomo-

geneous real equations with  k unknowns (where   k + 1 = number of generators of

N).   These systems must, on the one hand, always be solvable, but, on the other

hand, we can arrange matters so that some of these systems are not solvable.

This involves making certain estimates on the terms of the system.

The rest of Chapter I is arranged as follows.   In §2 we prove our infinite

product formula.   Some technical lemmas concerning commutator formulas are de-

rived in §§3 and"4, and in §5 we introduce certain real functions which are used

in making our estimates.   Then, in §6, we carry out our reduction to the rank 2

case, and, finally, we complete the proof in §7.

2.  Let g  be an arbitrary element of a group  G.   We write

°° /     77 \ _ I

8 =   Y[Si    iff    (ITgz)     geynG,forall  n.

Now suppose that  G is residually nilpotent and let  g £ G.   Then we may

choose elements  g,, g2, • • •   of  G such that g   £ y G and such that

8 s <§1  • g2.g„    modulo yn + 1 G.

It follows immediately then that

n Si

If one imposes certain extra conditions on the group G, then every element of

G can be written uniquely as a particular infinite product. This is the essence of

the following discussion.

Let  G be a residually nilpotent group.   For every  n > 1, choose a collection

S    of elements  g      .   , £ y G, a(n) ranging over some index set  A  , so that
72 °7Z,a(7z) '72 6       6 72 '

every element  g    £ y G can be uniquely expressed as a finite product of powers
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of the elements   s      ,   ,  modulo  y   ,, G.   Thus, if we fix a well-ordering of S  , we
Ö7Z, a.(rZZ / ZZ +1 ' & 72'

may write  g    uniquely as

k

gn.*;(n) modul°   >W6>
1=1

where g    „ / . < • • • < g    „,, and  p    „ ,   . e Z.   Clearly, every element  g of  G
6zz, al(zz) özz,a^(zz) rz7,a¿(z7) 712 0

can be written as follows:

k(n)

A.aAn)   '
Yi Y[EPn-aA"\

72=1    Z=l

where   kin) is a finite nonnegative integer, with the understanding that

n.   1 g     „ 1   ,   = 1, and g    „  ,   \ < g    „  ,   \ < ■ ■ ■ < g    „        ,   \-   Suppose
z =1 öz2, a-jXn) °77,a-i(rz)      0tï, a2 (n) "'a/e(zz)("Z

no   ze(„) oo   /(rz)

g = Tí T7 gp»-aiM = TT TT fn-ßiM
tz=1 ¡=1 n=\    7=1 ;

where  0 < ¿(72) <  e»    0 < /(tz) <tx>p .<...< o and p     „<...<
— '       — '   6zz,ai(„) n,ak(n)("î ön,ßi(n)

Sa      , ,.   Then for all 72 > 1, kin) = Un) and  a .(«) = /3 .(72) for all  72 > 1  and  1 <
",Pl(n)(n) - 1 "z - -

Z < ¿(72).

Let  P  be a parafree group in the variety of all metabelian groups, with x^,

X £ A  as parabasis.   For every   tz > 1, let  S    be the set of all left normed basic

commutators in  x^, À £ A  of weight  72.   (Of course, we assume that the sets  S

are well-ordered.)   Using a theorem of W. Magnus (see e.g. [9]) on the indepen-

dence of the left normed basic commutators of weight > 2   in a free metabelian

group, it follows immediately from the preceding discussion that every element of

P has a unique form as an infinite product of powers of left normed basic commu-

tators in the  *x's, arranged in an increasing order.   This representation of ele-

ments of a parafree group in  u    will be used in Chapter II as well as in Chapter I.

3.   Throughout this section we shall mainly deal with metabelian groups.

The first four lemmas are known, and hence their proofs will be omitted.

Lemma 3.1.   Let  G  be any group, and let x and y  be any two elements of G.

Then

(i)  [x.y-A = í[x.y]-ly~\

(ii) be-1. y] = ([*. y]-lr~

(iii)  [x-\y-1] = [x,yYxy)-1

Lemma 3.2   (P. Hall).   Let  G  be any group, and let x, y and z  be arbitrary

elements of G.   Then

[x,y-\ z]y[y,z-1,  x]z[z,x-\y]x = l.
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Lemma 3.3.   Let  G  be any group, and let x, y, and z  be arbitrary elements

of G.    Then

(i) [xy, z] = [x, z]y[y, z],

(ii)  [x, yz] = [x, z] [x, y]z,

(iii)  [x, y]    = [x, y] [x, y, z].

Moreover, if G  is a metabelian group, then

(iv)  whenever x £ y2G, xyZ - xzy,

(v)  [xr,yS] = [x,y](l+x+-+xr-1)il+y+--+yS-1)

where  r and s are positive integers.

Lemma 3.4.   Let  G  be'any metabelian group, and let x and y  be any two

elements of G.    Then [y, kx, ly, mx] = [y, (k + m)x, ly]  where  k > 1, / > 0  and

772 > 0.

Proof.  The proof can be found in H. Neumann [9, p. 96].

Lemma 3.5.   Let  G  be any residually nilpotent metabelian group.    Let g  be

an element of y2G, and let  h  be any element of G.   If we write  g = 1 L"^_ t g  where

g. £ y  G  (i > 2), then

a) [g,h] = n~=2[gi,h],

^8h = K=28hr

Proof.  Using Lemma 3.3 and the fact that  y2G is abelian, we get

(1) [g, b]=Y[ [8¿- *]   modulo  yn+2G      (n > 2).

i = 2

Hence,  (n*=2 ig -, h])~   [g, h] £ y   +2G  (72 > 2).   Thus, (i) is proved.   The proof

of (ii) is similar, and hence is omitted.

