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ABSTRACT. This paper is concerned with the normal structure of the auto-

morphism group A(T) of an abelian torsion group  T.  The concept of the near

centet of a group is introduced in order to determine all subgroups of A(T)  the

centralizer of which has finite index.   Consequences are the fact that the finite

normal subgroups of A(T) are nilpotent if  T is a primary group of infinite rank,

and that every normal torsion subgroup of  A(T) is contained in the center of

A(T) ii   T is divisible.

1.  Introduction.  The following is trivial: if 5 is a subgroup of a group  X

such that S < N • zX, where  N is a finite normal subgroup of X and zX denotes

the center of X, then the centralizer c5 of 5 in  X has finite index; this implica-

tion however is not reversible.

In this article we will show that for the automorphism group A(T) of an

abelian torsion group T the converse in fact is true: if F is a subgroup of A(T)

such that [A(T) : cT] is finite, then T < A • zA(T) for some finite normal sub-

group A of A(T) [Theorem 6.ll.  Moreover, if  T is an abelian p-group of infinite

rank, then  A  is a  p-group and, hence, F  is nilpotent [Corollary 6.2].  A conse-

quence of this is the fact that, if  G is a  p-group of infinite rank, then all finite

normal subgroups  F of A(G) ate nilpotent; and  F < zA(G) if   p  does not divide

the order of F.  In contrast to that, F < zA(G) whenever F is a normal subgroup

of A(G) such that [A(G) : cTl is finite and not divisible by p - 1  [Theorem 6.4].

These results are easy consequences of our investigations on near central

automorphisms in  §§4 and   5: y £ A(T)  is called near central, if there exists an

integer k > 1  such that y a   = aky for all a £ A(T).  The set of all near central

automorphisms of  T is a characteristic subgroup nzA(T) of A(T) called the near

center of A(T).  We will show that the near center of A(T) is the product of the

center and all finite normal subgroups of  A(T).  Also, with every  p-group  G there

will be  associated a finite  normal subgroup A(G) of A(G) such that nzA(G) =

= Aie) • (l\    • 1G), where  R    denotes the group of p-adic units.  If G has infinite

rank, then Aie) will turn out to be a  p-group.
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Basic for our proofs will be a number of rather technical constructions which

we have deferred to the  "tool section", §3-  In §4 the structure of p-groups   G

fot which every near central automorphism is central will be exhibited. We shall

show that   G possesses a noncentral near central automorphism only if it has the

following form: G = D © B © F where  D is a divisible group of finite rank, F is

finite, and   pnB = 0 4 p"F for some integer n > 0.  In particular, nzA(G) = zA(G)

if G is divisible.  This will lead to the description of the near center of A(T)

in §5:

nzA(T) = zA(T) .   H° ^V
P

[Theorem 5.8].  §6 contains the consequences for subgroups Y of A(T) the cen-

tralizer of which has finite index in  A(T).   Besides the results stated above we

shall show that every normal torsion subgroup of A(T) is contained in the center

of A(T) if T is divisible.

2.  Notation and terminology.  All groups will be additively written abelian

torsion groups, except when groups of automorphisms are under consideration.

Mappings are written to the right.  Our notation will be standard with possibly the

following exceptions: if  T is an abelian torsion group, then dT denotes its

maximal divisible subgroup, T    its p-component and rk(T) its rank, which is

defined as the sum of the ranks of the   T .  We call   T homogeneous if  T is the

direct sum of pairwise isomorphic subgroups of rank one.   If there is no danger of

confusion, we may not distinguish between different identity mappings and write

1   instead of  1 _.   The group of all automorphisms of  T will be denoted by  A(T),

the ring of endomorphisms of  T by  E(T).  If A < A(f), then A - 1  is the set of

all ¿>- lr e E(T), where 8 £ A.  Our symbols for direct sums are   © and Xo; we

will also need symbols for products, direct products, and cartesian products of

multiplicative groups, which are II, II , and II  .  The set of all integers is

denoted by  /, the ring of p-adic integers by  R  , and its groups of units by   R  .

Furthermore, for   X  a group and  S a subgroup of  X:

zX = center of X,

nzX = near center of X [see §4],

cS = centralizer of S in  X,

cTS = centralizer of S in  T where  T < X,

o(x) = order of x £ X,

(x)= cyclic subgroup generated by  x,

t(X) = set of all torsion elements of X,

x o y  = x~   y~~   xy,

s o y = \s o y\ s £ S\,
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/VOX  = N is a normal subgroup of  X,

Z(tz) = cyclic group of order tz,

Z(p°°)= quasi-cyclic p-group.

If G is an abelian group then  G[pn] denotes the subgroup of G consisting of all

elements x such that p"x =0.  If A  is a subgroup of G, then the  stabilizer of A

in  G is the   set 2(G : A) of all automorphisms of  G fixing  A  elementwise and

inducing the identity mapping in  G/A.  It is well known   that S(G:A)   ä

Hom(G/A, A) (cf. [5, p. 153, 1.4]); in particular, stabilizers are abelian.

