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ABSTRACT. This paper is concemed with the normal structure of the auto-
morphism group A(T) of an abelian torsion group T. The concept of the near

center of a group is introduced in order to determine all subgroups of A(T) the

centralizer of which has finite index. Consequences are the fact that the finite

normal subgroups of A(T) are nilpotent if T is a primary group of infinite rank,

and that every normal torsion subgroup of A(T) is contained in the center of

A(T) if T is divisible.

1. Introduction. The following is trivial: if S is a subgroup of a group X
such that § <N - zX, where N is a finite normal subgroup of X and zX denotes
the center of X, then the centralizer ¢S of § in X has finite index; this implica-
tion however is not reversible.

In this article we will show that for the automorphism group A(T) of an
abelian torsion group T the converse in fact is true: if I' is a subgroup of A(T)
such that [A(T):cl'] is finite, then I" < A - zA(T) for some finite normal sub-
group A of A(T) [Theorem 6.1]. Moreover, if T is an abelian p-group of infinite
rank, then A is a p-group and, hence, I is nilpotent [Corollary 6.2]. A conse-
quence of this is the fact that, if G is a p-group of infinite rank, then all finite
normal subgroups I' of A(G) are nilpotent; and I" < zA(G) if p does not divide
the order of I'. In contrast to that, I' < zA(G) whenever I' is a normal subgroup
of A(G) such that [A(G): eIl is finite and not divisible by p -1 [Theorem 6.4].

These results are easy consequences of our investigations on near central
automorphisms in $§4 and 5: y € A(T) is called near central, if there exists an
integer k> 1 such that ya" = aky for all a € A(T). The set of all near central
automorphisms of T is a characteristic subgroup nzA(T) of A(T) called the near
center of A(T). We will show that the near center of A(T) is the product of the
center and all finite normal subgroups of A(T). Also, with every p-group G there
will be associated a finite normal subgroup A(G) of A(G) such that nzA(G) =
= A(G) - (R: - 1¢), where R; denotes the group of p-adic units. If G has infinite
rank, then A(G) will turn out to be a p-group.
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Basic for our proofs will be a number of rather technical constructions which
we have deferred to the ‘‘tool section’’, $3. In §4 the structure of p-groups G
for which every near central automorphism is central will be exhibited. We shall
show that G possesses a noncentral near central automorphism only if it has the
following form: G=D @ B @ F where D is a divisible group of finite rank, F is
finite, and p™B = 0 # p"F for some integer n > 0. In particular, nzA(G) = zA(G)
if G is divisible. This will lead to the description of the near center of A(T)
in §5:

nzA(T) = zA(T) - IPI° A(T,)

[Theorem 5.8]. $6 contains the consequences for subgroups I" of A(T) the cen-
tralizer of which has finite index in A(T). Besides the results stated above we
shall show that every normal torsion subgroup of A(T) is contained in the center
of A(T) if T is divisible.

2. Notation and terminology. All groups will be additively written abelian
torsion groups, except when groups of automorphisms are under consideration.
Mappings are written to the right. Our notation will be standard with possibly the
following exceptions: if T is an abelian torsion group, then dT denotes its

maximal divisible subgroup, T, its p-component and rk (T) its rank, which is

defined as the sum of the ranksp of the T . We call T homogeneous if T is the
direct sum of pairwise isomorphic subgroups of rank one. If there is no danger of
confusion, we may not distinguish between different identity mappings and write
1 instead of 1 ... The group of all automorphisms of T will be denoted by A(T),
the ring of endomorphisms of T by E(T). If A < A(T), then A -1 is the set of
all § -1, € E(T), where 8 € A. Our symbols for direct sums are @ and 2% we
will also need symbols for products, direct products, and cartesian products of
multiplicative groups, which are I, [1°, and II*. The set of all integers is
denoted by I, the ring of p-adic integers by Rp, and its groups of units by R:.
Furthermore, for X a group and § a subgroup of X:
zX = center of X,
nzX = near center of X [see §4],
¢S = centralizer of § in X,
cpS = centralizer of § in T where T <X,
o(x) = order of x € X,
(x)= cyclic subgroup generated by x,
t(X) = set of all torsion elements of X,
x oy =x"ly lxy,
soy ={soy|s €S}
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N<X =N is a normal subgroup of X,
Z(n) = cyclic group of order n,

Z(p™) = quasi-cyclic p-group.

