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ABSTRACT.    This paper characterizes commutative semigroups which admit a

greatest group-homomorphism in various ways.   One of the important theorems is

that a commutative semigroup S has a greatest group-homomorphic image if and

only if for every  a£S there are b, c£S such that abc = c.   Further the authors

study a relationship between S and a certain cofinal subsemigroup and discuss

the structure of commutative separative semigroups which have a greatest group-

homomorphic image.

1. Introduction.   In the study of semigroups it would be natural to find a rela-

tionship between semigroups and groups by some means.   This is our intention in

studying group-homomorphisms or group-congruences.   Many mathematicians have

already studied characterizations of group-congruences  on a  semigroup in terms

of certain subsemigroups  (oJ, [7], [13], [14], [16]).   We are mainly interested in

the greatest group-homomorphism on a commutative semigroup.   However it does

not exist in general.   Accordingly the following questions are raised:   Under what

condition on a commutative semigroup S does there exist a greatest group-homomor-

phism on S?   What is the structure of S admitting a greatest group-homomorphism?

The "external" characterization of those semigroups, i.e. in terms of their homo-

morphisms to other semigroups, is easy, but the "internal" characterization, i.e.

the determination of the structure and construction, seems difficult.   We have not

seen any paper treating the last problem except some special case treated by Head

[lO], and McAlister and O'Caroll [15].   This is probably due to the lack of a foun-

dation from which to start.   The purpose of this paper is to contribute to this point

in a manner which may be useful in the future,

In §3 we first characterize the existence of a greatest group-homomorphism in

terms of a few homomorphisms including the so-called Grothendieck homomorphism
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and as a consequence we derive a multiplicative condition which is necessary and

sufficient.   Theorem 3.5 is most impottant and fundamental for the future develop-

ment of this topic.   We treat special cases in §§4 and 5:   a semilattice of groups

in §4 and the separative case in §5- The concept of cofinal cluster in §6, together

with Theorem 3.5, gives us a foundation on which to begin the study of the inter-

nal structure of semigroups having a greatest group-homomorphism.   In §7 we sug-

gest a direction for this study.   In particular, we treat the separative case whose

greatest semilattice homomorphic image is a chain.    §2 gives the basic defini-

tions and concepts.

A patt of the results of this paper is reported in [2l] without ptoof.

2. Basic concepts.   Let S be a commutative semigtoup.   If / is a homomorphism

of S onto a group G,  / is called a group-homomorphism and G is called a group-

homomorphic image of S.   A congruence p on S is called a group-congruence on S

if p is induced by a group-homomorphism of S, that is, S/p is a group.

Assume that /0  is a group-homomorphism of S onto  GQ and that if / is any

group-homomorphism of S onto G there is a homomorphism h of  GQ onto G such

that f(x) = hf Ax) for all x£S.   Then f0  is called a greatest gtoup-homomorphism

of S and  Gq is called a greatest group-homomorphic image of S, while the congru-

ence  p0 induced by f0  is called the smallest group-congruence on S.   Not all com-

mutative semigroups have a smallest group-congruence.

Let / be a group-homomorphism, S —» G, and p the group-congruence on S in-

duced by /.   The inverse image of the identity element of  G = S/p under / is call-

ed the kernel of / or of p, and is denoted by Ker/ or Kerp.

A subsemigroup H of a commutative semigroup S is called cofinal in S or a

cofinal subsemigroup of S if for every x £S there is an element y £S such that

xy £ H. A subsemigroup (J of S is called unitary in 5 if x £S, a£ll and ax £ U implies x£\J.

For example the kernel of a group-congruence p on S is unitary and cofinal in S.

In particular, a cofinal subsemigroup of a semilattice has the following sense.

Let L be a semilattice.   It is regarded as a join semilattice (or upper semilattice),

i.e. a, ß £ L, a< ß, if and only if aß = ß.   A cofinal subsemilattice M of L is a

subsemilattice M of L which satisfies:   for each aeL there is ß £ M such that

a. < /3.   A cofinal subsemilattice M is unitary in L if and only if  M = L.

Dubreil [7] and others ([5], L13J, [14], [l6]) studied group-congruences and

Theorem 2.1 is a consequence of known theorems [4, Chapter IO] but we can ob-

tain them directly because of commutativity.

Let S be a commutative semigroup and A a cofinal subsemigroup of S.   Define

a relation p¿ on S by

xpAy if and only if ax = by    tot some a, b£A.

Theorem 2.1.   The following statements hold.
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(2.1.1) pA   is a group-congruence on S and A C  KetpA-

(2.1.2) If  U = KetpA, then pA = pv.

(2.1.3) // o is any group-congruence on S and if we let  V = Keto, then a =

P\t-
(2.1.4) The kernel U of the homomorphism S —> S/pA   is equal to A if and

only if A is unitary.

7\7

Let X be a subsemigroup of S and let X be the unitary subsemigroup generat-

ed by X, i.e. the smallest unitary subsemigroup of S containing X.

7\7

Proposition 2.2.  X = \x£S: ax £X for some a £Xl and the following are sat-

isfied.
7\7

(2.2.1 )  X C X.

(2.2.2) XC Y implies Kr.
% — <v -

(2.2.3) X = X.

Proposition 2.3. (2.3.1)   Let h be a homomorphism of S onto S  .   If A is co-

final [unitary] in S then h(A) is cofinal [unitary] in S  .

(2.3.2)   // A is cofinal [unitary] in B and if B is cofinal [unitary] in C then A

is cofinal [unitary] in C.

Thus the join semilattice of all unitary cofinal subsemigroups of S is isomor-

phic to the join semilattice of all group-congruences on S under the map A —» pA.

Let J denote an implicational property, i.e. a property expressed by a system

of implications.   A homomorphism h of S onto S   is called a J-homomorphism of S

ii S ' satisfies J, and the congruence on S induced by h is called a ./-congruence

on S.   It goes without saying that there always exists a smallest J-congruence on

S.   The terminology "greatest /-homomorphism" and "greatest /-homomorphic

image" are defined as usual.   The partition of all elements of S induced by the

greatest J-homomorphism of S is called the greatest J -decomposition of S.   In

this paper "f" 'xs replaced by one of "semilattice", "cancellative" and "separa-

tive".