3.  The tools.   Throughout the following, G denotes an abelian  p-group for

some fixed prime  p.   The center zA(G) of the automorphism group of  G has been

determined by R. Baer [l, pp. 110, 111]. We list his results for the reader's con-

venience.

Theorem 3.0  (R. Baer).   Let a  be an automorphism of G.   Then a = tt ■ lc

for some p-adic unit rr if and only if a   induces the identity mapping in the lattice

of all subgroups of G.   Moreover, zA(G) - R    ■ ly  if and only if G  is not isomor-

phic to a 2-group H which, for some integer n > 0, has the following form:

H = B ©Z(2" + 1)©Z(2°°),       2"B = 0.

Clearly, cl £ A(G) induces the identity mapping in the lattice of all sub-

groups of G if and only if xcl £ (x)  for all x £ G.  It is a consequence of the

following lemma that, provided   G is reduced, cl £ R    ■ 1     if xa. £ (x)  fot all

cyclic direct suramands   (x)  of G.

Lemma 3.1.   Let e  be an endomorphism of G such that

(i) e| jc = rr • 1 ,,_  for some p-adic integer rr,

(ii) xe £ (x) for all direct summands   (x)   of G.

Then e = rr'.   lG  ¡or some tt'  £ R  .   // riG ¡^ 0  then tt' = tt.

Proof.   Let  G = D © R,   where  D = dG and consider

Case 1.   D / 0.  Let   G =  (x) © C.  Then   D contains an element  d such that

(1) o(d) = o(x)

and consequently   G =  (x + d)Q)C.   By hypothesis there exist k, I £ I such that

xe = kx,   (x + d)e = l(x + d), and we have de = 77 • d.   It follows that  Ix + Id =

l(x + d) = ix + d)e = xe + de = kx + 77 • d and  Ix = kx,   Id = n ■ d.  From (1) we

obtain xe = kx = Ix = rr • x whenever  G = (x) © C.  If R is bounded, this clearly

implies that e|„ = 77 • lR  and hence e = 77 ■ 1 r as claimed.  If R is not bounded

then for every r £ R there exists a cyclic direct summand   (x) of R such that

oix) > oir)  and  G = (%) © C = (x + r) © C.  By what we have shown xe = n • x,

ix + r)e = tt ■ ix + r), which implies   re = 77 • r for all  r £ R  as required.
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Case 2.  D = 0.  In this case, of course, e|D = n • ID fot all 77 £ R  , and,

since  G = R is reduced, it is enough to show the existence of a p-adic integer

77 such that c| o = 77 • I „ fot some basic subgroup B of G.  But this follows read-

ily from the following proposition:

(2) If  G = (x) © (y) © C, then xe = mx and  ye = 7?zy  for some   m £ I.

In order to prove   (2), assume that o(x) < o(y).  Then also  G = (x) © (x + y)   © C

and by hypothesis there exist integers  k, l, m  such that  xe = kx,   ye = ly,  (x + y)e

= 77z(x + y).  Consequently, ??2X + zrzy = 77z(x + y) - (x 4- y)e = xe + ye = kx + ly, and

hence  xe = kx = ttzx,   ye = fy = ??zy, proving (2)  and completing the proof of this

lemma.

The following is technical.

Lemma 3.2.  Let N > 1  be an integer, g £ G, and suppose that the basic sub-

groups of G are unbounded.   Then G = (b) © C, where g £ C and o(b) > N.

Proof.  Since in a p-group without elements of infinite height every element

can be imbedded into a finite direct summand (cf. [4, p. 81, 24.8]), G possesses

subgroups   F and  H containing   p   G  such that  G/p   G = F/p G © H/p G, g + p G

£ F/pwG, F/paG  is finite.   It follows that   G = F + H, F O H=pwG, and, since

pnG = pnH fot some  n £ I, the basic subgroups of  H also are unbounded.   There-

fore, H contains an element  b such that H = (b) © h , o(b) > N, fot some   H1 < H.

Clearly, since  pnG = p"H tot sufficiently large n £ I, pwG = pwH < H', and  G =

F + tf= (2>) + F + H'. Let

kb = f + h e (b) n (F + f/'),       I £ F, h £ H'.

Then f=kb-h£FnH= p^G < H ', hence  kb = f + h £ H' n {b) = 0, showing that

G = (b) (B(F + H ).  By construction, g £ F < F + H  =C, completing the proof.

Lemma 3.3.   Fez1 B  èe a basic subgroup of G and suppose that, for all

integers n > 0, ez'rier p"Q   z's infinite or p"B = 0.   Lei y£G,   y ¡e' p^G, and k>l

an integer.   Then there exists an automorphism a   of G such that ycx    4 y.