If G is an abelian group then G[p"] denotes the subgroup of G consisting of all
elements x such that p™x = 0. If A is a subgroup of G, then the stabilizer of A
in G is the set 2(G:A) of all automorphisms of G fixing A elementwise and
inducing the identity mapping in G/A. It is well known that 2(G:A) =~
Hom(G/A, A) (cf. [5, p. 153, 1.4]); in particular, stabilizers are abelian.

3. The tools. Throughout the following, G denotes an abelian p-group for
some fixed prime p. The center zA(G) of the automorphism group of G has been
determined by R. Baer [1, pp. 110, 111]. We list his results for the reader’s con-

venience.

Theorem 3.0 (R. Baer). Let a be an automorphism of G. Then o =17 - 1
for some p-adic unit w if and only if a induces the identity mapping in the lattice
of all subgroups of G. Moreover, zA(G) = R: - 1 if and only if G is not isomor-
phic to a 2-group H which, for some integer n> 0, has the following form:

H=B®ZQ"*)® z(2®), 2"B=o,

Clearly, & € A(G) induces the identity mapping in the lattice of all sub-
groups of G if and only if xa € (x) for all x € G. It is a consequence of the
following lemma that, provided G isreduced, a € R; <1 if xa € (x) for all

cyclic direct summands (x) of G.

Lemma 3.1. Let ¢ be an endomorphism of G such that
(i) eldc =m- 1, for some p-adic integer =,
(ii) xe € (x) for all direct summands (x) of G.

Then e =m'. 1, for some n' € R,. If dG £ 0 then n' =n.

Proof. Let G= D ® R, where D = dG and consider
Case 1. D# 0. Let G= (x) ®C. Then D contains an element d such that

(1) o(d) = olx)

and consequently G = (x + d) @ C. By hypothesis there exist k, [ € I such that
xe = kx, (x + d)e = lx + d), and we have de = 7 - d. It follows that Ix + ld =
Kx+d) =(x+de=xc+de=kx+n-dand Ix="kx, [d=n-d. From (1) we
obtain x¢ = kx = Ix = 7 - x whenever G = (x) ® C. If R is bounded, this clearly
implies that €| =7 - 1, and hence e =7 -1 as claimed. If R is not bounded
then for every r € R there exists a cyclic direct summand (x) of R such that
olx) > olr) and G = (x)®C = (x+r) ®C. By what we have shown xe =7 - x,

(x + e =m - (x + 7, which implies 7r¢ =7 - r for all 7 € R as required.
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Case 2. D = 0. In this case, of course, "D =n-1p forall 7 € Rp, and,
since G = R is reduced, it is enough to show the existence of a p-adic integer
m such that €| 5 =7 - 15 for some basic subgroup B of G. But this follows read-
ily from the following proposition:
(2) If G=(x)®(y)®C,then xe = mx and ye = my for some m € I.
In order to prove (2), assume that o(x) < o(y). Then also G= (x)® (x+y) & C
and by hypothesis there exist integers k, I, m such that xe = kx, ye=1ly, (x + y)e
= mlx + y). Consequently, mx + my = mlx + y) = (x + y)e = xe + ye = kx + Iy, and
hence xe = kx = mx, ye = ly = my, proving (2) and completing the proof of this
lemma.

The following is technical.

Lemma 3.2. Let N> 1 be an integer, g € G, and suppose that the basic sub-
groups of G are unbounded. Then G = (b) ® C, where g € C and o(b) > N.

Proof. Since in a p-group without elements of infinite height every element
can be imbedded into a finite direct summand (cf. [4, p. 81, 24.8]), G possesses
subgroups F and H containing p“G such that G/p“G = F/p”G ® H/p“G, g+ G
€ F/p“G, F/p“G is finite. It follows that G = F + H, F N H=p“G, and, since
p"G = p™H for some n € I, the basic subgroups of H also are unbounded. There-
fore, H contains an element b such that H = (b) ®H', olb) > N, for some H < H.
Clearly, since p"G = p"H for sufficiently large n € I, p°G = p“H< H',and G =
F+H= (b) + F+ H'. Let

kb=f+bhelb)n(F+H'), [eF,heH.

Then f=kb-bh€F NH=p“G<H', hence kb= f+h € H N (b) =0, showing that
G = (b)®(F+ H'). By construction, g € F < F+ H' = C, completing the proof.

Lemma 3.3. Let B be a basic subgroup of G and suppose that, for all
integers n> 0, either p"B is infinite or p"B=0. Let y €G, y € p“G, and k> 1
an integer. Then there exists an automorphism a of G such that yak £y.