Before stating the next lemmas, we shall introduce certain notation.

Let   G be any group, and let  x be an arbitrary element of   G.   If  k and  / are

any nonnegative integers, let  a(ze, /, x) denote the following element of Z(G),

the group ring of   G over the integers:

a(0, i, x) = x1     for all   i > 0

and inductively,

/-I

a(k, I, x) =    V*     a(k - I, i, x)     for all  k > 0 and / > 0,

i=k - I

where, our convention is that  S T, _, a(k — 1, i, x) = 0  if  / < k.   Thus,

a(k, I, x) = 0  whenever   I < k.   Moreover, one should observe that  a(k, k, x) = 1

for all  k>0.

Next, we shall denote by   772(s, /), where  s >0, t > 0, the following nonnegative

integer:
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772(0, /) = 1     for all   t > 0,

and inductively,

i(s, t) =    JA     m^s - L *•     for a11  s > 0 and   / > 0

i=s - 1

and again our convention is that whenever  / < s, 2."  _j w(s - 1, z) = 0.   Thus

722(5, /) = 0 whenever  t < s.   Furthermore, it can easily be checked that  77z(s, s) = 1

for all  s > 0.

Now we are ready to proceed with the lemmas.

Lemma 3.6.  Let  G  be any metabelian group.   If x., x~, • • • , x    and z are

arbitrary elements of G such that  n>2, then

[x,,x2, ... ,xn]a(k-l-z) = [xvx2, ... ,xJm(k-l)[Xi, ... tX^z]«(k + l,l,z)

where  k > 0  z772zi / > 0.

Proof.  The proof is by induction on  k.   If  k = 0, we must show that

[x     x     ■■■     x ]a<-°d.z)l*j, x2, , xn\

a) -[x      x      ■•■     x]mi0'l)\x     x      •••     x      TyMl,l,z)
- L*j, x7, , xn\ \_xv x2, , xn, z\

By definition we get

(2) a(0, /, z) = zl

and

(3> a(l, /, *)-¿   a(0, i,z).

z=0

We observe that if  / = 0 equation (1) holds trivially.   Thus, assume that   / > 0.

Using Lemma 3.3 and equations (2) and (3) we get

t*p *2>  "• » XJ   = [xl>*2'  ■■■ ■ *.JÏ«ll *2> ••* ' Xn> Z¡]

= [*1,*2, ■■■ ,xn][xx,x2, ■■■ ,xn,zY+z+-^1-1

= [xpx2>...IxJU1,x2> ..■>V^UW.

Thus, equation (1) holds.   Next, we shall assume that the result holds for some

fixed   k > 0, and we shall prove that the following identity holds:

[x      x       ...      X   ]^k+1-1-^

(4) -ix  x  ■■■ x r(fe+1-nr*  x  ... x zia^+2d.z)
-L*l»*2' '     77J l*\,x2' '     n'     J

Using the induction hypothesis and the fact that y2G is abelian, we get
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v/ — 1

[Xi,x2,...,xn]^'l^ = [Xl,x2, ...,xn]    -*

(5)
~Lkm{k,i) E^ou+i.i.*)

= \_X j, X 2 ,  * * *  , X ̂ J ^]j ^2'  '"   ' xn' z^

By definition we know mat

/-1

(6) V   mík,i) = rnik+l, I)
ímé

i=k

and

/-i i-\

(7) y a(/e+ 1, i, z)=   y   aU+.l,¿,x)«aU + 2,í,i).

z=/e z=fe + l

Now, equation (4) follows immediately from equations (5), (6) and (7), and thus the

proof of the lemma is complete.

Lemma 3.7.   Let  G be any metabelian group.   If x., x-, ..., x    and z  are

arbitrary elements of G such that n > 2, then

[xl,x2,...,xri]zl = Yl[xl,x2, ■■■ ,xn, izTU'l)

z = 0

where   / > 0.

Proof.  The proof is by induction on   /.   Suppose   1=0.   Then

[xvx2,...,xnr0 = [xl,x2,...,xn]^0-0)

because   t/z(0, 0) = 1.   Next, we shall assume that

(1) Mxx,x2,--.,xn]zi = Y\[xl,x2,--.,xn,izTU'i)    for;</,
.=0

where   / is a fixed positive integer, and we must show that

(2)     E*i.*j.----i*j*/+l-n [xi'*2' ■■■ •*•• «im<,v+i)-

7=0

We first observe that by definition z   = a(0, /, z).   Thus, using Lemma 3.6 we get

[Xl,x2,...,xy + l--ix,,«2,---,xn]^^^

(3) -ul.x2,....*lirl0-l+1)t«l.*a,-.v*la(l,m,*î

I1.   n a(0 ,j,z)

^xl,x2,...,xnr^^Axvx2,-..,xn,z]   '=°

Using the induction hypothesis, equation (3) and the fact that  y2G is abelian, it

follows that
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.1 + 1
[x      x      ■■■     X   ]z        - \x      x      ...      v  1"7(0./ + 1)LXj, x2, , xn\ _ LXj, x2, xn\

•nn[*p^-'V<i+i^(i,'!
(4)

[*,,*„ •••,*_:r<0-m)
1'    2

TT I f     i\ 1^7=1 m(l';)
\lxx,x2, ■■■ , xn, (i + l)z\   J

2=0

By the definition, we get

/

(5) mii+l, /+1)-jT ttz(z, /).