Proof.  Since y 4 p G, there exists  b. £ G such that  G= (b.) ® H and y =

mb. + h,   h £ H, mb. 4 0.  In both cases under consideration one verifies  [using

Lemma 3.2 if  B is unbounded] that  G contains elements   b , ■ • ■, bk   ^ and a

subgroup C suchthat  G= (b ¿ © (¿>2) ©■•• © (bk + l) © C,   o(èj) < oib 2) <

• • • < o(¿>,    ,), and  h £ C.  Let  o(b ) = p  l,   i = I, • • • , k + I.  As shown in  [6], the
— ft -M z        l

mapping a defined by

fe.a=è.+ pe¿ + 1~e! . è.  .       for í = l, •••,*,
i 1       r z+l

¿>,   ,a = b,   ,,
fe + l ft + 1

ca = c for all  c e C,
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extends to an automorphism of  G, and

^^i+zC)*-'*1""1 •**♦.■
z = l

Since   oipek+l   S1 • bk    ) = oib {)  and  mbl/0, it follows that  mbyXk / mb y

Hence,

yak = imb    + h)ak = mb  ak + hak / mb    + h = y,

proving the lemma.

Lemma 3.4. Let B be a basic subgroup of G and k > I an integer. If 77 is

an endomorphism of G such that Gr¡ < p^G and B77 /= pBq, then there exists an

automorphism cl  of G such that cLkr¡ ■/ r¡CL   .

Proof.  By hypothesis there exists  w £ Brj such that  Bq = (w)®H,  0 / w.

Let o; Br¡ —> (w)  be the corresponding natural projection onto   (w).  Then  B

contains an element b.   such that   B = (b y) © Wj and  b ^qa /■ 0. Since  Brjo - (w)

is finite, H j = F © C where   F is finite and  C770- = 0.   It follows from our hypoth-

esis on  B that there are  b2, • ■ ■ , b,    j £ B such that  b r\o = 0,   i = 2, • • ■, k + I,

G = (by} © (b2) © • • • © (bk + l) © H, and oib A < oib2) <••■ < oibk   ,).  One

checks that   G possesses an automorphism a   satisfying

b .    a = b.  , + b.    tot k> i> I,
z+l z + 1        1 -    -    '

byCL=   bv

xa = x for all x e H,
and that

k~l   (   k   \
è   ,a> = b, , + y ( .   . )b,   ..

fe + l ¿+l      ^-   \z + 1/   k-i
1=0

Since  B77 < pœG < H and a|„ = 1H, it follows that

z'=0

fe-1
/    *     \

èfe+,+ I \i + i)bk-i
1=0

rp=bk + la^rp.

Hence,  ¿>     j0.fe7i 7^ bk+yqak proving the lemma.

Lemma 3.5.   Let G be a p-group with basic subgroup B such that, for all

integers n > 0, either pnB  is infinite or p"ß = 0.   If y  is an automorphism of G

satisfying, for some integer k > I, the condition
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(k) y o a* = 1 G    for all a £ A(G),

then there exists a p-adic integer rr  such that   B(y — rr • 1 A)   is divisible.

Proof.  Let G = (x) © C.  Then p G = p  C.  Assume that xy = mx + c,   c e C,

m £ I, where  c 4 p C = p G.  Then, by Lemma 3.3, there exists an automorphism

C of  C such that  c£   4 c, which clearly can be extended to an automorphism a

of G fixing x. Hence

xaky = xy = mx + c 4 mx + c£,k = mxtxk + ccxk = (mx + c)ak = xyak.

This contradiction to  (k) shows that xy = ttzx (mod p  G) and  xy + p  G e (x + p  G)

for all direct summands   (x)  of  G.  By Lemma 3.1, there exists a  p-adic integer

77 such that y\i(z/1)oiG\ = tt ' ^c/b^G an<^ hence   G(y - rr ■ lG) < p^G.   By hypoth-

esis, (y - 77 • lG)ct   = a-  (y - 77 • 1G) for all a £ A(G).  Applying the contrapositive

of Lemma 3.4 for rj = y - n ■ IG, we obtain that  B(y — n • lA)  is divisible as

claimed.

4.  Near central automorphisms.  An element y of a group X is called near

central if there exists an integer k > 1  such that

(k) yxk = xky    fot all x £ X.

One easily verifies that the set of all near central elements of X forms a charac-

teristic subgroup which we shall call the  near center of  X and denote by  nzX.

Clearly, the near center contains the center of X; if the orders of the elements in

X are bounded, then  nzX = X.   Moreover, if S is a subgroup of  X such that the

centralizer cS of  S in  X has finite index, then  S < nzX.   This follows easily

from the fact that a subgroup of  X of finite index contains a normal subgroup of

X of finite index.

The investigation of near central elements of A(G), where   G is an abelian

p-group, is the subject of this section.   The reason why we restrict ourselves to

the   invertible elements in the endomorphism ring of   G becomes clear in view of

the following result.

Lemma 4.1. Let the endomorphism rj of G satisfy, for some 1 < k £ I, the

property e 77 = r¡e for all e e E(g). Then 77 = 77 ■ lc for some p-adic integer rr

and hence, 77  z's contained in the center of E(G).