We define a gr-homomorphism to be a homomorphism   gQ of S into an abelian

group  Gr having the universal repelling property with respect to homomorphisms

of S into abelian groups (see [l], [4, § 12.1],  [12,  p. 43]).   That is, if g is a homo-

morphism of S into an abelian group G there is a unique homomorphism h oí Gr

into G such that g = hgQ.   Gr is called a gr-group (Grothendieck group) or free

abelian group on S.

The smallest cancellative congruence a on a commutative semigroup S is

given by x a y iff ax = ay for some a£S.   The gr-homomorphism gn  is obtained

as the natural homomorphism S —> S/a followed by the embedding of S/a into its

group Q of quotients.   Clearly all commutative semigroups have a gr-homomor-

phism.   We have the following immediately.
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Proposition 2.4.   Lez"  C = S/o where a is defined as above.

(2.4.1) gQ  is both injective and surjective if and only if S = C = Q.

(2.4.2) gQ is injective but not surjective if and only if S St C and C St Q.

(2.4.3) g0  is not injective but is surjective if and only if S 5k C and C = Q.

(2.4.4) gr¡  is neither infective nor surjective if and only if S St C and C Sk

Q.

One sees the definition of archimedeaness in [3Í or [17].   The classification

of commutative archimedean semigroups can be characterized in Proposition 2.5

by the behavior of the gr-homomorphism.   First the following classification is

known as an immediate consequence of L3, Theorem 4. 12] or [17].

Commutative archimedean semigroups are classified as follows:

I.   S has a unique idempotent.

(1.1) Nil-semigroup, i.e. S has a zero and some power of every element

is a zero.

(1.2) S has an idempotent which is not a zero, i.e. S is an ideal exten-

sion of a nontrivial abelian group by a nil-semigroup.

IL S  has no idempotent.

(11.1) S is cancellative, i.e. JT-semigroup.

(11.2) S is not cancellative.

Proposition 2.5.   Let S be a commutative archimedean semigroup.   Then

(2.5.1) S is an abelian group if and only if gQ  is both injective and surjec-

tive.

(2.5.2) S is not a group but has an idempotent if and only if g0  is not in-

jective but surjective.

(2.5.3) 5 is an K-semigroup if and only if gQ  is injective but not surjective.

(2.5.4) S is neither cancellative nor does it have an idempotent if and only

if gQ  is neither injective nor surjective.

Proof.  (2.5.1) is obvious.

(2.5.2) If S is not a group but has an idempotent e, S is not cancellative.

We can see that Se = \xe: x£S\ is the  gr-group and gQ(x)= xe.   Thus  gQ  is not

injective but surjective.

(2.5.3) If S is an Tt-semigroup, then  S = C and C St Q.   By Proposition 2.4,

/ is injective but not surjective.

(2.5.4) If S is not cancellative and does not have an idempotent, then  S SÍ

C and C is an Jl-semigroup by [19, Theorem 4, p. 262].   Hence / is neither injec-

tive nor surjective.

We have thus proved the implication of (2.5.1) through (2.5.4) in one direc-

tion.   The other direction is a logical consequence of the disjointness of the

statements.     Q. E. D.



1972] SEMIGROUPS WITH GREATEST GROUP HOMOMORPHISM 405

3. Characterization by homomorphisms and its consequence.   Before entering

the main discussion we need some preparation.   Assume that S is not a group.

Proposition 3.1.   Let S be a commutative semigroup.   S has a greatest group-

homomorphism if and only if a proper ideal 1 of S has a greatest group-homomor-

phism.

Proof.  Let f: S —> G be a group-homomorphism.   Since / is an ideal of S,

/(/) is an ideal of the group G, and hence  /(/) = f(S) = G.   Thus  f\ I is a group-

homomorphism   / —> G.

Let g: I —* H be a group-homomorphism.   Define  g: S —> H by g(x) = g(ax)

where  a £ I and g(a) = e,  e being the identity element of H.   If g(a) = g(b) = e tot

a, b£l, then, for x£S,

g(ax) = g(ax)g(b) = g(axb) = g(bxa) = g(bx)g(a) = g(bx).

Hence g is well defined.   Also we have, for x, y £S, that

~g(xy) = g(xya) = g(xya)g(a) = g(xyaa) = g(xaya) = g(xa)g(ya) = g(x)g(y),

therefore g is a homomorphism.   Clearly  g | / = g, thus g is surjective.   To prove

uniqueness of g let f: S —> G be any group-homomorphism such that  f\ I = g.

Choose  aeKerg.   Then for all x £S, f(x) = f(a)f(x) = f(ax) = g(ax) = g(x).

We have proved that there is a one-to-one correspondence from all group-ho-

momorphisms / of S to all group-homomorphisms g of / by the map f —> g, g = f\ I.

In other words the semilattice of all group-congruences on S is isomorphic to the

semilattice of all group-congruences on /.    Therefore our conclusion is easily de-

rived.   (Notice that the statement is true for all proper ideals /, equivalently for

some proper ideal.)    Q.E.D.

A commutative semigroup is called separative [3] if it satisfies  a   = ab = b

implies a = b.   It is known in [3] that a commutative semigroup is separative if

and only if its archimedean components are cancellative.   A smallest separative

congruence  rQ  on a commutative semigroup S is given by

ar A> if and only if abn = bn      and ba" = an+      tot some positive integer 72.

Let S = iAaerS    be the greatest semilattice decomposition of a commutative semi-

group S.   Each Sa is archimedean ([3Í, [17]).

We define a relation r^  on 5 as follows:

ar Ao if and only if a and b ate in the same archimedean component  Saand

ax = bx    for some x £ Sa.

Lemma 3.2.  r. = rn.