7=1

Hence it follows immediately from equations (4) and (5) that

L*i 7 x2 '  '        > x„l ~ fX I' x2'  ' ' '  ' Xn

I

(6) ■ fi [x,, x2, ... , xn, (1 + i)zT
2=0

(I+1./+1)

/+1

n
1=0

nfc1.*2,...,v«i",<,,,+i)

and the lemma is proved.

Lemma 3.8.   Let  G  be any metabelian group.    If x and y are any elements

of G, then

[y, mx, ny]xl = J| [y, (m + i)x, ny]m{i'l)

2=0

where  m > 0, 77 > 0  zztízÍ  / > 0.

Proof.  The proof of this lemma follows easily from Lemmas 3.4 and 3.7.

4.  In this section, we shall deal with parafree groups of rank 2 in the variety

of all metabelian groups.   Using the ideas developed in §2, it is easy to see that

if a and   b are a parabasis of  P, then every element  p  of  P can be written

uniquely (modulo permutation of the commutators) as follows:

zeo, 0,^0,1       TT r,     _ ,1^772,72.
p = a     '  b lb, ma, nb\ ;

77z> 1;t¡>0

here   kQ 0, k^ ,   and  & (for  772 > 1, 72 > 0) are any integers.   This representa-

tion of elements of  P will be used repeatedly in this section.
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The following lemma is essentially well known [7].

Lemma 4.1.  Let  P  be a parafree group of rank 2 in 21  .   If a  and b form a

parabasis of P, then

[b, ma, nbl  ~    = I I [b, ma, (n + i)b]

2=0

where  m > 0 and tz > 0.

Proof.  We shall first show that for an arbitrary positive integer  k the follow-

ing identity holds:

(D      [b, ma, nb]b~l =  f\    [b, ma, (n 4  i)b](-1}' • ([b, ma, (n + k)b](~ l >V~ '.
z=0

The proof of equation (1) is by induction.   Suppose   k = 1.   Then we must show

that

(2) [b, ma, nb]b~: = [b, ma, nb]([b, ma, (n + l)b]~l)b~l.

It follows from Lemmas 3.1 and 3.3 that

[b, ma, nb] = [b, ma, nb][b, ma, nb, b~  ]

= [b, ma, nb]([h, ma, (72+ l)b]~l)b~1.

Next, suppose equation (1) holds for an arbitrary fixed   k > 1.   Then we shall

show that

l(-l>*+i\»-1.

[b, ma, nb]b~    = JJ [b, ma, (n + l)b](

(4) ¿=0

■ ([b, ma, (n + k+ l)bf~ ¡ )K ' ')*

Using the induction hypothesis, Lemmas 3.1 and 3.3 and the fact that y2P  is

abelian we get

[b, ma, nb]b~l =  f[ lb, ma, (n + i)b](-1}' . ([/>, ma, (n + k)b](~l)k)b~l

i=0

A- .   ...- .... 7.

(5)

J lb, ma, (n+i)b](-l)'[b, ma, (n + k)b, fc-l]<-D*

7 = 0

Y[lb, ma, (n+i)b](-l)'\([b, ma, (n + k + l)b]-l)b~L \{~l)K

7=0

J] lb, ma, (n + i)b](-lY ([b, ma, (n + k + l)b](~ l )k + 1)b~ l.

7=0
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Thus, equation (4) holds, and hence equation (1) is true for all  k > 0.   Since the

commutator  i[b, ma, in + k)bY~1^  )b~     belongs to y   +  +i+kP, it follows

immediately from the definition of an infinite product that

[¿z, ma, nb]h~    = f] [b, ma, in + i)*](~n\

z=0

and thus the lemma is proved.

Corollary.   Let  P  be a parafree group of rank 2   in ci .   If a and b form a

parabasis of P, then

oo

[b, ma, nb, b~l] = J J [b, ma, in + z')/z](_1)!.

z=l

Proof.  The proof follows immediately from Lemmas 3.3 and 4.1.

Lemma 4.2.   Let  P  be a parafree group of rank 2   in u  , with a and  b as a

parabasis.   Then

oo

[b, ma, nb, kb~   ] = T T [b, ma, in + i)b]  l

i=k

where  m > 0, n >0, k > 1   and the  ¡i. are integers depending on k.

Proof. The proof is by induction on k. If k = 1, then the statement of Lem-

ma 4.2 is reduced to the statement of the corollary of Lemma 4.1. Thus, suppose

the lemma holds for an arbitrary fixed  k > 1.   Then we shall show that

oo

[b, ma, nb, ík + l)¿z_1] = [b, ma, in + i)b]

Z = /6 + l

for suitable   772 > 0, 72 > 0, k> 1   and  il . £ Z.   Using the induction hypothesis,

Lemma 3.5 and the corollary of Lemma 4.1, we get

[b, ma, nb, ik + l)b~A = [b, ma, nb, kb~l, b~l]

{

■ w

=     n^' OTfl> in+i)bfl, b~l

i=fe
J J [b, ma, in + i)b, b     ]

OO    /     00 V „ . 00

= Il    n[è' rna,in+i + j)bf-l)')'    =    J|    [b, ma, in + l)b]Pl,
i=k \7=1 / /=£ + !

where  p. = S +._,. .^   >ki-l)'p...   Clearly, p. £ Z, and hence the lemma is

proved.