Proof.  Consider a direct decomposition  G = A  © B of G and let e e E(G)

be the corresponding natural projection of G onto A.  Then e   =e, and ekr¡ = r¡e

implies that ar\ = ae r¡ - ar¡e   = ar¡e for all  a e A.  Consequently,

(3) A77 < A     for all direct summands A  of G.

Using  (3) and the structure theorem for divisible groups, one verifies easily that
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rj\ ,G = rr •  1 ,G  for some 77 £ R     and, hence, Lemma 3.1  together with  (3)  implies

77 = 77 • 1G, as claimed.

Definition.   An automorphism  y of G is called near central if there exists an

integer k > 1  such that

(k) y o ak = 1G       for all  a £ A(G).

Theorem 4.2.   Every near central automorphism of a divisible torsion group is

central.

Proof.   Clearly, we can restrict ourselves to divisible p-groups D.  Let

y £ nzA(D) and suppose that y is not central. Then, by Theorem 3.0, y does not

induce the identity mapping in the lattice of all subgroups of D. Hence, there

exists d £ D    such that dy ¿   (d).   Let D = D j © D2 © Dy  Dj == D2 =* Zip08),

where d £ D y   dy = d¡+d2 + dy  d. £ D . fot i = 1, 2, 3, and o^ ^ 0.   By hypoth-

esis, there exists an integer k > 1 such that

(k) y0ak=lD    fot all a e A(D).

Since D.   is divisible, d = kd   for some d £ D     and d y = d.  + cL + d,,  d.  £ D .,

kd. = d. for i = 1, 2, 3.  In particular, we have £0,= d2/ 0.

Let cr :D2 —>Dj be an isomorphism. Then it is easy to verify that D possesses

an automorphism  a   such that

xcl = x for x  £ D. © D  ,

ya - y + ya    fot y £ D2,

and that

yak = y + feyo*     for all y £ £>2.

Since o is monic and kd'2 = d2J= 0, it follows that d'2 ak = cL[ + (kd'2)o ¿ cL[.  Con-

sequently, using d   £ D .,

d'aky= d'y= d    + d' + d'

¿d[   +  d'2CLk+  d\   =   d[ak+  d2CLk+  d'^CLk = (d[   +  d2   +d'i)CLk=  d'yCLk.

This contradiction to  (k) proves the theorem.

Corollary 4.3.  // T z's aTZ abelian torsion group and y £ A(T)  is near central,

then y\ ,T  is central.

Proof. Since T = dT © C, every automorphism of dT is induced by some

automorphism of T. Therefore, the restriction of y to dT is near central and

Theorem 4.2  implies the corollary.

Lemma 4.4.   Let G be a p-group such that dG has infinite rank.   Then every

near central automorphism of G  is central.
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Proof.   Let  y e A(G) and suppose that, for some   I < k £ I,

(k) y o ak = 1G    for ail ae A(G).

Let G = D © R,   D = ¿G,  rk (D) infinite.  By Corollary 4.3 and Theorem 3.0 there

exists a p-adic integer 77 such that y\D = 77 • ID, and without loss of generality

we may assume that

w ylD=iD.

Consider x e G such that  G = D © (x) © C, and xy = d + mx + c,  d £ D,   c £ C,

m £ I.  Suppose  d 4 0. Since the rank of D is infinite, D clearly possesses an

automorphism ¿5 such that d8   4 d, which can be extended to an automorphism a

of  G fixing  x and   c.   Consequently,

x<xfey = xy = d + mx + c

4 dak + mx + c = dtxk + mxcxk + ccxk = (d +  mx + c)txk = xyafe,

contradicting  (k).  Hence, xy = ttzx + c,   c e C.  Assume that  c 4 0 and let   D =

£>j © D 2,   D. — Z(p°°).  One easily verifies that there exists a homomorphism

77: C —•> D.   such that   c-q = d. 4 0.  Since the rank of  D is infinite, D possesses

an automorphism ¿5 such that

d1 + ¿JS+ ¿l(52 + ... + ¿jS*-1 ¿ 0.

The mapping  ex defined by

xa = x,

ya = y -t- V77    for y £ C,

da = d8 fot d £ D,

can be extended to an automorphism of  G and

cak = (c + ci^a*-1 = c + d  + ¿a + ... + d1ak~1

= c+dl + dl8+---+ d^-1 4 c

by construction. Hence,

xafey = xy = ttzx +■ c 4 mx + cak = rrzxa* + cak = (mx + c)ak = xyak,

again contradicting   (k) and proving that  xy £ (x)  for all cyclic direct summands

(x)  of  G.  Using (4) and Lemma 3.1, it follows that y is central.

Theorem 4.5.   Let G be a p-group such that, for all integers n > 0, either

p"G is divisible or p"G has infinite rank.   Then every near central automorphism

of G  is central.