Proof. Since y € p“G, there exists b, € G such that G= (b;) ® H and y =
mb, + b, b € H, mb, # 0. In both cases under consideration one verifies [using
Lemma 3.2 if B is unbounded] that G contains elements b2, cee, bk+l and a
subgroup C such that G = (bl) (<) (b2> D--- <bk+l) ® C, o(bl) So(bz)g

cee < O(bk+1)’ and b € C. Let o(bi) = pei, i=1,++-, k+ 1. As shown in [6], the
mapping o defined by
hia=bi+pei+l_ei . bi+1 for i=1,..-,k,
bkﬂa = ka,

ca=c for all ¢ € C,
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extends to an automorphism of G, and

£k €is1 %1
=b, +2 i)P b
i=1

Since o(p®k+17°1. bk+1) =olb,) and mb, # 0, it follows that mbla'e # mb.

Hence,

ya’c = (mb1 + b)a’c =mb1a’e + hak £ mb1 +h=y,

proving the lemma.

Lemma 3.4. Let B be a basic subgroup of G and k> 1 an integer. If 3 is
an endomorphism of G such that Gy < p“G and By # pBy, then there exists an
automorphism o of G such that aky £ nak.

Proof. By hypothesis there exists w € By such that By = (w)®H, 0 # w.
Let 0: Bp — (w) be the corresponding natural projection onto (w). Then B
contains an element b, such that B= (b,) ® H, and b,70 # 0. Since Bno = (w)
is finite, H, = F @ C where F is finite and Czo = 0. It follows from our hypoth-
esis on B that there are br ceey ble € B such that bina= 0, i=2,-++,k+1,
G=(b)® (bz) D..- @ <bk+1) ®H, and olb) <olb) <--- < O(bk+l)‘ One
checks that G possesses an automorphism a satisfying

a=b, ,+b, for k>i>1,

i+l il
bja=5b,
XQ = x forall x € H,

and that

k
bk+l = 1t Z <z+1> —i’

Since By < p“G < H and aIH =1y, it follows that

k—1
k
k
by, nato=b, mo=0£bno=>b, no+ Zo (l. N l)bk_ina
1=

=[m+2(k>kz]"" b, , 0t

Hence, bk+1ak7] # bkﬂr]ak proving the lemma.

Lemma 3.5. Let G be a p-group with basic subgroup B such that, for all
integers n > 0, either p"B is infinite or p”B = 0. If y is an automorphism of G

satisfying, for some integer k> 1, the condition
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(k) yoak=1_ forall ae AG),

then there exists a p-adic integer m such that Bly — 7 - IG) is divisible.

Proof. Let G = (x) ®C. Then p“G = p“C. Assume that xy=mx+c, c €C,

m € I, where ¢ £ p“C = p“G. Then, by Lemma 3.3, there exists an automorphism
¢ of C such that Cék # ¢, which clearly can be extended to an automorphism a

of G fixing x. Hence

k k

xa y:xyzmx+c;émx+c§k=mxa +cak=(mx+c)ak=xyak.

This contradiction to (k) shows that xy = mx (med p“G) and xy + p“G € (x + p“G)
for all direct summands (x) of G. By Lemma 3.1, there exists a p-adic integer

7 such that y|(G/pr) =7 1lg, 06 and hence Gly - 7 - lG) < p“G. By hypoth-
esis, (y -7 - IG)ak =ak(y -7 1,) for all a€ A(G). Applying the contrapositive
of Lemma 3.4 for n =y -7 - 1, we obtain that By — 7 - 1) is divisible as

claimed.

4. Near central automorphisms. An element y of a group X is called near

central if there exists an integer k> 1 such that

(k) yx’e = xky for all x € X.

One easily verifies that the set of all near central elements of X forms a charac-
teristic subgroup which we shall call the near center of X and denote by nzX.
Clearly, the near center contains the center of X; if the orders of the elements in
X are bounded, then nzX = X. Moreover, if S is a subgroup of X such that the
centralizer ¢S of S in X has finite index, then S < nzX. This follows easily
from the fact that a subgroup of X of finite index contains a normal subgroup of
X of finite index.

The investigation of near central elements of A(G), where G is an abelian
p-group, is the subject of this section. The reason why we restrict ourselves to
the invertible elements in the endomorphism ring of G becomes clear in view of

the following result.

Lemma 4.1. Let the endomorphism n of G satisfy, for some 1 < k €1, the
property ekq = nek forall € € E(G). Then n=m - 1. for some p-adic integer m
and hence, 1 is contained in the center of E(G).