Lemma 4.3.   Let  P  be a parafree  group of rank 2 in u  , with a and b as a



326 YAELROITBERG [November

parabasis.    Let p  be an arbitrary element of y2P.   If we write

(D P=      u       lb, ma, nb]km'n\_b, ma, nlf

and

pbS =      H       [b, ma, nb\m-n,

(2) 772>0;„>0

where  k       , I and s  are integers, then  k    n = /    n   for all m.
772 ,72 772,72 ° 772,0 777,0     '

Proof.  We shall first suppose that s > 0.   Using Lemmas 3.5 and 3.7 and

equation (1) we get

H       [b, ma, nb]km-"Y =     J\       ([b, ma, «è]**)*«»'"

2>0;„>0 / 72>0;„>0— ' -

(3) =     Yl       lf[[b,ma,(n+i)b]mU-sJm-n
m>0;n>0\!=0 /

=      u        X\lb,ma,(n+i)b]km-»-mU-s).

722>0 ;n>0    2=0

Now, we observe that the infinite product,

J]       Y\lb,ma,(n+i)b]km-n-mUlS)

m>0;n>0  i=0

contains a commutator ending with an a if and only if  72 = 0.   Furthermore, if

72 = 0, the commutator [b, ma] appears to the power  k    n • 772(0, s) = k    n, forrr r 772 ,0 772' 0

all  7?2 > 1.   Using the above fact, Lemma 2.1 and equation (2), it is clear that

k     „ = /     n  for all  7T2 > 1.
777 ,u 777 ,0

Next, suppose  s < 0, and put   t = - s and  c = b     .   Then, as in equation (3)

we get

pbS = p(*~1>-s = pct

(4) =      J]        X\lb,ma, nb,  ic]*™.»"*1'^
7>0;„>0  ¿=0

u      f[lb,ma,nb,ib-l]k"'-»-mU-l)
72>0;t7>0    7=0

Using Lemma 4.2 and equation (4Ï we get

pbs- n n(nt*.-«'.t»+;)^«Y---,"(,'-'>,
777>0;n>0   ¿=0 \j=i )



1972] SOME RESULTS ON PARAFREE GROUPS 327

where  p..  . (;'> 1) are integers such that  p0 n = 1   and p.. Q = 0  whenever  /'> 0.

Thus, we observe that the infinite product on the right-hand side of equation (5)

contains a commutator ending with an  a if and only if  72 = 0.   Furthermore, if

72 = 0, then the commutator  [b, ma] appears to the power   k     Q ■ 722(0, t) = k    Q,

for all  7/z > 1.   Thus, as in the previous case, it follows that  k     n = /    n  for all

7?z > 1.   Hence the lemma is proved.

Lemma 4.4.   Let P  be a parafree group in ?I     of rank 2, with a and b as a

parabasis.   If

P = bs      Y[       [b,ma,nbfm'n,
m>0;n>0

then p     = bs[b, a] '    • H commutators of higher weight, where s > 0, and t > 0.

Proof. We first note that  p a bs[b, a]     '    modulo y,P.   Thus, using Lemma

3.3 we get

pal = bs[bs, al]i[b, a]*1'0)"' = bs[b, a]sl[b, of1'0

= bs[b, a]Sl+kl-°     modulo  y^P.

o ut • JHence the lemma is proved.

5.  Lemma 5.1.  If we put

f U) = {*-(«- 0!"/b!' 72

where x £ R  and n  is an integer > 0, then min, t) > / it) for all t > n.

Proof.  The proof is by induction on  72.   Suppose  72 = 0.   Then we must show

that

(!) 772(0, f) > /00)    for all  />0.

But, by the definitions, we get

(2) 722(0, /)= 1     for all  t >0

and

(3) /0(/) = it + l)°/0!  = 1     for all  / > 0.

Now, equation (1) follows immediately from equations (2) and (3).   Next, we shall

assume that the lemma is true for an arbitrary fixed  72, and we shall show that

(4) 722(72+ 1, t)>fn + 1it)    for all  / > 72 + 1.

We first observe that / ix) is an increasing function for all x > in — l), and thus

the sum, 2'."    / (z) (/ > 72), is an upper approximation of the integral   f'~_xf ix)dx.

But
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în-\   fn{x) dx = / 111  ----nl-dX

u:u-i)r*lT"1   it-n)-+ir+1T
(/2+1)!        J„-l (72+1)!

Using the induction hypothesis we know that

(6) / (i) < 7/2(72,  2)    for   z > 72.
' 7Z — —

Thus, using the upper approximation together with equations (5) and (6), we get

(t-n)"+1       i~l t-l

(7) __-_ <   y   / (2) <   y   772(72, z) = min + 1, t)
in+ 1)1   -  ^     n      -   *->

i=n i=n

for all  / > h + 1.   But, by definition,

(8) /n + 1(z) = (/-72)" + 7(rz+l)!.

Now, the lemma follows immediately from equations (7) and (8).

Lemma 5.2.   If we put gAx) - 1  and g ix) = x"/t2!, where x £ R and n  is an

integer > 0, then g it) > min, t)  for all t > 72.

Proof.  The proof of Lemma 5.2 is similar to the proof of Lemma 5.1 and hence

is omitted.