Proof.  Let  G = D © R where   D = dG.   By Lemma 4.4 we can assume that

the rank of  D is finite.   Hence, if  B  is a basic subgroup of  G, it follows that,
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for all  0 < 72 £ I, either  pnB is infinite or  pnB = 0.  Let y £ A(G) be near central.

Applying Lemma 3.5, we obtain that there exists a  p-adic integer 77 such that

B(y - rr • I A) is divisible.  Hence,

G = D © R = B(y - 77 • 1G) © D' © R.

Assume that  B(y - 77 • lr) 4 0. Since nonzero divisible groups possess automor-

phisms of arbitrarily high orders, it follows that, for all  1 < k e I, there exists an

automorphism ß of ß(y - 77 • 1G) such that ß   4 L  Hence, B contains an

element   b such that  G = D © R = D © (b) © R',   b(y - rr ■ lG)ßk 4 b(y - rr ■ 1G).

Clearly, ß can be extended to an automorphism a  of  G fixing   b.  It follows that

bak(y -rr-  1G) = biy - n •  1G) 4 Ky - n ■  lG)ßk = b(y - rr ■  lG)a*

and, hence, baky 4 byak, contradicting the near centrality of y.  Consequently,

B(y - rr • I A = 0, and y induces a central automorphism in every basic subgroup

B of G.   In particular, xy £ (x) for all cyclic direct summands   (x)  of  G.  This

together with Corollary 4.3 and Lemma 3-1  implies that y £ zA(G).

5.  The near center of A(G).  In order to give a convenient description of

nzA(G), we associate with every  p-group  G a group  A(G) of automorphisms of  G

as follows.

Definition.  Let A(G) = 1  if, for all integers n > 0, either p"G is divisible

or pnG has infinite rank.  Otherwise, if 72 denotes the least nonnegative integer

such that 0 4 (pn G)[p\ is finite, then

A(G) = \a £ A(G)\ G(a - l) < pnG and al r „,  = i|
\dG+c[p"])       ,-

Clearly, A(G) is a subgroup of A(G).

Theorem 5.1.   For every abelian p-group G,  nzA(G) = A(G) • (R    • I A).

Proof.  Suppose first that for all  0 < n £ I either  p"G is divisible or (p"G)[p]

is infinite.   Then Aie) = 1  by definition.  Reinhold Baer has shown that, for

groups of this structure, zA(G) = R    • 1G  (Theorem 3.0), and nzA(G) = zA(G)

according to our Theorem 4.5.  Hence  nzA(G) = A(g) • (R. • 1G), as claimed.  Let

therefore

G=D<BB<SF,     D=dG,    pnB=04p"F,    rk (D © F) finite,

and either  B = 0 or p"~lB is infinite.

First we want to show that nzA(G) < A(G) • (R    ■ 1G). Suppose that B = 0.

Then  G[pl has finite rank and by definition

A(G) = \a£ A(G)\ a\    = 1¡.
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According to Corollary 4.3, every near central automorphism of  G induces in   D  a

central automorphism.  Since  zA(D) = fi   • L  [l, p. Ill], it follows that

nzA(G) < ¡a e A(G)| a\p e ZA(D)| = A(G) • (R* •  1G)

as claimed.  So we may assume that   B ■/ 0, and hence that  pn~   3  is infinite.   Let

y £ nzA(G) satisfy, for some  I < k £ I, the condition

(k) y o CLk = 1G    for all a e A(G).

By Corollary 4.3,

(5) y\D = 7T-  ln    for some tt £ R*p.

Let x £ F and suppose that xy = d + b + f,   d £ D,   b £ B,  f £ F, where  b / 0.

Lemma 3.3  implies that there exists an automorphism  8 of  D © B  such that

(a"+ è)(5   / d + b, which clearly can be extended to an automorphism a  of  G

fixing   F elementwise.   Hence

xCLky = xy = d + b + /

4 id + 2>)Sfe + f=id+ b)ak + fak = (d + b + f)cLk = xyak,

contradicting  (k).  Consequently,

(6) Fy<D®F,

and also (D © F)y < D © F.  It follows that y induces an automorphism y    in

G/(D © F) which, since every automorphism of G/(D © F) — B is induced by

an automorphism of G, is near central.  Lemma 3-5  implies that y   =77   • 1  for

some  77    £ R   , and—without loss of generality—we may assume that 77   = 1, or

G(y - 1G) < D © F.  Since  (D © F)[pn]  is finite and p"-1S  is infinite, pnB = 0,

it follows that

B = A(BC,       C a* ZC Z(p"),       Cty - 1) = 0.

xo

Let ye(D©A® FÏÏp*l and  C = (c) © H where  o(c) = p".  Then

(7) G=D©4©C©F=D©A©(c+y)©fY©F,

and, since   o(c + y) = pn and  H ^ C — S^   Z(p") it is easy to verify that there

exists an element h £ H and an automorphism a  of  G such that hcL   = c + y.

Using  ciy - l) = 0 = hiy - l)  and  (k) it follows that

c + y = hCLk = hyCL   = hCLky - (c +■ y)y = c + yy.