Proof.  Tq C r.   is clear.   To prove  r. C r n, assume    ar^b.   Then a and b are

in 5aand ax = bx for x £S      Since  5a is archimedean  b" = xy,  a" = xz fot some
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y, z eSaand some 72 > 0.   Now ax = bx implies axy - bxy, hence ab" = bn+   .

Likewise  ba" = an+1.    Q.E.D.

We have

Theorem 3.3.   Let S be a commutative semigroup.   Then the following are

equivalent:

(3.3.1) The gr -homomorphism g g  is surjective.

(3.3.2) The greatest cancellative homomorphic image C of S is a group.

(3.3.3) S has a greatest group-homomorphism.

(3.3.4) The greatest separative homomorphic image of S has a greatest group-

homomorphism.

Proof.   The equivalence of (3.3.1) and (3.3.2) follows from Proposition 2.4.

The equivalence between (3.3.2) and (3.3.3) is obtained by Head [lO], and

McAlistet and O'Caroll [15].   The equivalence of (3.3.3) and (3.3.4) follows from

the fact that groups are separative.     Q.E.D.

Corollary 3.4.   Let S be a commutative archimedean semigroup.   The following

are equivalent:

(3.4.1) The gr-homomorphism  gQ   is surjective.

(3.4.2) S has an idempotent.

(3.4.3) S has a greatest group-homomorphism.

Remark.  Head [lO] and McAlister and O'Caroll [15] proved that a commutative

semigroup S has a greatest group-homomorphic image if and only if the greatest

cancellative homomorphic image of S is a group.   Head did it from a general point

of view [4, §11.6]; McAlister and O'Caroll used a group theoretical result.   If S

is » commutative cancellative semigroup and if 5 is not a group, S is a semilattice

of S g and S. where 5Q is a nonempty ideal without idempotent and S ^  is either a

group or empty [ill.   Hence Head, McAlister and O'Caroll's result is equivalent

to the statement that a commutative cancellative semigroup without idempotent

has no smallest group-congruence.   However, the following is still true.   A com-

mutative cancellative semigroup without idempotent has no minimal group-congru-

ence.   Note that "minimal" means "having no smaller one", hence "minimal" is

weaker than "smallest".   To prove the above, a minimal cofinal unitary subsemi-

group is used.   (See details in [22].)

As a consequence of Theorem 3.3 we have

Theorem 3.5.(  )   Let S be a commutative semigroup.   The following are

equivalent:

(3.5.1)  S has a greatest group-homomorphism.

(  ) This was obtained by T. Tamura.
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(3.5.2) For all x, y £S there exist z, u£S such that xu = yzu.

(3.5.3) For every a £S there are b, c £S such that abc = c.

Proof.  We prove (3.3.2) —(3.5.3) -» (3.5.2) =* (3.3.2) since (3.5.1) is equiv-

alent to (3.3.2) by Theorem 3.3.

(3.3.2) => (3.5.3).   Let C be the greatest cancellative homomorphic image of

S and f: S —> C be the homomorphism of S onto C.   Let  a£S.   Since C is a group

by (3.3.2), C contains an identity element denoted by f(p) and there is  f(b)£C

suchthat f(a) f (b) = f(p).   Multiplying   both   sides   by   f(p),   we   have f(a)f(b)f(p)

= f(p)   = f(p) and then f(abp) = f(p).   Recall that the smallest cancellative con-

gruence a on  S is  given  by xay   if and  only  if xz = yz for  some  z £ S.

Accordingly f(abp) = f(p) implies abpz = pz fot some z £S.   Let  c = pz.   Then we

have  abc = c.

(3.5.3) => (3.5.2).   Let x, y eS.    By (3.5.3) there are 22, v £S such that 22 =

yvu, hence xu = xyvu = yxvu.   Let z = xv.   Then we have xzz = yzu.

(3.5.2) => (3.3.2).   Let o be the smallest cancellative congruence on S.   By

the assumption for x, y £S there are z, u £S such that xu = yzu, which implies

xayz.    This tells us that S/a is a group.   Thus (3.3.2) is derived.     Q.E.D.

Remark.   The fact that (3.5.1) is equivalent to (3.5.3) is obtained by M. S.

Putcha independently of the authors.   See Corollary 2.2, p. 52, Semigroup Forum

3 (1971).

Also, we can easily prove that (3.5.2) implies (3.5.3):   Let a be an arbitrary

element of S and take  x = a  , y = a.    By (3.5.2) there are z, u £ S such that a zu =

au.   Take  b = z, c = au.   Then we have  abc = c.

An element p of a commutative semigroup 5 is called a local identity element

if pa = a for some a £S.   Let / be the set of all local identity elements of S.

Lemma 3.6.   If I is not empty, I is a unitary subsemigroup of S.

Proof.   Let p, q el.   By definition  pa = a and qb = b for some a, b eS.   Then

(pq)(ab) = (pq)(ba) = p(qb)a = pba = (pa)b = ab.   Hence  pqel.   Assume  pel, x£S

and px el.   There are a and b such that pa = a and pxb = b.   Then xba = xbpa =

ba, whence  x£l.   Thus / is a unitary subsemigroup of S.     Q.E.D.

/ is called the local identity subsemigroup of S.

Theorem 3.5'.  A commutative semigroup S has a greatest group-homomorphism

if and only if the local identity subsemigroup of S is not empty and it is cofinal

in S.

Proof. This is the restatement of Theorem 3.5. The element ab in (3.5.3) is

a local identity element of S.  Cofinality is obvious.     Q.E.D.

The alternate proof of the "if" part of Theorem 3.5 . Let p be a local iden-

tity element of S.   If ciz is any group-homomorphism of S, then pa = a implies
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(p<p)(acf>) = ac/j, whence pcf, eKerrp.   On the other hand, by Lemma 3.6 and the as-

sumption, the local identity subsemigroup of S is unitary cofinal and hence / is

the smallest unitary cofinal subsemigroup.   Accordingly S has a greatest group-

homomorphism.     Q.E.D.

Corollary 3.7.   // the subsemigroup of all idempotents of S is not empty and

cofinal in S, then S has a greatest group-homomorphism.