6.   Lemma 6.1.   Let  P  be a parafree group in the variety  v- .   If N  is a nor-

mal subgroup of P such that  N < y2P and \P/Ny2P\   is infinite, then either N - 1

or N  is not finitely generated.

Proof.  Suppose   N / 1   and   N  is finitely generated.   Since  y~P is a torsion

free abelian group, N is free abelian of finite rank.   Now, let  a be any element

of   N different from the identity.   As the center of  P is   1, it follows that there is

an element  b oí P such that  [a, b] /. 1.   Using a theorem of G. Baumslag [3] it

follows that

H=g?iab'\i = 0, 1,2, ... )

is free abelian of infinite rank.   But  H < N, and hence we arrive at a contradiction.

Thus, the lemma is proved.

Lemma 6.2.   Suppose Theorem I   is true whenever P  is a parafree group of

rank 2.    Then Theorem I is true for an arbitrary, noncyclic, parafree group  P.

Proof.  We shall first assume that  P¡Ny2P is periodic.   Then, since

\P/Ny2P\   is   finite,  it follows  that   P   is  of infinite rank.   Let  77 be the natural

homomorphism of   P  onto  P/y2P.   Then,  clearly,  it  is enough to show that  Nr¡
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is not finitely generated.   Next, suppose   Nr, is finitely generated.   Then,   Pr,/Nr,

is not periodic, because   P77  is a free abelian group of infinite rank.   Thus we

have arrived at a contradiction.

Next, we shall assume that P/Ny2P is not periodic. Using Lemma 6.1, it

is enough to consider the case when N is not a subgroup of y2P. Now, suppose

N  is finitely generated.   Then using the basis theorem for free abelian groups,

there exists a parabasis, X, oí  P and a finite subset, {*,,•••,*   S, of  X such
. aia2 "ar7

that the group  Ny2P is generated by the elements  x.    , x2   , • ■ ■ , x       modulo

y2P, where  a . £ Z  (i = 1, 2, . . . , 72).   Furthermore, since   P/Ny2P is not periodic

and   N is not a subgroup of  y2P, it is easy to see that  X and its subset

\x., • • • , x  \ can be chosen so that a. = 0, a2 ¿ 0 and  %2     jt y2P.   Now, put

(1) K=gpp(x\ix], xA)

and

(2) ]=Ç)ynP.K.

Using a theorem of G. Baumslag [3], we know that   P/J  is a parafree group of

rank 2.   Let  p. be the natural homomorphism of  P onto  P/J.   Then, it is left to

show that

(3) Nu ¿ 1

and

(4) \pp/Nuy2iPp)\     is infinite.

We shall first show that equation (3) holds.   We know that there exists an

element  n of  N such that  72 = %2     • p' where   p' £ y2P.   Now, P/K/yAP/K) is

free abelian of rank 2, freely generated by  x.K and  x2K modulo y2(P/K).   So

let p be the homomorphism of  P'/'K/y2(P'/'K) into  P/y2P defined by

x.K • (y2(P/K))p = Xiy2P       (z = l, 2).

Then, clearly, n ■ K(y2(P/K))p ¿ 1   and thus   72 / y?P ■ K Dj.   Hence   Np f= I.

Next, we shall prove (4).   Let  v be the homomorphism of  P/'J/yAP'/'j) into

P/y2P defined by

x1]yy2pn)v = xiy2p   (¿ = i,2).

Now clearly

(5) \(Np) . (y2(P/]))\v = \gp(xa22J) . (y2(P/J))\v =gP(xa22 . y2P).

Suppose  %j  • / £ (Nu) ■  (y2(Pu))   for some     k ¿ 0.   Then using equation (5) we

get x,y2P £gp(x2    y2P)-   But  x.   and  x2  are independent modulo  y-,P.   Hence

Xj/j / (Nfi) ■ (y2(Pu))   for all   k ¿ 0, and thus (4) is true.
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4.7. Lemma 7.1. Let P be a positive group of rank 2 in the variety  &  .    If N  is a

nontrivial normal subgroup of P such that  \P/N • y2P\   is infinite, then N  is not

finitely generated.

Proof.  It follows from Lemma 6.1 that we can assume that  N is not a sub-

group of y P.   Thus Ny.P/y2P / 1.   Using the basis theorem for free abelian groups,

it follows that we can choose a parabasis, \a, bl, of  P such that  aT and   bs,

where  s  and  r are integers, generates   N • y-.P modulo y-¡P■   Since   Ny2P/y2P /

1   and    \P/Ny2P\    is infinite,  without   loss   of generality we shall assume that

s / 0 and  r = 0.   Furthermore, we shall assume that  s > 0.   Suppose  N is finitely

generated, i.e. suppose

(1) H = gpihlt ... , hk).

Clearly  h. = b     ' h. , where   n. £ 7, and   h .   £ y2? for all  1 < i < k.   Since   bs ■

y2P is an element of  Ny2P/y2P, there is an element  p of  N such that  p = bsp',

where   p' £ y-¡P-   Put

(2) g¿ = íp)   "' h.    for  1 < i < k.

Clearly, g. £ y2P for  1 < z < k.   Using equations (1) and <2) we get

(3) n = gpíhv - - - , hk) = gVíp, gv . . - , gk) = g?íp) . gpigf, ... , gbkSt \t £ Z).

Now, the proof of the theorem is broken into two cases, depending on whether   k =

0  or  k ¡¿ 0.

Case 1. Suppose  k = 0.   Then  N = gp ibsp' ).   Since  N is a normal subgroup

of  P, the element  pa   belongs to   N.   Thus we must have

(4) pa = pl    where   / £ Z.