Hence yy = y, and we have shown that (D (B A ® F)[pn](y - l) = 0.  From (7)

together with  Ciy - l) = 0, Lemma 3.1  and (5) we obtain that
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(8) y\(dc+G[P"]) = 7T- ^

We can assume that   F has the form

m

F =   E° <*;>. °K-) > P"-
z' = l

Let  h,,•••, h     be elements of  B  such that
1' TO

TO

B = Z° <¿¿> © ß''       o(¿P = A"'  i = l>
i = i

Then

G=D®B@F=D®Be^    (x..+ h.)

z=l

and, since  (6) holds for all direct summands   F of  G which are complementary to

D © B, it follows that   Fy < D © F and   Fy<D © F', where P' = 2°™=j ix. + h.).

Let  1 < /' < 772.   Then there exist integers   a., b.,   i = I, ■ ■ ■ , m, and elements  a1 ,

d- £ D such that  x.y = X7"  . a.x. + d,,   (x. + h )y = 2™  , & .(x. + h.) + d-.  Using
2 ]' z=lzz 1 j j ' z =1      z     z z 2 &

(8) we obtain

+ dx + 77 • h.,Zblx.+ h) + d^ = x.y+n- h. =  Y"" a.x.
z     z z 2 ;' ;       *—i     i    i

1=1 1=1

which implies

è .x. = a.x.     for i = 1, •. > , ttz,
z   z        z   z

& . h . = 0 for z / ;',
z    z ■"

¿7 .¿ .   =  77  •    h ..
J     7 1

Consequently, a. ~ b.= tt (mod p"), and  a. = ¿>. = 0  (mod p") for  z / j.   It follows

that, for  ; = 1, • • • , ttz,

TO

x.y =  YJ a.x . + a7. = 77 • x .    (mod p*G),

z'=l

and hence, that  F(y - 77 • 1G) < p"G.  This together with  (8) implies that

Giy-rr ■ 1G) < p"G, and y = 5 • (77 • 1G) where  GÍS ~ l) < p"G and S| ^„^

= 1. Hence, <5 e Aie) and y 6 A(C) • (R* . 1G), proving nzA(G) < Aie) • ÍR* -+1G).

In order to establish the reverse inclusion it suffices to show that 8 £ nzA(G)

for all 8 £ A(G).  Let ttz e / be such that  F < GÍpm].  Since both (pnG)[pm] <

D[pm] + F and  G/ÍD + G[pn]) == F/F[pn] ate finite and invariant under automor-

phisms of G, there exists an integer k > 1   such that

(9)     "Vc^r1 and a1G/(o+G[,«])^ a*-"*«^-
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We claim that A(g) ° ak = 1  for all a e A(G). Let 5 e A(G), a e A(G), and g e G.

Since g(ak - l) e D + G[pn] and (D + GÍpn])(8 - l) = 0, we have g(ak - l)(8 - l)

= 0. Clearly, g(S - l)(a* - l) = 0 if g £ D © B.  Suppose, that g £ F.  Then

g(8 -I) £ (p"G)[pm], and (9) implies that g(S - l)(ak - l) = 0.  Hence,

g(ak- l)(8- l)=0=g(8- l)(a*_ l)

for all g £G,   proving (a* - l)(8 - l) = 0 = (8 - l)(a* - l) and ak8 = 5a* for all

a e A(G) and all 8 £ A(G).  It follows that A(g) < nzA(G), completing the proof.

Lemma 5.2.   Let 1 < n £ I, and let

A = ,a e A(G)| G(a _ l) < pnG and al = 1].
I (dG + GIP  J)

// p"G has finite rank, then A  is a finite normal p-suhgroup of A(G).

Proof.  The normality follows from the fact that pnG and  dG + G[pn] both are

characteristic subgroups of  G.  By hypothesis,

G=D®B®F,    D = dG,    p"B = 0,    rk(D © F) finite.

Since  B < G[pn] and A| „ = 1, every automorphism in A induces an automorphism

H = G/B ^ D © F, and from  G(A - l) < p"G and  p"G O B = 0 it follows that

only the  1-automorphism will induce the identity mapping in H.  Hence, if we put

* = A|H,  A » A\H = V, WOP - 1) < p"H. Let S be the set of all ip £ W inducing

the identity automorphism in  p"H.   Then  2 is a normal subgroup of W, the restric-

tion of  1* to  pnH is isomorphic to  *P/2, and S is contained in the stabilizer

l(H:p"H) of pn/V in H.  It is well known that S(r/:p"/V) » Hom(H/pnH, pnH)