Proof. Consider a direct decomposition G=A @® B of G and let € € E(G)

be the corresponding natural projection of G onto A. Then ® = ¢, and ek = nek

implies that an = acky = anek = ane for all a € A. Consequently,
(3) Ap< A for all direct summands A of G.

Using (3) and the structure theorem for divisible groups, one verifies easily that
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Ny =7+ 1y for some 7€ R,, and, hence, Lemma 3.1 together with (3) implies
n=m- 1, as claimed.
Definition. An automorphism y of G is called near central if there exists an

integer k> 1 such that

(k) yo ak - 1 for all a € A(G).

Theorem 4.2. Every near central automorphism of a divisible torsion group is

central.

Proof. Clearly, we can restrict ourselves to divisible p-groups D. Let
y €nzA(D) and suppose that y is not central. Then, by Theorem 3.0, y does not
induce the identity mapping in the lattice of all subgroups of D. Hence, there
exists d €D such that dy £ (d). Lee D=D, ® D, ® D,, D, ~ D, ~ Z(p>),
where d €D, dy=d; +d, + d3, d; €D, fori=1,2,3,and d, £ 0. By hypoth-

esis, there exists an integer £ > 1 such that

(k) yoak =1, forall a € A(D).

D
Since D is divisible, d= kd' for some d'€ D, and d'y=d; +d, +d,, d, €D,
kd; =d; for i =1, 2, 3. 'In particular, we have kd2'= d, #0.

Let 0:D, — D, be an isomorphism. Then it is easy to verify that D possesses

an automorphism a such that

X0 = x foerDIQDS,

ya=y+yo fory€D,,
and that

ya® = y+ kyo forall y € D,
Since ¢ is monic a'nd kdz' =d, #0, it follows that d, ak = d2' + (kdz')o 4 dz' Con-
sequently, using & €D,
! !
d'a""y= d’y: dl + d2 + a'}’
£d] +djaky d, = djak+daky d;ak=(d1’ +dy + d;)ak= d'yak.

This contradiction to (k) proves the theorem.

Corollary 4.3. If T is an abelian torsion group and y € A(T) is near central,
then y'dT is central.

Proof. Since T =dT & C, every automorphism of dT is induced by some
automorphism of T. Therefore, the restriction of ¥ to dT is near central and
Theorem 4.2 implies the corollary.

Lemma 4.4. Let G be a p-group such that dG has infinite rank. Then every

near central automorphism of G is central.
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Proof. Let y € A(G) and suppose that, for some 1 < k €1,

(k) yo ak=1 for all a € A(G).

G

Let G=D @ R, D = dG, 1k(D) infinite. By Corollary 4.3 and Theorem 3.0 there
exists a p-adic integer 7 such that y|D =m - 15, and without loss of generality

we may assume that

(4) Vp =1,

Consider x € G suchthat G=D ® (x) ®C, and xy=d+mx+c, d€D, c €C,
m € I. Suppose d # 0. Since the rank of D is infinite, D clearly possesses an
automorphism & such that ds* £ d, which can be extended to an automorphism a
of G fixing x and c. Consequently,

xaky=xy= d+ mx + ¢

£dak ¢ mx 4+ c=daky mxak sy cak = (d+ mx+ c)ak= xyak,
contradicting (k). Hence, xy = mx + ¢, ¢ € C. Assume that ¢ # 0 and let D =
D,®D, D, = Z(p™). One easily verifies that there exists a homomorphism
n: C — D, such that cp=d, # 0. Since the rank of D is infinite, D possesses

an automorphism & such that
di+d8+ds ... + d,sk=140.

The mapping o defined by
x4 = X,

ya=y+yn fory€q,
da = db for d € D,

can be extended to an automorphism of G and

-1

1]

c’CJr,"'=(c+dl)ak_l c+ dl +d1a+... + dlak

crd+d 8- v d S e

by construction. Hence,

k. k

xafy = xy = mx + ¢ £ mx + ca = mxak 4 cak=(mx+c)a’°=xyak,

again contradicting (k) and proving that xy € (x) for all cyclic direct summands

(x) of G. Using (4) and Lemma 3.1, it follows that y is central.

Theorem 4.5. Let G be a p-group such that, for all integers n > 0, either
p"G is divisible or p"G has infinite rank. Then every near central automorphism

of G is central.