We also know  that  p = bsp'  can be written as follows:

(5) p = bs      I]        [b, ma, nb]km-n,

Z72>0;rz>0

where   k        £ Z.   Using equation ^5) and Lemma 4.4, we get
zzz.zz °      ■

(6) p" = bs[b, a]S+kA°     modulo y^P.

Moreover, pl = bls  modulo y2P.   Hence   /= 1.   Thus, by equation (4)  pa = p

modulo y,P.   But this implies that  s = 0, and thus leads to a contradiction.

Case 2.  Suppose   k -/ 0.   Then

(7) N = gp(p).gp(gf, ...,gf |/eZ)

where  g . e y2P, 1 < i < k.   Put

Ai)
(8) g¿ =   Yl   [b> ma<nh^m,n   for 1 < l - k>

m>0;n>0
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where   /(,)    £ Z, and

,(.',()

k.

<9> gf =     Yl        [b, ma, nb]m-n
772>0;72>0

where   t1'1   £ Z.   It follows immediately from Lemma 4.3 and equations (8) and (9)777,72 ' ^ v

that fl) „ = r   «    for all  772 > 0, 1 < z < fe and  / e Z.   Next, we shall show that for
772 ,0 772 ,U ' —        — '

at least one   i, 1 < i: < ze, /,„ / 0.   Since   pa £ N we can write

,     s        z s. t ij

do) ^^'niK

where  Z.  ., r. and   / are integers.   Using equation (6) and (10), it. follows that

/ = 1.   Moreover, using equations (9) and (10), we get

(11) pa = bs[b, a]   l'°      i=l   '' l'° -JJ commutators of higher weight.

On the other hand, using Lemma 4.4, we get

(12) pa = hs[b, a]S     ',0 • TT commutators of higher weight.

Hence, the following identity holds

(13) *«£'/&
2=1

But  s fí 0, and so there is an   i, I < i < k such that   /j'¿ ^ 0.   Without loss of

generality we may assume that / ,  „ f= 0.   Next, we shall write the element  g",

(u > 0)  in two ways.   We shall then derive, for each   u, a system of linear inhomo-

geneous equations by comparing the two different representations of g.   .   On the

one hand, using Lemma 3.5, we get

(14) «f = (    II        lb, ma, nb]m-\aU =     U        (lb, ma, nb]^)^.

\777>0;72>0 J m>0;n>0

Using equation (14) and Lemma 3.8, we get, for every   zz > 0,

*î"-    Il        \f[lbAm+i)a, nbr«-«*\n'n
772>0;„>0 \I=0 I

k + l Xj       ,(D      ,.     .     .
= TT ib,jar^l'-°M,-i'u)

(15) *i

/   u v/l)
( J] [*, (m + i)a, nb]mU-u)\ m'",

m>0;„>0 \z=0 J

(772+ i,  n)  £\(1, 0),  ... (k+  I, 0)\.

On the other hand, since   N is normal, we get
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where   u> 0   l    £ Z, r.     e Z and   /.  . e Z.   Since  g,  e y,P, it follows that  /   =
'    u i,u i,i öl       ' 2    ' u

0 for all  Z2 > 0.   Thus, using equations (9) and (16) and Lemma 4.3, we get

«r=niî n [*. ~. •«I-:"W
i=l   7=1    Z7z>0;n>0

* + l Y*      ,<«"> , ze    '«.» Al,'Ui)

(17) - TT   ([*. /BP«1 '-0   <•«) A fi      II l*' "■• M m'n      '
y=1 z=l   y=l   zzz>0;rz>0

(772,72) /Kl, 0),  ...  , (ze+ 1, 0)|.

Using equations (15) and (17) and Lemma 2.1, we get for each   22 > 0 the follow-

ing  k + 1   equations:
.

(18) £i.ori.„-L,!,o"</-<.iO    for ;=1,2, ...,*+l.
1=1 ¿=1

Now, consider a real vector space of dimension  k, generated by   i, u, i = 1, 2, • • .,

k.   Then the   k + 1   vectors  ~2k  n P.A r.      (/' = 1, • • • , k + l) must be linearly
l—XJ    j ,0    l,u      '

dependent.   Hence, there exist nonzero real numbers   72., ••• , 7Z,+1   such that

k + l k

Ü?) Tn-T^r.    =0.
,=l    1=1

Using equations (18) and (19), it follows that

(20) £   »/¿Jilo«*/-« ") = 0-
,=1     ' z=l

Next, we shall show that if  zz is sufficiently large, equation (20) does not hold.

It follows from Lemma 5.1 and 5.2 that whenever  u > 0,

(21) é-yij - z)! > z/z(; -1, u)>\u- (7 - i - DV^/if - *)h

We first note that for every  22 > 0  we get

fe + 1

E
z=2 , = 1 z=l

k

<

(22)

"k*i\ Z \0 mik +1 - i. u) + £ i«,.| 2: |/$i ■*/ - «• «>
,=2 z=1 !=1= 2

¿fc + i

<Kn!  Z^'o1
,,/i + l-i

= 2

fe+1

=2

7 z=l Z=l(k+l- i

y=i z=i
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Using equation (22), it follows immediately that there exist positive integers   K.

and N    such that whenever  u> N    we get

(23)
fe + 1

»kn Z l\ !o m(k + i- i, u) + £ «. JT /< ;> «(/ - z, „)| < Kl *
z'= 2 7= 1 2 = 1

/e-1

Moreover, we note that

(24) U       /U>í^«<*.«)i>i-*+i'í3i-("'
ze!