Thus the existence of the cofinal local identity subsemigroup completely de-

termines the greatest group-homomorphism.   Of course the condition "cofinality"

is important.   Only the existence of local identities is not sufficient, for example,

the infinite cyclic semigroup with identity element adjoined does not have a

greatest group-homomorphism.

4. Group-congruences on a semilattice of groups.  As an application of Theo-

rem 3.5 we have

Proposition 4.1.  A semilattice of abelian groups has a greatest group-homo-

morphism.

Proof.   Let S = Uae p Sa he a semilattice T of abelian groups  Sa.   Let x,

y £ S and x e Sa,  y£So.   Let  u £Sa a be taken arbitrarily.   Then xu, yu£S aa.

Since  Sao is a group, xzz = yzzz for some z £Sao.   By Theorem 3.5, S has a great-

est group-homomorphism.     Q.E.D.

A semilattice of abelian groups is determined by a semilattice T (assumed to

be an upper semilattice here), a system of abelian groups  [Sa: aeTj  and a trans-

itive system \<p£: a < ß, a, ß£T\ of homomorphisms <pf of Sainto So, a < ß.   In

detail a transitive system  {c7j£: a < ß, a, ß £T\  is a system of homomorphisms

<Pa- Sa—> Sß, a<ß, a, /3er, satisfying

(1) cf>a is the identity mapping of 57 for aU aer.

(2) cp^cp? =<£% for all a<ß<y.

The operation is defined in the disjoint union S = Uaep Sa as follows:   for x  £

xayß = Kß(xa)-<pßß(y^

Sa> VßeSß>

S is, of course, commutative.   (See details in [3, p. 128].)

Define a relation pQ on S by

xp0y iff 4>l_(x)= zp|(y),    x£Sa,  y£Sß    for some  cf > a ß.

It is easy to see p0 is an equivalence.   To show compatibility, let x£Sa,  y^Sn,

z£S    and assume <p¿(x) = cf>g(y).   Then

cpf -Y(zx) = <t>ÍY(<payy(z)<p7i*)) = <Pyy(z)<píy(x) = 4y(z)4y(y)

= 4y(cf>^(z)cp^(y))=4y(zy).

Therefore  pQ is a congruence on S.
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Proposition 4.2.  pQ = ¡(x, y)£SxS: zx = zy for some z £ Si, and pQ  is the

smallest group-congruence on S.

Proof.  First we prove xpQy implies zx = zy fot some z £S.   Let x€Sa, y£Sa.

¿r ¿r

By assumption 0|(x)= qYa(y) for some  zf > aß.   Let  z£S¿.   From the above proof

we have  eft   (zx) = cfA.(zy) whence zx = zy.   Conversely assume  zx = zy,  x £S

yeSß, z£S    .   Then ya=y/3.   By definition,

^(z)cf)^(x)=cb^(z)cßf'(y),

and cfA^(x) = cfi'fy (y) by cancellation in  S     .   Therefore, xpQy.   Thus we have

proved that p0 is the smallest cancellative congruence on S.   By Proposition 4.1

and Theorem 3.3, p0  is the smallest group-congruence.     Q.E.D.

S/p0 coincides wi.th the so-called direct limit  lim \Sa, cp1^, VI of a system

Í5'a: aeT| with respect to  cf>£ in case T is a semilattice.   It is usually defined

as a factor group of the direct sum of S   's  without considering the semigroup S.

(See, for example, [8], [12].)

Let  S = U!^ai <£a, Ti  be a semilattice of abelian groups.   For each aeT,

let

Ka=UiKerçif:a<c;,   feH

where U denotes the set union.   Ka is, however, a subgroup of  S  .   Let  G =

S/PQ and Ga = SjKa.

Proposition 4.3.   Kerp0 = UiKa, c¿f, V\ and G Sti limlGa, <j¿f, T\ where cp^

is the restriction of cf>^ to K   and cp^ is an injective homomorphism of G   into Go.

5. Separative case.   By Theorem 3.3 our problem is reduced to that in commu-

tative separative semigroups.   Let S be a commutative separative semigroup and

S = Uaep Sa be the greatest semilattice decomposition of S.   Each Sa is cancel-

lative archimedean and hence either a group or an JI-semigroup.   S can be embed-

ded into a semigroup  C(S) which is a semilattice of abelian groups, C(S) =

UaerCa, such that  Ca is the quotient group of Sa, Ca = Í*«?"1: x a, ya £ S J.

(See [3].)   The operation in  C(S) is defined by

iXa.yZXAzßU-ßX)= (xazß)(yauß)-1.

Let  pQ be the smallest group-congruence on  C(S).   The kernel  Kerp0 will be de-

noted by K(C(S)).

Proposition 5.1.   Let S be a commutative separative semigroup.   Then the fol-

lowing are equivalent.

(5.1.1) S has a greatest group-homomorphism.

(5.1.2) S n K(C(S)) ¿ 0 and it is cofinal in S.
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Proof.   (5.1.1)—»(5.1.2).   Let f0  be the gteatest group-homomorphism of

C(S) and let /, = /0 | S.   Then f,(S) is a cancellative homomorphic image of S but

it is a subgroup of fr¡(S) because 5 has a greatest group-homomorphism and hence

its greatest cancellative homomorphic image is a group by Theorem 3.3.   Clearly

Ker/j = S Pi K(C(5)) -¡L 0.   Its cofinality is obvious.

(5.1.2) — (5.1.1).   We are to prove (5.1.2) -> (3.5.3).   Then we will get (5.1.1)

by Theorem 3.5.   Let Y. = [aeT: Sa n K(C(S))^¿ 0 }.   Since  T,   is a homomorphic

image of S D K(C(S)),  l\   is cofinal in T.   Let a£S, say a£Sc.   There is  aeT.

such that  ¿f<<x.   Take  u £Sa arbitrarily.   Then au£Sa.   Let f0 be the same as

defined just above.   By assumption there is  d£ Sasuch that f Ad) = /0(e) where e

is the identity element of Ca.   Since  Sa is archimedean auv = dm tot some v£Sa

and some ttz > 0; and  /0(auv) = fQ(dm)= f0(e).   Recalling that f0 is the greatest

cancellative homomorphic image of  C(S) by Proposition 4.2, there is an element

c p~   £S,  c  , p £S    fot some y.r

auv(c 'p~ i) = e(c 'p~ L ), hence auvc ' = ec
',.- 1 \        r '«;—1\  i ' '

Z) 1 —  £>(/~    71 I     hpnr-p   mm/-     =   i^r~

Let /> = ai7, c = ec .   Then az5c = auvec    - auvc   = ec   = c.    Q.E.D.