Proof. Let G =D ® R where D = dG. By Lemma 4.4 we can assume that

the rank of D is finite. Hence, if B is a basic subgroup of G, it follows that,
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for all 0< n €I, either p"B is infinite or p”B = 0. Let y € A(G) be near central.
Applying Lemma 3.5, we obtain that there exists a p-adic integer 7 such that
Bly -7 - IG) is divisible. Hence,

G=D®R=Bly-n-1;)®D' ®R.

Assume that B(y - 7 - IG) # 0. Since nonzero divisible groups possess automor-
phisms of arbitrarily high orders, it follows that, for all 1 < k €I, there exists an
automorphism 8 of By -7 - 1) such that B* £ 1. Hence, B contains an

element b suchthat G=D ® R=D® (b)BR', bly-7. lc)ﬁk# by —m-12).
Clearly, 8 can be extended to an automorphism a of G fixing b. It follows that

bak(y — 7 . l=bly-nm-1)4by~m- IG)Bk= by - m- IG)ak

and, hence, baky # by k contradicting the near centrality of y. Consequently,
Bly-m- IG) = 0, and y induces a central automorphism in every basic subgroup
B of G. In particular, xy € (x) for all cyclic direct summands (x) of G. This
together with Corollary 4.3 and Lemma 3.1 implies that y € zA(G).

5. The near center of A(G). In order to give a convenient description of
nzA(G), we associate with every p-group G a group A(G) of automorphisms of G
as follows.

Definition. Let A(G) = 1 if, for all integers n > 0, either p™G is divisible
or p"G has infinite rank. Otherwise, if » denotes the least nonnegative integer
such that 0 # (p” G)Mpl is finite, then

A(G) = {a € A(G)| G(a - 1) < p"G and q| 5

@6 +alp™) = !
Clearly, A(G) is a subgroup of A(G).

Theorem 5.1. For every abelian p-group G, nzA(G) = A(G) - (R: < 1)

Proof. Suppose first that for all 0 < » € I either p™G is divisible or (p”G)[p]
is infinite. Then A(G) = 1 by definition. Reinhold Baer has shown that, for
groups of this structure, zA(G) = R: - 1, (Theorem 3.0), and nzA(G) = zA(G)
according to our Theorem 4.5. Hence nzA(G) = A(G) - (R: - 15), as claimed. Let
therefore

G=D®B®F, D=dG, p"B=0#%p"F, tk(D ®F) finite,

and either B =0 or p”~ !B is infinite.
First we want to show that nzA(G) < A(G) - (R: - 1,). Suppose that B = 0.
Then Glp] has finite rank and by definition

A(G) = {a € A(G)) a|D = 1}
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According to Corollary 4.3, every near central automorphism of G induces in D a
%

p
nzA(G) <{a € A(G)| a|, € zA(D)} = A(G) - (R% . 15)

central automorphism. Since zA(D) = R, - 1, [1, p. 111], it follows that

as claimed. So we may assume that B # 0, and hence that p”~ !B is infinite. Let

y € nzA(G) satisfy, for some 1 < k € I, the condition

k) yo ak = 1, for all a € A(G).

By Corollary 4.3,

(5) le=77- 1, for some 7 € R’;.

Let x € F and suppose that xy=d+ b+ [, d€D, b€B, [€F, where b #0.
Lemma 3.3 implies that there exists an automorphism & of D @ B such that
(d + b)5* £ d + b, which clearly can be extended to an automorphism a of G

fixing F elementwise. Hence
xaky=xy=d+ b+ |
£(d+b)S* + [=(d+ bak 4 fak = (d + b+ [)ak = xyak,
contradicting (k). Consequently,

6) Fy<D®F,

and also (D @ F)y< D & F. It follows that y induces an automorphism y' in
G/(D ® F) which, since every automorphism of G/(D ® F) =~ B is induced by
an automorphism of G, is near central. Lemma 3.5 implies that y'=a' .1 for
some 7' € RY, and—without loss of generality—we may assume that 7' =1, or
Gly-15) <D & F. Since (D ® F)p"] is finite and p”~ !B is infinite, p"B = 0,

it follows that

B-=A®C, C =2 7, cy-1)=0.
X
0

Let y €(D ® A ® P)[p"] and C = (c) ® H where olc) = p™. Then
7 G=DOADCOF=DDOAD (c+y) DHDF,

and, since olc +y) = p” and H ~ C =~ 2;0 Z(p™ it is easy to verify that there
exists an element b € H and an automorphism @ of G such that hak = ¢+ y.
Using cly =1) =0=hly - 1) and (k) it follows that

c+y=hak=byak = haky = (c+ y)y=c+ yy.