Put   h^ + r^^l = K2.   Then  K2 ^ 0 because  77fe+1 ̂  0  and  /j1^ ^ 0.   Next, we

observe that there exists a positive integer, /V2, such that  N 2 > A/,   and such that

whenever  u > N? we get

(25) K2((a-/fe)*/*0>Klli*-1.

Thus it follows from equations (23), (24) and (25) that whenever  u> N 2  we get

ze+1

z
7=1

L «/£ 4 !b *</•-'■.«)

(26)

7=1

>l«fc+l'í¡0"í*-  «>l

kn -1)

"zfe+i Z Zi ,o "<* + !- «■ «) + ¿ 7 Z '/ o w(> - ''' "}
J=l z=lz = 2

>K9^-Z_^---K1^-1>0.
-    2       k\ '

Hence, equation (20) does not hold for every  z/ > /V       Thus Lemma 6.1, and hence

Theorem I, is proved.

CHAPTER II

1. In this chapter, we shall generalize a theorem of G. Baumslag, B. H.

Neumann, H. Neumann and P. M. Neumann [6] concerning free groups in the

variety of all metabelian groups to parafree groups in any variety larger than the

variety of all metabelian groups.    Precisely, we shall prove

Theorem II.   Let  P  be a parafree group in any variety 5ß  containing the

variety 21    of all metabelian groups.   If x and y are any two elements of P which

are independent modulo y7P, then there is no element z £ P such that [x, y] =

Zm,   722 >   1.

Proof. Let us assume, to begin with, that the theorem is true whenever  P is a para-

free group of rank 2 in 21 .   We shall return to this important special case later.
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Let now   P be an arbitrary noncyclic parafree group  P in  21     and suppose

there exist elements  x, y and  z oí  P  such *:hat  x and  y are independent modulo

y2P and [x, y] = zm for some m > 1. Now, since x and y are independent modulo y2P, there

exists a parabasis  X of P which includes two elements a and b such that x and y lie

in gp(«, b) modulo y-¡P.   Next, let

(D K = gpp(X\ia, ¿})

and

(2) / = D iynP ■ K).
n

Using a theorem of G. Baumslag, we know that   P/J  is a parafree group of rank 2.

Now, if T] denotes the natural homomorphism of  P onto  P/J, then, clearly  xrj

and  yq are independent modulo  y2ÍP/]) and  [xr/, y7/] = ízr¡)m, where   772 > 1, thus

leading to a contradiction.

Next, let 93 be any variety containing 21 and let P be any noncyclic para-

free group in 93. As before, suppose there exist elements x, y and z of P such

that x and y are independent modulo y2P and [x, y] = zm for some m> I. Now

let

<» }-C\iynP.y,P).
n

Then it is easy to see that  P/J  is a noncyclic parafree group in  21  , i.e. is of

the type just considered.   But notice that if  77 denotes the natural homomorphism

of   P  onto  P/J, then  X77  and  yr\ are independent modulo y2ÍP/j) and  [xji, yn] =

izrj)7", 772 > 1, and thus we have again a contradiction.

It remains to consider the. case where   P  is a parafree group of rank 2 in 21   .

We shall require a number of technical lemmas.

Lemma 2.1. Let  G be any metabelian group.   If x and y are arbitrary ele-

ments of G, then

s     I   t \m(j,s)

[y. *]y*x = n (n [y-(1 + l)x' iyîmU,!))

,=0  \i=0 )

where s > 0  and t > 0.

Proof.  Using Lemma 3.3 of Chapter I we get

(1) [y, xYSxt = [y, x] [y, x, yV] = [y, x] [y, x, A] [y, x, y*]*'.

Using equation (1) and Lemmas 3.6 and 3.7 of Chapter I we get
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[v.   X]y   X     =   [y,   x]   Y[ [y,   (1   +   l)x]m(Í-t)[Y\[y,   x,   jyY»U.s)

*i V=i
7 s

= 17 [y- (1 + 'W™1''''1 Í7(ty' x> fyV')m(j's)

7=1 /

;=l2=0

(2)

J.  r ...   _£_   /   Z \772(;,s)

= n [y- d + 'Wn,u) fi (IT [><(1 + l)x> iy^'-0]
*=° 7=1   \z=Ü I

s     /   t \ mij.s)

=n in[>'(i + z)*< /y]w(i'<)]
7=0 7=0 y

Thus, the lemma is proved.

Lemma 2.2.   Le/  G  èe zzTzy metabelian group.   If x and y are arbitrary ele-

ments of G, then

LI s     /   1 \Mj.s)

lyk.xl] = H nfTTMl + iV./yrM
0<s</V-l;0<z</-l  , = 0  \/=0

where   k > 0  zZ7Zi/  / > 0.

Proof.  Using Lemma 2.3 of Chapter I and Lemma 2.1 of Chapter II we get

[/.*'] = [>. x](1+v+-+y^-I)(i+x+...+^-i)= j-j [y,x]ySxt

0<s<k-l;0<t<l-l

0<s<k-l;0<t<l-l  ; = 0  \,=0 /

772 (7, s )

Hence, the lemma is proved.