(cf. [5, p. 1531).  Since   H ^ D © F has finite rank it follows that Uom(H/p"H, pnH)

is a finite  p-group and, hence, so is  ¿.  Therefore, the proof will be completed

once we show that  m/X — ^| is a finite  p-group.   If p 4 2, 3  this is a conse-

quence of much deeper results by Freedman [3J and Leptin [8].  In our special

case we simply proceed by complete induction on the exponent of  G/dG: if pG =

dG, then   A = 1   and our lemma holds true.  Suppose, it is true for all groups   K

such that the exponent of  K/dK is less than the exponent of  G/dG.  One verifies

easily that an automorphism inducing the identity in  H/p"H also induces the

identity mapping in pnH/p2nH. Hence, for  K= pnH,

<PI     < ¡a e A(K)\ K(a - 1) < pnK and al r  „n  = if.
k- -r Iwk + k[o"1)

Since the exponent of  K/dK = pnH 'dH — pnF is less than the exponent of G/dG,

we may apply our induction hypothesis and obtain that ^\K = 1*| — 1*/S is

a finite  p-group, completing the proof of this lemma.

Lemma 5.3.   For G a  p-group, A(G)  is a finite normal subgroup of A(G).   If

the rank of G   is infinite then Aie)   is a  p-group and hence nilpotent.
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Proof.   The normality is clear.   If  G has infinite rank then either Aie) = 1   or

A(G) is a finite  p-group according to the definition of  A(G) and the previous

result.  Suppose that the rank of G is finite, G = D ® F,  D = dG,   G[p] finite.

Then, by definition,

A(G) = \a £ A(G)\ a\D= l\.

Let X be the set of all 8 £ A(G) inducing the identity mapping in G/D — F.

Again, S is a normal subgroup of A(G) and A(G)/S is isomorphic to the group

of automorphisms of G/D induced by A(G).  Since  G/D — F is finite this implies

the finiteness of A(G)/2.  So, only the finiteness of 2 remains to be shown.   By

construction, S coincides with the stabilizer 2(G : D) of  D  in   G, and

2 = 2(G : D) « Horn (G/D, D)

(cf. [5, p. 153])- Since, if ttz > 1  is an integer such that pmF = 0 then

Hom(G/D, tí) a* Hom(F, D[pm]),

and  D[pm] is finite, Horn (G/D, D) is finite and so is 2.  This completes the

proof.

Corollary 5.4.   // G is a p-group of infinite rank, then the near center of

A(G) is nilpotent.

Proof.   Theorem 5.1   and Lemma 5.3-

Theorem 5.5.   Let G  be a p-group and Y a normal subgroup of A(G).   Then

the following conditions are equivalent.

(i) A(g)/cY  is finite.

(ii) r< nzA(G).

(iii) r < A • (R    • 1_) for some finite normal subgroup A  of A(G).

(iv) T < A • zA(g) for some finite normal subgroup A of A(G).

Proof.   The proof is cyclic, using Theorem 5.1  together with Lemma 5.3  and

R    • lG< zA(G), and is left to the reader.

Corollary 5.6. Let G be a p-group. Then A(G)/cnzA(G) is finite; nzA(G)

is the set theoretical union of all subgroups S of A(G) such that \_A(G) : cS] is

finite; if 7Ï denotes the set of all finite normal subgroups Y of A(g), then also

nzA(G) =  ( i! r) (R*p ■ 1G) = zA(G) •   / U y\.

We close this section with a description of the near center of A(T), where   T

is an abelian torsion group.  For this we need the following result which is tech-

nical.
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Lemma 5.7.   Let  G  be a p-group and y £ AÍG) such that, for some integer

k>\,

(k) y o CLk = 1    for all a £ A(G).

If p - 1   does not divide k, then y is contained in the center of AÍG).

Proof.  Since  y £ nzA(G), its restriction to  dG is a central automorphism

according to Corollary 4.3.  Applying Lemma 3-1, it therefore suffices to show that

xy £ (x)   if  G = (x) © C.  Suppose that  xy = ttzx + c,   m £ I,   c £ C.  Since  p - 1

does not divide   k there exists an integer n such that 0 ¡zl 72   ^ 1  (mod p).  Clearly,

G possesses an automorphism a   such that

XCL =  X,

ya = ny       tot all y £ C,

and hence, cak = n    ■ c.  It follows that

77ZX +-  C = Xy = XCLky = xyCLk = (tTZX +  c)cLk =  T77X +  CCLk =  mx +  nk ■   c,

which implies

c - nK ■ c.

Since  72   ^ 1 (mod p), we obtain  c = 0 and xy = mx £ (x)  concluding the proof.

Contrary to the center, the near center of A(T) is not the cartesian product

of the near centers of the  A(T ).

Theorem 5.8.  Let T=S ^ T    be an abelian torsion group.   ThenP     P or

nzA(T) = zA(T)  11° nzA(Tp) =   U ° A(T ) •    fl*   (R*p ■  *T }"
P ? ZT ^

Proof.   Provided the customary imbeddings and identifications, it is clear that

izAiTp) <nzA(T).  Hence

nzA(T) > zA(T) .    H° "**&) = zA(T) ■    ft ° A(T )

n°A(Tp). n* ^v= n°^Tp>- n* ^;-it^
,*

rp
using Theorem 3.0 and the fact that  zAÍTp) < nzAÍTp) = MTp) ■ ÍR* ■ lT ).