Hence yy =y, and we have shown that (D & A ® F)[p")(y ~ 1) = 0. From (7)
together with C(y — 1) = 0, Lemma 3.1 and (5) we obtain that
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(8) y'(dG sl =" b

We can assume that F has the form
id (e}
F = Z *,) o(xz.) > p”.
i=1

Let bl, cee, bm be elements of B such that

m
B= 3 (h)®B', ob)=p" i=L .o, m
i=1

Then

m (o]
G=-D®B®F-D®B® ) (x;+h)

i=1
and, since (6) holds for all direct summands F of G which are complementary to
D & B, it follows that Fy <D ® F and Fy<D @F', where F' =2°™ (x4 b.).
Let 1 <j<m. Then there exist integers a;, bl., i=1,---, m and elements dl,
d, €D suchthat xjy =27 ax +d, (x;+b)y=27_ blx;+h,)+d, Using
(8) we obtain

m m
Z bi(xi+ bi)+ d,= Xy+m: b].= Z a;x + d1+ 7. 'bi’
i=1 i=1

which implies

b.x.=a.x. fori=1,+4v,m,
i%i it

b.h. =0 for i £ j,
b.h.=um.h..
777 j

Consequently, a; = b]. =7 (mod p"), and a,=b;=0 (mod p™) for i # j. It follows
that, for j=1,---, m,

m
xy= Z ax,+ dl =7 x (mod p"G),
i=1

and hence, that F(y - 7 - 1) < p"G. This together with (8) implies that
Gly-m-15) <p"G,and y=6- (7 1) where G(6-1) < p"G and 8l(dG+G[P"])
= 1. Hence, 8 € A(G) and y € A(G) . (R: - 15), proving nzA(G) < A(G) - (R: 1)

In order to establish the reverse inclusion it suffices to show that 0 € nzA(G)
for all & € A(G). Let m € I be such that F < G[p™]. Since both (p”G)[p™] <
D[p™] + F and G/(D + G[p"]) ~ F/F[p"] are finite and invariant under automor-
phisms of G, there exists an integer £ > 1 such that

O] =1 forall a € A(G).

k k
a =1 d «
|(1:"G)[p"'] an |G/(D +G["h
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We claim that A(G) ©a® =1 for all a € A(G). Let & € A(G), a € A(G), and g € G.
Since gla® - 1) € D + G[p™] and (D + G[p™1)6 - 1) = 0, we have gla® - 1) -1)
= 0. Clearly, g(6 - 1)0a* - 1) =0 if g € D @ B. Suppose, that g € F. Then

g6 = 1) € (p”G)[p™], and (9) implies that g(5 - 1(a® - 1) = 0. Hence,

glak - 1)(5-1)=0=gd-1(ak-1)

for all g € G, proving (a®* - 1)(6-1)=0=(5- Da* - 1) and a*8 = 8a* for all
a € A(G) and all 8 € A(G). It follows that A(G) < nzA(G), completing the proof.

Lemma 5.2. Let 1 <7 €1, and let
— — n —
A =f{a € A(G)| Gla - 1) < p"G and al(dG+G[p"])— 13.

If p"G bhas finite rank, then A is a finite normal p-subgroup of A(G).

Proof. The normality follows from the fact that p”G and 4G + G[p"] both are
characteristic subgroups of G. By hypothesis,

G-D®B®F, D-dG, p"B=0, tk(D ® F) finite.

Since B < G[p"] and Al =1, every automorphism in A induces an automorphism
H=G/B ~ D @ F, and from G(A - 1) < p”G and p"G N B =0 it follows that
only the 1-automorphism will induce the identity mapping in H. Hence, if we put
W=Aly A~Al,=¥ HY - 1) <p"H. Let Z be the set of all Y € ¥ inducing
the identity automorphism in p"H. Then 2 is a normal subgroup of ¥, the restric-
tion of ¥ to p"H is isomorphic to ¥/2, and 2 is contained in the stabilizer
S(H:p"H) of p"H in H. It is well known that 2(H:p"H) =~ Hom(H/p"H, p"H)
(cf. [5, p. 153]). Since H =~ D @ F has finite rank it follows that Hom(H/p"H, p"H)
is a finite p-group and, hence, so is . Therefore, the proof will be completed
once we show that ¥/ =~ ¥| is a finite p-group. If p #2, 3 this is a conse-
quence of much deeper results by Freedman [3] and Leptin [8]. In our special
case we simply proceed by complete induction on the exponent of G/dG: if pG =
dG, then A =1 and our lemma holds true. Suppose, it is true for all groups K
such that the exponent of K/dK is less than the exponent of G/dG. One verifies
easily that an automorphism inducing the identity in H/p™H also induces the
identity mapping in p"H/p*"H. Hence, for K = p™H,

‘P‘K <{a € A(K)| K(a - 1) < p"K and 1}.

a =
|(dK+K[p"])

Since the exponent of K/dK = p"H/dH = p"F is less than the exponent of G/dG,
we may apply our induction hypothesis and obtain that ¥|, = ‘l’lan ~ Y/3 s

a finite p-group, completing the proof of this lemma.