Lemma 2.3.   Let  G  be any metabelian group.    If x and y are elements of G

such that

(i) x=s[ n «z
¡ = 2

and

(2) y=*tm
7 = 2

where g. £ y G and h. £ y G, i > 1, and I, k > 0, then
°! ' 1 I '  I —      *

2 fe00 *        00 1, 00 re

[x.y]=[g^tincin^1 miK1
2=2 2=2 2=2
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Proof.   Put

(1)

and

(2)

n
z=2

z=2

Clearly  g'  and   h     belong to  y2G.   Now, using Lemma 3.3 of Chapter I and the

fact that  y2G is abelian we get

[x, y] = [g[g>, h\h'] = [g\, A*][g(, h'][gl¡ ¿*]

= [g/1,^](¿'-1)gí/z'g'-1g'At.

Using Lemma 3.5 of Chapter I we know that

(4) '-^fk1
i=2

and

oo

(5) /z'-^TT/,-1.
ztt     '

Thus, using equations (3), (4) and (5) and Lemma 3.5 of Chapter I we get

oo _o oo oo oo        z,/fc

z=2 z=2 z = 2 z'=2

(6)
OO ' OO L ^ .OO OO

-&v%.ti*; in¿1 ¡tin*?1-
z'=2 z'=2 z'=2      ¡=2

Thus, the lemma is proved.

Now we are ready to proceed with the proof of Theorem II.

Suppose then that there exist elements  x, y and  z oí P  such that  x   and  y

are independent modulo  y-.P and  [x, y] = zm  for some   ttz > 1.   Without loss of

generality, we may assume that   m is a prime.   Now, clearly, z  must lie in y2P.

Furthermore, since  x and  y are independent modulo  y-,P, there exists a para-

basis, consisting of elements   a.   and   b.   oí  P, such that

(1) y = a.      modulo  y2P,

(2) x = a\b\    modulo  y2P.
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By a theorem of G. Baumslag [4], we may embed   P  in a parafree metabelian

group  P so that a.   has a /eth root  a  in  P and  zz, b,   is a parabasis for P.   So

in  P we find

_
y = ar       modulo y2P,

x = askb\ = (a5^)*    modulo y2~P.

Moreover the elements   a and   b = zzsf7.   form a parabasis for  P and we have,

setting  / = rk,

*■    / y = zz       modulo  y2?,

(2') x = bk    modulo  y2P,

with  r, s, t positive integers.   Thus it follows from the discussion in §2 of

Chapter I that  x and  y can be written in the following way:

(3) y = al [b, ma, nb]lm'n,

m>0;n>0

attnd

(4) x = bk     H       lb, ma, nb]km-n.

m>0;n>0—

Using Lemma 2.3 of Chapter II we get

[x, y] = [bk, a1]     Yl       (lb, ma, nb]bk)~lm'n .      J|       ([b, ma, nb]al)km-n

C5S 772>0;72>0 772>0;t2>0

•     W        lb, ma, nb]lm-n      JJ       [b, ma, nb]~km'n.

m>0;„>0 m>0;n>0

Now, it follows from equation (5) and Lemmas 3.6 and 3.7 of Chapter I and 2.2

of Chapter II that

772(7, s)

[x, y] =

0<

s    /   t . m(],s)

n    x\(x\ib, (i+»a, jbT^A
<s<k-l;0<i<l-l  ,=0  \,=0 /

■ n (tíu. >>".{«+í,br«A~imtn
//-\ 772>0;n>0 \|-=0 /
\KJJ —

• II      [Y\lb, (m + i)a, nb]m{i-l)\
772>0;t2>0   \2 = 0 /

• Y[      [b, ma, nb]'m'n       J|      [b, ma, nb]'^-".

772>0;r7>0 777>0;t7>0

Since we are assuming that  [x, y] = zm where   ztt  is a positive prime, the expo-
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nent of each commutator  [b, ma, nb] ón the left side of equation (6) must divide   tzz.

However, we shall show that this is not the case.

Define a positive integer  y as follows:   If  m   \ 772(1, /), put y = 1.   If

772 I 722(1, /), let  y be the least positive integer such that  772 -f miy, I).   Since

?72(/, /) = 1, it follows that y exists and  1 <y<L

Similarly, define a positive integer <5 as follows:   If  m A mil, k), put ¿> = 0.

If  772 I 777(1, k), let 8 + 1   be the least positive integer such that  772 A mi8 + 1, k).

Again, since   mik, k) = 1, it follows that 8 exists and  0 < 8 < k - 1.

Now, we shall show that the exponent  e oí the commutator  [b, ya, 8b] on the

left-hand side of equation (6) does not divide   z/z.   Using equation (6) and the

definition of  7zz(s, /) we   get

S

C= Z 772(y-   1,   Z)772(z3,   S)   -   ^/y_s_; 7/2(2,   Zfe)

0<t<k-\;0<s<l-l i=0

7-1

+ Z    ky-iAm(~1- l)+ ly 5- ky 0

1=0

k-i 1-1 s -y-i
r7>        = £   zzz(y - 1, t) £  mi8' s) - Z ly, i-im{h k)+ Z   ky-iAm{l- l)

f = 0 s=0 z=l z'=l

S 7-1

= 7?z(y, k)mi8 + 1, I) - Z ly¡h-lmi'- ti + Z   ky-i,° m^' ®"
z=l ' z=l

Now by the choice of y and  z5  we know that  m does not divide   7Z2(y, k)mi8 + 1,1)

but  772 does divide every other term on the left side of equation (7).   Thus   772

does not divide  c and the lemma is proved.
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