In order to establish the reverse inclusion, let y £ nzA(T) and suppose that,

for some  1 < k £ I,

(k) y o CLk = 1    for all a £ A(T).

Let y   = y|~  .  Clearly, y    e nzA(T ) for all  p.  Since   /e is fixed, there exist
' p     1 ' I p J    ' p p

only finitely many primes   p such that  p - 1  divides   k.  Hence, by Lemma 5.7,

y    is a central automorphism of  T    tot almost all  p.   It follows that
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y = C ■ S,    Ce   fi* zA(Tp) = zA(T),    8 £   H ° nzA(Tp),
p P

concluding the proof.

6.   Some consequences.   Let  T again be an abelian torsion group.

Theorem 6.1.   // Y is a subgroup of A(T) such that [A(t):cY]  is finite, then

Y < A • zA(T)  for some finite normal subgroup A  of A(t).   Moreover, if Y induces

central automorphisms in all p-components of finite rank, then A and hence Y  is

nilpotent.

Proof. Let Y = Y\„ and again, let us identify an automorphism 8 of T

with the automorphism a inducing 8 in T and fixing all other p-components

elementwise.  Then

r<IT*rp<n* Mtp) = a(t)
p p

and

cr=c(n*r\ =  n*(c,iT ,rj.
\ p       '      p

~A{T J p'

The finiteness of [AW : cY] implies that [II*    A(T ) :U*    (cAit  i^Jl is finite.
* p p p        ™ \ z  p >      P

Hence [A(T ):c^.T  T ] = 1  for almost all p.  Let Y   ¿ zA(T ) if and only if

p £ jpj, • • • , pn\.  Clearly, Y   < nzA(T ) for all  p, and therefore, using Theorem

5.1  and Lemma 5.3, YH   < \(T   ) • zA(T   ),   i = 1, • . ., n, where  A(T„ ) is a
Pi- Pi Pi Pi

finite normal subgroup of A(T   ), even a p .-group if  T     has infinite rank.  It

follows that

A=n°A(T   )
z = l

is a finite normal subgroup of A(T) which is nilpotent if Y induces central

automorphisms in all  p-components of finite rank.  Hence

T<   n*rp<fl°A(Tp)   .   n*zA(T)=A.zA(T),
P z=l ' P

proving the theorem.

Corollary 6.2.   Let G be an abelian p-group of infinite rank and Y a sub-

group of A(g)  such that [A(G) :cY] is finite.   Then Y < A • zA(G) for some

finite normal p-subgroup A  of A(G).

Corollary 6.3.   Lez"  G  be as in 6.2.   Then every finite normal subgroup Y  of

A(G)  is nilpotent.   Moreover, if p does not divide the order of Y, then Y  is

contained in the center of A(g).
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Proof.   Corollary 6.2.

Theorem 6.4.  Let G be a p-group and F a normal subgroup of A(G) such

that A(G)/cT is finite.   If p - 1 does not divide the order of A(G)/cr then F <

zA(G).

Proof. If k is the order of A(G)/cr, then y°a*=l for all a £ A(G) and all

y £ F.  Apply Lemma 5.7.

We conclude with a result on normal torsion subgroups of A(D), where D is a

divisible torsion group.

Theorem 6.5.  Every normal torsion subgroup of A(D)  is contained in the

center of A(D).

Proof.  Clearly, we may restrict ourselves to the case where D is a p-group.

Let F be a normal torsion subgroup of A(D), let  y £ F and x, y £ D. One

verifies, using heavily the fact that y is a torsion element, that  D contains sub-

groups  D    and C such that D = Dj © C, x, y £ Dy D .y = D j and

(10) D    has finite rank.

Let O denote the set of all  a e A(D) such that D.a= D., and let 2 be the set

of all r/S £ <ï> fixing D.  elementwise.  Then y 6$, furthermore, 2 is a normal

subgroup of $, and í>/2 — $|D .  Since every automorphism of D.  is induced by

some automorphism of D, it follows that "D/S — A(Dj). Consequently, [(•!> nr)5]/5

is isomorphic to a normal torsion subgroup F    of A(D A:

[(<K nD2]/2 ^TjO A{DA,       T, torsion.

We apply a theorem of R. Baer which states that every torsion group of automor-

phisms of an abelian torsion group of finite rank is finite [2, p. 52lL Hence, (10)

implies that Tj is finite, and therefore so is A(£> )/cr..  Since according to

Theorem 4.2, nzA(Dj) = zA(Z)j), it follows that Tj is central which, since D    is

divisible, is equivalent to Fj < Rp ■ \D    (Theorem 3.0).   By construction,

y £ $ ft F, so that y\D    £ F y and x, y £ D.. Hence

xy = tt • x,       yy = 77 • y

for some p-adic unit 77.  This being true for all x, y £ D and all y £ F proves the

theorem.
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