Lemma 5.3. For G a p-group, A(G) is a finite normal subgroup of A(G). If
the rank of G is infinite then A(G) is a p-group and hence nilpotent.
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Proof. The normality is clear. If G has infinite rank then either A(G) =1 or
A(G) is a finite p-group according to the definition of A(G) and the previous
result. Suppose that the rank of G is finite, G=D @ F, D = dG, Glp] finite.
Then, by definition,

A(G) = {a € A(Q)] a|, = 1.

Let I be the set of all 8 € A(G) inducing the identity mapping in G/D = F.
Again, 2 is a normal subgroup of A(G) and A(G)/Z is isomorphic to the group
of automorphisms of G/D induced by A(G). Since G/D = F is finite this implies
the finiteness of A(G)/Z. So, only the finiteness of 3 remains to be shown. By
construction, 3 coincides with the stabilizer 2(G:D) of D in G, and

% = 3(G : D) = Hom(G/D, D)
(cf. [5, p. 153]). Since, if m > 1 is an integer such that p™F = 0 then

Hom(G/D, D) =~ Hom(F, D[p™]),

and D[p™] is finite, Hom (G/D, D) is finite and so is 2. This completes the
proof.

Corollary 5.4. If G is a p-group of infinite rank, then the near center of
A(G) is nilpotent.

Proof. Theorem 5.1 and Lemma 5.3.

Theorem 5.5. Let G be a p-group and I a normal subgroup of A(G). Then
the following conditions are equivalent.
(i) A(G)/cT is finite.
(ii) T" < nzA(G).
i) I'<A - (R: - 1) for some finite normal subgroup A of A(G).
(iv) ' < A - zA(G) for some finite normal subgroup A of A(G).

Proof. The proof is cyclic, using Theorem 5.1 together with Lemma 5.3 and
R: 1, < zA(G), and is left to the reader.

Corollary 5.6. Let G be a p-group. Then A(G)/enzA(G) is finite; nzA(G)
is the set theoretical union of all subgroups S of A(G) such that [A(G):cS] is
finite; if N denotes the set of all finite normal subgroups ' of A(G), then also

azA(G) = (H r) (R% . 1) = 2A(G) - (H r)

TeN Ten
We close this section with a description of the near center of A(T), where T
is an abelian torsion group. For this we need the following result which is tech-

nical.
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Lemma 5.7. Let G be a p-group and y € A(G) such that, for some integer
k>1,

(k) yoak=1 forall a € AG).

If p—1 does not divide k, then y is contained in the center of A(G).

Proof. Since y € nzA(G), its restriction to dG is a central automorphism
according to Corollary 4.3. Applying Lemma 3.1, it therefore suffices to show that
xy € (x) if G= (x) ®C. Suppose that xy =mx+c, m€ I, ¢ € C. Since p—1
does not divide k there exists an integer n such that 0 # n* £ 1 (mod p). Clearly,
G possesses an automorphism a such that

X0 = x,
ya=mny forall y € C,

and hence, cak® = 2% . c. It follows that

mx + c=xy=xaky=xyak_—.(mx+ Aok = mx + cak = mx+ nk. ¢,

which implies

c:nk-C.

Since n* # 1 (mod p), we obtain ¢ =0 and xy = mx € (x) concluding the proof.
Contrary to the center, the near center of A(T) is not the cartesian product

of the near centers of the A(Tp).