In the proof of (5.1.1) —> (5.1.2), we have stated that f AS) is a subgroup of

f 0(C(S)) but in fact /j(S)= f0(C(S)).   This is due to the following proposition

which describes a relation between group-congruences of S and  C(5).

Proposition 5.2.   Let S be a commutative separative semigroup.   A group-ho-

momorphism f: S —»G  ca?? be uniquely extended to a group-homomorphism J of

C(S)  in the following sense:

I\S = /, f(S) = f(C(S)) and if g is a group-homomorphism of C(S) such that

f(S) Ç g(C(S)) and g\S = f, then g = Jon C(S).

Proof.   Let x £ C(S), x = ab~    for some a, b £ Sa.   Define / by

](x) = f(a)(f(b))-\

If x = aj/371 = a2b21, then flj<72 = a2b{ and f(ar)f(b2) = f(a2)f(b1) whence f(ax)

(f(b,))~    = f(a2)(f(b2))~   .   Thus / is well defined.   To prove / is a homomorphism,

J(ab~ l-cd~l)= J(ac ■ (bd)~ l ) = f(ac)(f(bd)r '

= f(a) (Jib))' ' f(c) (f(d))~ l = T(ab~ ' ) /(erf- ' ).

It is easy to show /(x) = /(x) for x£S and f(C(S))= G.   Hence / is a group-homo-

morphism  C(S) —> G.   To prove uniqueness let g: C(S) —> G    be a group-homomor-

phism such that g(x) = f(x) fot all x£S and G C G'.   Then for x = ab~   £ C(S),

g(x)=g(ab-1) = g(a)g(b)-1 =f(a)f(b)~l = J(ab~ l ) = ](x).    Q.E.D.

Remark.   Theorem 3.5 is not used in the proof of Proposition 5.1.   As a conse-

quence of Proposition 5.1 and Proposition 5.2, we get an alternate proof of (3.5.3).
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First assuming separativity we can prove that (5.1.2) implies (3.5.3), and (3.5.3)

implies (5.1.1).   Let He a commutative semigroup and S be the greatest separa-

tive homomorphic image of S.   For xeS,  x denotes the image of x under S —> S.

By Theorem 3.3 it is sufficient to prove that "abc = c" holds in S if and onlv if it

holds in S.   Assume that for a e S, there are y, z £ S such that ayz = ayz = z.   Let

S = Uaer Sa be the greatest semilattice decomposition of S.   Then  S = Uaep Sa

where  Sa is cancellative archimedean.   Let a£Sa,  y£Sn, zeS    , aß < y.   Since

ayzr.z in the sense of Lemma 3.2, there is   u£S     such that ayzu = zu.   Setting

b = y and c = zu, we have  abc = c.   Conversely, let a£S.   By the assumption for

a £S there are b, c £S such that abc = c which implies a b c = c.

6. Cofinal clusters and group-homomorphisms.   Let S be a commutative semi-

group and S = Uaer Sa be the greatest semilattice decomposition of S.   Each

Sa,  aeT, is archimedean.   If A is a subsemilattice of T, then  W = UaeA Sa is

called a cluster of S.   W is the inverse image of A under the homomorphism S —»T.

W is cofinal in S if and only if A is cofinal in V.

Proposition 6.1.(3) Let S be a commutative semigroup and W a cofinal cluster

in S.   A group-homomorphism f of W onto G can be uniquely extended to a homomor-

phism f   of S onto G such that f = f   \ W.

rrooi.   Let aeS.   We are to prove first

(1)   There are  b e S and c e W such that ab e W,  be £ W and abc £ Keif.

Since W is cofinal in 5 and f(W) = G is a group, there are  b£S and c  £W

such that ab£W and abc  eKer/.   Let x denote the element aeT such that x€S  .

Now let  c = c abc  .   Then

abc = (abc ' )2 = abc ',  be = a(bc ' )2 = abc '    and    c < abc = abc ' < c.

It follows that  abc  , abc, be and c ate in a same archimedean component, say Sg.

Since abc'£ Keif C W, we see c£W,  be eW and abc e Keif, completing the proof

of (1).

Define /*: S —> G by / (a) = (f(bc))~l where b and c ate found by (1).   Sup-

pose that b and c satisfy (l)and also b   and c   satisfy (1).   Then f(ab c   ) =

f(abc) = e   where e    is the identity element of G.   Let abc£S%,  ab c  eS^,  and

let e£Sç O Keif for rf > <5<5'.   Then f(aeb'c')= f(aebc)= e* implies f(ae)f(b'c') =

¡(ae)f(bc) and (f(b'c'))~ ' = (f(bc))~ '   where we notice that since  a < 8 < £,  ae £

S? and hence ae £W.   Therefore /   is well defined.   It is easy to see that /   | W

coincides with /, and f   (S) = G.   Let a . £S,  i - 1, 2.   Lex. b ■ and c . be the ele-

ments of W satisfying (1) for a. (i = 1, 2).   Then  b¡b2 and c{c2  satisfy (1) for

a\0-2.   We can easily prove  /   (a^a2)=f  (a^)f   (aA.   To prove uniqueness of / ,

suppose g: S —► G is any other extension of /.   Let a£S and b, c be as above (1).

(   ) This proposition was obtained by H. B. Hamilton.
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Since  abc £ W, g(abc) = f(abc) = e   which implies g(a) = (g(bc))~ x but be £ W and

so g(bc) = f(bc), therefore g(a) = (f(bc))~ ' = /(a).    Q.E.D.