Theorem 5.8. Let T=2"_ T. be an abelian torsion group. Then

nzA(T) = zA(T) 17 nza(r)) = 17 ACT) - TT* (R% . 1)
b 4 b 4

Proof. Provided the customary imbeddings and identifications, it is clear that
Hop nzA(Tp) < nzA(T). Hence

nzA(T) > zA(T) - []° nzA(T ) = 2A(T) - [T° AT
4 4

*
= £1° AT,) - g* 2A(T ) = rpI °AT,) - I,,] (RY - lTp),
using Theorem 3.0 and the fact that zA(T,) < nzA(T,) = A(T,) - (R} - 1 ).
In order to establish the reverse inclusion, let y € nzA(T) and suppose that,
for some 1<k €],

(k) yo ak -1 forall a € A(T).
Let y, = vl T, Clearly, y, € nzA(Tp) for all p. Since k is fixed, there exist

only finitely many primes p such that p — 1 divides k. Hence, by Lemma 5.7,

Yo is a central automorphism of Tp for almost all p. It follows that
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y=(-98, (¢ Ip]* zA(T ) = 2A(T), & € I,,I ° nzA(T ),

concluding the proof.
6. Some consequences. Let T again be an abelian torsion group.

Theorem 6.1. If T is a subgroup of A(T) such that [A(T):el'] is finite, then
' <A . zA(T) for some finite normal subgroup A of A(T). Moreover, if ' induces
central automorphisms in all p-components of finite rank, then A and bhence I' is

nilpotent.

Proof. Let r, = F‘Tp and again, let us identify an automorphism & of T,
with the automorphism a inducing & in Tq and fixing all other p-components

elementwise. Then

<II*r,<IT* a(r) - A(T)
14 14
and

I=c (H* r‘p> = IT* Cepr 1)
v b b

The finiteness of [A(T):el'] implies that [II* A(T ) ,Car,)Ty )] is finite.
Hence [A(T NE FCA(T,) p] =1 for almost all p. Let F ézA(T ) if and only if
petpy---, p . Clearly, I, <nzA(T, ) for all p, and therefore using Theorem
5.1 and Lemma 5.3, F <’\(T ) zA(T \ i=1,-.., n, where A(T )isa
finite normal subgroup of A(T ) even a p ~-group if T has infinite rlank It
follows that

- II°A(Tpi)

is a finite normal subgroup of A(T) which is nilpotent if I" induces central

automorphisms in all p-components of finite rank. Hence

* ° o *
r< I} rpg[ll A(Tpi) . rpl 2A(T,) = A - 2A(T),

proving the theorem.

Corollary 6.2. Let G be an abelian p-group of infinite rank and 1" a sub-
group of A(G) such that [A(G):cl'] is finite. Then I <A - zA(G) for some
finite normal p-subgroup A of A(G).

Corollary 6.3. Let G be as in 6.2. Then every finite normal subgroup I" of
A(G) is nilpotent. Moreover, if p does not divide the order of I", then I" is
contained in the center of A(G).
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Proof. Corollary 6.2.

Theorem 6.4. Let G be a p-group and " a normal subgroup of A(G) such
that A(G)/cT" is finite. If p — 1 does not divide the order of ‘A(G)/cI" then T" <
zA(G).

Proof. If k is the order of A(G)/cl, then y © a® = 1 for all a € A(G) and all
y €I, Apply Lemma 5.7.
We conclude with a result on normal torsion subgroups of A(D), where D is a

divisible torsion group.

Theorem 6.5. Every normal torsion subgroup of A(D) is contained in the
center of A(D).

Proof. Clearly, we may restrict ourselves to the case where D is a p-group.
Let I' be a normal torsion subgroup of A(D), let y €I" and x, y € D. One
verifies, using heavily the fact that y is a torsion element, that D contains sub-
groups D, and C suchthat D=D, ® C, x, y €D, D;y=D, and

(10) D, has finite rank.

Let ® denote the set of all a € A(D) such that Dja=D,, and let T be the set
of all ¢ € ® fixing D, elementwise. Then y € ®, furthermore, 2 is a normal
subgroup of @, and P/ =~ 'DIDI. Since every automorphism of D, is induced by
some automorphism of D, it follows that /% = A(D,). Consequently, [(P NT)Z)/S
is isomorphic to a normal torsion subgroup I_'l of A(D)):

[(® NIV =~ < A(Dl)’ Fl torsion.

We apply a theorem of R. Baer which states that every torsion group of automor-
phisms of an abelian torsion group of finite rank is finite [2, p- 521]. Hence, (10)
implies that I') is finite, and therefore so is A(D,)/cI"|. Since according to
Theorem 4.2, nzA(D l) = zA(D 1), it follows that Fl is central which, since D, is
divisible, is equivalent to Fl < R: . ID1 (Theorem 3.0). By construction,

y €e® NT, so that y|Dl €'}, and x, y € D,. Hence

Xy=m- % yy=m-Yy
for some p-adic unit 7. This being true for all x, y € D and all y €I" proves the
theorem.
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