Let f: W —> G and g: W —» H be group-homomorphisms.   Let o and p be the

congruences on W associated with / and g respectively.   Also let o   and p   be the

congruences on S associated with /   and p   respectively.

Proposition 6.2.  o C p  if and only if o   C p .

Proof.   Note that  a o b  it and only if f(a) = f(b);  a p b if and only if g(a) =

g(b);  a o   b if and only if /   (a) = /   (è);  a p   b it and only if g  (a) = g (b).   Also

c Ç p    if and only if f(x) = /(y) implies g(x) = g(y) if and only if Ker/C Kerg.   Us-

ing this information and definition of /   and g   we can prove in a routine manner

that o C p implies cr   C p .   Assume a  = p .   Then 0=0 |W = p  | W = p.   Thus we

have the "only if" part.   Conversely, if o c p    it is easy to see o C p, but we

have  a C p  by Proposition 6.1.    Q.E.D.

Let =l(D) denote the set of all group-congruences on a semigroup D.   Íl(D)

is a join semilattice.   A cluster W of S is called proper if W ̂  S.

Theorem 6.3.   We assume that S is not archimedean.   A commutative semigroup

S has a greatest group-homomorphism if and only if there is a proper cofinal

cluster W of S such that W has a greatest group-homomorphism.   Further ¿-(S) is

isomorphic to ¿~(W).r

Proof.  Assume that a cofinal cluster W of S has a greatest group-homomor-

phism.   Let ■5=Uctep5(X7  ^=UxeA^X be defined as above.   Let x £S, and as-

sume x£Sa,   aeT.   Since A is cofinal in T, there is yeT such that a, < y.   Take

a£S     arbitrarily.   Then xa£S    C W.   By Theorem 3.5 there are b and c in W

such that

(xa)bc = c     or    x(ab)c = c.

This shows that S has a greatest group-homomorphism again by Theorem 3.5.

Conversely assume that S = Ua£r, S    has a gteatest group-homomorphism /Q.

Let I7 = {aeT: SaD Ker/Q ^  0 !.   Then  r,   is cofinal in T.   Let A be a non-

empty cofinal proper subset of Tj.   Clearly A is cofinal in T.   Let  W = UXeA Sx .

W is then a proper cofinal cluster of S.   Let / be a group-homomorphism of S.   We

are to prove f(W) = f(S).   Let xeS, say  xe^for some aeT.   Since /\ is cofinal

in T, there is  Àe A such that a < A.   Let  yeSxnKer/0.   Since   Ker/0 Ç Ker / we

have

/(*)=/(*y(y)=/(xy)£/(Sx)Ç/0V).

This proves  f(W) = f(S) and hence f\ W is a group-homomorphism.   The isomorphism

of Jl(S) and =L(W) follows from Propositions 6.1 and 6.2.   Accordingly W has a

greatest group-homomorphism.    Q.E.D.

A cluster  W = UXeA S^ in S = Uaer Sa is called a group-cluster of 5 if 5X

is a group for all  AeA.
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Corollary 6.4.   // S contains a cofinal group-cluster then S has a greatest

group-homomorphism.

As a consequence of Theorem 6.3 the problem of group-homomorphism of S =

Ua£p Sa can be reduced to that of a cofinal cluster  W = ^-'\e\ S\ if A has a

special type.   For example,

(i)   If r contains a cofinal chain, A can be chosen as a well ordered cofinal

chain.   (See [2], [20].)

(ii)   If   |r| is countable, A can be chosen as a cofinal nz-chain, i.e. chain of

ordinal &>.   (See [20].)

(iii)   If r has a greatest element as an upper semilattice, A can be chosen as

= l'

For case (iii) we have

Corollary 6.5.   In case (iii), for example, in case V is finite, S contains an

archimedean component 5Q which is an ideal of S.   S has a greatest group-homo-

morphism if and only if Sn contains an idempotent.

This is a consequence of Proposition 3.1 or Corollary 3.4 or Theorem 3.5.

7. Study of structure of §-semigroups.   For our convenience a commutative

semigroup admitting a greatest group-homomorphism will be called a ^-semigroup.

So far we have obtained various characterizations of y-semigroups, but it is far

from a complete construction of ^.semigroups.   The problem is related to semi-

lattice compositions of archimedean semigroups.   We will not enter deeply into

this problem at this moment except for a special case.

Let us return to separative semigroups again.   Let S = Ua£T. Sa be the great-

est semilattice decomposition of a commutative separative semigroup S.   Again

note that each Sa is cancellative archimedean.

Proposition 7.1.   Let a£Saanda<ß.   If ax = x for some x £S „., then ay = y

for all y£Sp, all £ > ß.

Proof.   Let  ueSr.   Then since  rf>/3,  xu eS¿, and ax = x implies zzxzz = xzz.

We are now to prove that if az = z for some   z eS¿   then ay = y for all y eSc.

Since  St   is archimedean, z" = yv fot some v eS¿ and 72 > 0.   Then az = z implies

az" = zn and (ay)v = yv, whence  ay = y since ay £ S - and S¿   is cancellative.

Q.E.D.
Assume that 5 is a ^-semigroup and  a < ß,  ab = b for some a £ S      b £ S o.

ß
Then S aS „C S „.   For each  aa£Sa we define a transformation cf>l~' : S n —' S ß by

ß
X(¿        =   XZZ. X £S a.

a ■

c/J^   is a translation of So.   Let 0^ = \cf>£ : aa£SA-   í*a 's a subsemigroup of
a. ^ a

the translation semigroup of S „.   Then we have
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a
Proposition 7.2.   cp't is a permutation group.

Proof.  Clearly 0^  is a homomorphic image of Sa under aa —> cp£ .   Since  Sa

is commutative archimedean, $£ is commutative archimedean but it contains the

identity element <p£.   (It follows from Proposition 7.1 that cp^ is the identity map-

ping.)   Hence $£ is a group.   For each <pj £<!>£, rpj <p2 = d>2<pl = dj^for some <p2 e0£.

This implies that (p.   is injective and surjective.   Therefore  0^ is a permutation

group.     Q.E.D.

When a. < ß and î>£ is a permutation group we say that S    is S-composed

with  S p.

A cluster  W = UX£A Sx   is called an /(-cluster of S if all  5X, AeA, are 71-

semigroups.

Let 5 be a commutative sepatative semigroup, and let S = Uaep Sa as usual.

Let A = [rf eT: 5,   is a group!.   Of course A is a subsemilattice of T,   Suppose A

is not cofinal and A f= Y.   Then there is  aeT - A such that thete is no element

ç£ A satisfying a < çf, in other words, the principal ideal cxV is contained in T -

A.   Therefore  W = UXfrr_ASx  is an il-cluster of S, precisely it is an ideal of S.   We

call such W an ideal /(-cluster.

(7.3) A commutative separative semigroup contains either a cofinal group-

cluster or an ideal Jl-cluster.

Thus the study of separative 7-semigroups has been reduced to that of §-

semigroups whose archimedean components are all /(-semigroups.   For simplicity

y-semigroups of the latter type are called JT=7-semigroups.

Let S = vJa£p Sa be an iI-7-semigroup.   By Proposition 7.2 there is a pair

(a, ß) such that Sa is ^-composed with  So.   Such a pair is called a S-pair.   Let

P be the set of all ®-pairs for S.   We do not know at the present time how S-pairs

are distributed in  V x T and what part P plays in general, except the following

property:

Proposition 7.4. (7.4.1) P is cofinal in T x T where the order of elements

of T" x T" is defined by the component-wise order. In particular the set of a for

which  (a, /3)eP is cofinal in Y.

(7.4.2) If (a, /3)eP, then  (a, y)eP for ally > ß, yeT.

(7.4.3) // (a, ß) and (y, ß) are in P, then ß ¿ ay in F.

Proof.   (7.4.1), (7.4.2) are obvious.

Proof of (7.4.3). Suppose ß = ay.   Then W = S „u SaL)S     is a cluster of S. Con-

sidera homomorphism cp of W into the translation semigroup of S „ in the natural way.

Under <p, the elements  xa (x   ) of Sa (S    ) ate mapped into $£ (^7), and <f>(S a) is

the inner translation semigroup of So being isomorphic to L since 57 is an 71-

semigroup ([6], [9]).   Now xaxy is in Sß by assumption but cp(xa)cf> (xy) is not in
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cf>(S n) since cf>(S A) contains no permutation.    Q.E.D.

Immediately we have

Proposition 7.5.   Let S = Uaer Sa be an Jl-Q-semigroup.   If, for all a, ß £ Y

such that a < ß, Sa is ^-composed with Sn, then Y has to be a chain.

If, for all a, ß eY such that a < ß, Sa is ^-composed with S a, we say that

S is «-composed.

We mean by an JT-separative semigroup a commutative semigroup whose archi-

medean components are all /(-semigroups and we assume that Y has no greatest

element.

Theorem 7.6. Let S = Ua€p S be an K-separative semigroup with chain Y.

S is a {-¡-semigroup if and only if S contains a cofinal cluster W = U^eA 5\ of S

such that

(1) A is a well ordered cofinal chain of Y, and

(2) W is a ^-composed R-cluster.

Proof.  Assume that  W = \J^  4 S^  be a cofinal Si-composed /(-cluster in S

such that A is a cofinal chain in Y.   Let x eW and y £W, say, x eSaand y e S ß,

with a < ß.   Let  zz £S    C W with a < ß < y.   Now  Sais S-composed with S    .

Hence there exists zeS^such that (xu)z = yzz.   Therefore by Theorem 3.5, W is a

^(-semigroup, and hence S is a Lf-semigroup by Theorem 6.3.

Conversely assume that S = ^Aaer Sa is a Lf-semigroup.   Let Y be well ordered

by á . (Be   aware   of   "<"   distinguished from "<" originally given in the chain

T.)   Say

r-la0,a1,...,aw,a     „...,a |

where  <_ denotes the order for not only elements of Y but their suffixes:   a,  < a

if and only if cf <_ n.   Since S is a Jj-semigroup, by Theorem 3.5, for each  a£S

there exists  b£S and c£S such that abc = c.   Thus for each aeF there exists

ßeY and y £Y such that Saß is ^-composed with S    .   For each a£Y consider

the set

Qq = {(aß, y):  there is  a £ Sa, b e S „, c 6 S     such that abc = c\.

We define a lexicographical order ¿ in ÍÍ     i.e.

(a¿-, a^) <.  (a   ( , a^ , ) if and only if

either a, <  a      or at = a,, and a_      a   ,.
S /J* S <f' V 7]'

Let  (a , a  ) denote the  <  smallest element of Q,a.   Now define a partial transfor-

mation 6 of r by

71/       \ 1d(a0) = a0.
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d(a^)= (6(a^_l)2)1     If rf is isolated and 07 < (d(a^_l))2,

= oA\     if zf is isolated and a^ > (#(07 _ , ))2,

= 07     if tf is a limit ordinal and if 7 > 6(a) for all 77   <  çf,

I if £ is a limit otdinal and if this

set is not empty and a¿ < 6(a)

for some  77   < rf,

= undefined    if ç is a limit ordinal and if this set is empty,

= undefined     if çf is isolated and if 0(a*.      ) is undefined.

Let  W = ^-'i£<77+i   ^0za   y   It is cofinal because  0(a) > a whenever it is defined

and if 0(a) is undefined, there exists ß such that 0(ß)> a.   To see that W is Si-

composed we will induct on rf and show that Sq.      .  is Si-composed with S a,      .

for all 77 < cf.   The following can easily be used to show this.   For all rf and all

9 < £
(3) (a^)1 = o.£,

(4) 0(a^)1 = 0(af),

(5) 0(a^ + 1)>0(a^)2,

(6) 0(a^)> ÖCa^)2.

Each   of   these   is   an   immediate   consequence of the definition of 0, a   and a .

Then since 0(a-) > 0(a)2,  S^   ,1   is Si-composed with Sq.     , and hence Se,     .

is Si-composed with 5^,a   . for all r¡ < ¿;.   From the definition of 0 it follows that

if 0(a) and 0(aA) are defined and if  77  <  f then 0(a^) < 0(a^ ).

Let A be the set consisting of elements of Y on which 0 is defined.   Then 0 is an

order-homomorphism of the well-ordered set  (A, < ) into (T, <).   Thus  0(A) has

been proved to be A in the assertion (1).    Q.E.D.

In the following theorem we describe the construction of a chain of /(-semi-

groups in order that S be an JT-7-semigioup.   By the group of translations of an 71-

semigroup D we mean the gtoup of permutations of D which ate translations of D.

Since the translation semigroup J  is commutative cancellative, the group is a

unique maximal subgroup of J(D).   See the details in [6], [9L

Theorem 7.7.   Let (Y, <) be a chain without greatest element,   \S  : aeTj a

family ofJl-semigroups and Ga the group of translations of S  .   If a < ß, a homo-

morphism of Sainto Go is denoted by  F%, and the image of xa£Saunder F£ is

denoted by xaF^ and the image of x a£S o under the permutation xaF^i is denoted
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by  ixaEa)Xß.  Assume that a system of homomorphisms  [F^: for all a, ß with

a < i3i  15 given such that whenever a < ß < y

ixaFlAxßF})=((xaF^)xß)F}     for all xa£Sa,  xß£Sß.

Let S = U \Sa: aeYl.   Define an operation on S by

the product in Saifa= ß,

iXaFahß     ifO.<ß.

Then S is a fS-composed R-Q-semigroup.   Every %-composed K-)-¡-semigroup with

chain Y can be obtained in this manner.   S is denoted by S = U \Sa, F    , Yl.

Proof is obvious.

Note that for arbitrary \S   : aeYl with chain Y, there always exists a compo-

sition, for example we can define  xaF^ by the identity mapping of Sß for all

xae^a-

We can describe the compositions by induction on a.el"1.

Let r be a well-ordered chain without greatest element.   It is regarded as a

set of ordinals  T = ¡0, 1, • ■ • , a>, • • • , n, • ■ • J.   Assume a family of JI-semigroups

\Sa: aeYl is given.   Let S. = Sn.   A Si-composed S2 = S¡ U S1   is constructed by
— 2

a homomorphism S.   into the group of translations of S^ and /j   is defined to be an

inclusion map of Sj into S ,.   Thus we have a  (S 2, f x).   Assume that for all  <f < a,

a ©-composed Ji-L)-semigroup Sr   and inclusion maps /       of S c   into S ,   for all <f., <f,
f.5f2 £, ç        SI si ?2_

with f j < ç2 < cf such that /A   fA    = 1P., and f c  is the identity map of S¿ , that is,

assume that (Sç, f ç  ; ^ < ¿f2 < f ) is obtained for all <f < a.   Now we are to define (Sa,

f f2 ; €\ < ^2 - a^   If a is an isolated ordinal,  S a is defined by S a= S a_ l U S a_ t

as a Si-composed Jl -^-semigroup, and /Ï , tf < a, is defined by f p = f a_if p~

where  /a_ j   is the inclusion map of Sa_ 1 into Sa.   If a is a limit ordinal, Sa is

defined by the direct limit Sa= UmlS ,     /      , Yl and /J1 is defined tobe the inclu-

sion of S £■ into Sa.

We have to add a remark.   In a Si-composed K-^-semigroup 5 = U \Sa, F    , Yl

with well ordered chain Y, we get a homomorphism  ¿   of S    onto a subgroup $

of Ga, the group of translations of Sa, fot each a£Y, a /. 0.   Note that  ¿a| S    =

F     and <I>a= U     a$".   For each a, ß eY with a< ß, there is a unique homomor-

phism g £ of $aonto í-such that /r   = g^ha.   To prove this it is sufficient to show

if a < ß < y,

cSf  = <f>f   implies cf>l   = 0j      for all y > /S
a a. a o.

in which the notation cf>^   is defined before Proposition 7.2.   By assumption xaa=

xbafot all xeSß.  Let y£Sy.   Then  y2xaa= y2xbaand (yx)(yaa) = (yx)(yba),
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yxe5        Since S     is cancellative, we have  yaa= yba for all y £ S   .

From  h^ = g^ha it follows that, whenever a < ß < y,

£<x = RßRa.,     and g^.   is the identity     for all zf.

When  77 < a, recall  F a = Z>a | 5      and let   Ka= U i Ker F f : a < rf|.   Let

C       i£\
Fa = Fl\Ka-

We have a similar result to Proposition 4.3.

Proposition 7.8.   The greatest group-homomorphic image of S = U fS   , FÍ, Ti

is isomorphic to  lim í<t»a, g^,  Ti, a72í/ fee kernel of the homomorphism is

Finally we list basic property on the class of 7-semigroups which are not

necessarily separative.

(i)   A homomorphic image of a 7-semigroup is a 7-semigroup.

(ii)    An ideal of a y-semigroup is a 7-semigroup.

(iii)    If S is a commutative semigroup and if S is a union of 7-semigroups, then

5 is a 7-semigroup.

(iv)   A semilattice of 7-semigroups is a 7-semigroup.

(v)   If a commutative semigroup S contains a cofinal 7'Subsemigroup, then S

is a 7-semigroup.

(vi)   If a commutative semigroup S contains a 7*semigrouP as an ideal of S,

then S is a 7-semigroup.

(vii) If Sfi  <fe2, are 7-semigroups, the direct product of UV erS c is a 7-semi-

group.

Some of the above have been proved in this paper, but we note that we can

very easily prove (i) through (vii) by using (3.5.3) of Theorem 3.5.

Restating Theorem 3.5   ,

(viii)   S has a greatest group-homomorphism if and only if

(1) there is at least one local identity element e: be = b,

(2) for each a£S there is a local identity element e and an element x

such that ax - e.

This shows that the concept of 7-semigroups is really a natural generaliza-

tion of groups.
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