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GENERALIZED EIGENFUNCTIONS AND REAL AXIS LIMITS

OF THE RESOLVENT

BY

N. A.DERZKO

ABSTRACT.   Let (K, (•, •)) be a Hubert space and  A, E be a selfadjoint

operator and corresponding spectral measure in K (A = JXE(dX)).   It is known

that for a suitable positive subspace K+CK  and measure  p the generalized

eigenfunctions

E([A -*,  X+fcl)/ E(A)/
<P.   , =  lim   —-—=   lim   -

A,/      é_0 -°ÍX - *.  A + *')        A-A    P(A)

exist in K-,  the corresponding negative space, for p-almost every  À and

/ eK+.   It is shown that for each  X the  <p\j form a pre-Hilbert space JL

using the natural inner product ((pi, <pg)\ = Hm.    .((£(A)/,  g)/p(A)),  and that

II^11" S ^II^IIa''   Furthermore, if icS(A, a)i  is a suitably chosen basis for JL,
— oo < X < oo,  then one obtains the eigenfunction expansion suggested by

(/. g) = J  p(rfA)    £   (/, ¿(A, ^»o-^XHg, ¿(A, /3)).

Finally it is shown that, for a suitable function iü(c, A), <p\j    is given by

UmfiowU, X)[R(X- if)- R(X+ ¿()]f,   where   R(ï) = (*-^)-l.

Let K  be any Hilbert space and A, E  be a selfadjoint operator and correspond-

ing spectral measure in H (A = fXE(dX)).    Our two major results involve showing

that suitably defined generalized eigenfunctions  (//(A)  at each fixed  X form a

Hilbert space using a natural inner product.    Furthermore, a basis for this space

can be obtained by differentiating  £( • )/ at the point A with respect to a suitable

measure for certain / eK  or, more usefully, by computing

lime|0 w((, X) [R(X - i() - R(X + i()] f where w((, X) is a suitable weight function

which can be taken to be 1 on the absolutely continuous spectrum of A [13, p. 516].

A natural approach in finding an eigenfunction expansion of a selfadjoint

extension of a differential operator P   involves choosing a family of solutions

\u to
A, a

Pu = Xu       (X real)
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and letting ux   (x) be the kernel of an integral operator which gives the eigen-

function or Fourier expansion for the problem.

Such a program has been carried out in the case of a formally selfadjoint or-

dinary differential operator.   We here state a shortened version of the Titchmarsh-

Kodaira   Theorem [7, p. .1364] to indicate the direction in which we are going.

Let t be a formally selfadjoint ordinary differential operator on the interval

/ (possibly the whole line) and let T be a selfadjoint extension of r.   Let Í7 be

an open subset of the complex plane containing the interval /.   Let {ct, : k = 1, • • •, n\

be a basis for the solutions to to - Act such that each ct. is continuous on / x U

and analytic on  U fot fixed /.   Then there exist measures p..  such that

(V/).(A)= s-lim    f f(t)a.(t, X)dt
' jU    JJ 1

defines an isometry from  L Âl) into L-(Sp.i);  that is

f,f(t)g(,)dt= f° Z  ^/)/A)P!/¿A)(>g)/A)
i.;=l

Such a theorem is not easily obtainable in the case of a partial differential

operator  P because of the difficulty in picking a basis for solutions to  Pa = Act

or in even finding a useful topology for the vector space of solutions to Per = Act.

Furthermore, though it is clear that not all solutions to  Per = Act  can be used in

the eigenfunction expansion (consider P = - A on E    and a = elp   x with p =

(p., p.)  nonreal and  yp? + p? = A> O),  the whole question of eliminating the un-

wanted ones in the case of infinite domains by specifying a boundary condition at

infinity (radiation condition) has only been settled in certain cases [17].

The approach which has succeeded in the case of partial differential operators

starts with the spectral measure E( • ) arising in the spectral representation of P.

One then shows that

E(/)/(x) =/[/, 0(x, y. A)rUA)l f(y)dy

where /  is an interval,  0 is a hermitian kernel which satisfies the equation

P0(x, \ A) = A0(x, ", A) and  r is a positive measure on the real line [9].

This kind of result has been generalized to an abstract setting using Hilbert

spaces with negative norm by the Russian school.   Their work is discussed in a

now translated book by Berezanskir [l].   The present paper draws heavily on the

theory in Berezanskir"s book.

1.   Spaces with negative norm [1, Chapter 1].   Let  (H., (', ")n, |] ' |L) be a

separable Hilbert space containing a dense linear manifold K+ which is also a



1972] GENERALIZED EIGENFUNCTIONS AND REAL AXIS LIMITS 491

Hilbert space under the norm  || ' || + >  || ' ||0-   Then, it can be shown that there ex-

ists an operator T: KQ ■* K+ such that (/, g)Q = (Tf, Tg)+.   Furthermore, if we con-

sider the linear functionals oS:K+-»C,  |0(/)| < II/H+,  we find they form a Hilbert

space which is the closure of HQ with respect to the inner product (/, g)_ =

(Tf, Tg)n.   We call this Hilbert space K_ — hence, the name "space with negative

nojm".   The case of special interest to us occurs when T is a Hilbert-Schmidt

operator in K.;  that is X       \(Te , e   )|    < oo for one and therefore for all c.o.n.s.
r 0' m,n ' n       m   '

(complete orthonormal sets) \e   i°° .  in Kn.

We shall denote the trace  S   (Se , e ) oí a nonnegative operator S,   whenever

it exists, by  tr(S).

2.   The Hilbert space of generalized eigenfunctions. Suppose E( • ) is a

spectral measure and T,  considered as a mapping of K.  into itself, is a one-to-

one Hilbert-Schmidt contraction.   Then the measure  p ,  defined by

p0(A) = tr(T*E(A)T),

is a bounded nonnegative regular Borel measure.

Given any two nonnegative complete regular Borel measures a, p on R

which are bounded on compact sets, using a theorem of de Guzman [11, Theorem 2.4],

one can prove that

,.      o([X-h, X+h])
lim    —--

h^0+ p([X- h, X+ h\)

exists p-a.e. A and yields essentially the Radon-Nikodym derivative (da/dp)(X).

To simplify notation, we shall henceforth denote such limits by

..     a (A)
lim-,

A^A  p(A)

and assume our measures are complete unless stated otherwise.   Also, wk YitnanCpa

= if/   will  mean   lima   „ <j>a(g) = i//(g)  V  geK+,  where <pa, \ft £ K_.

Our first theorem is a slight generalization of a result which is essentially

known.

Theorem 1.   Let p be a locally bounded positive Borel measure.    Then

...    E(A)/wk lim —-——
A-A    p(A)

exists p-a.e. for all f eH+ yielding a functional f/>A , e}(_.   Furthermore,

||0Xf/||_<Upo/^)(A)||/|i+    P-a.e.

and for each  X where both dp /dp and dE(')f/dp    exist we have
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dE(.)f _dPodE(-)f

dp dp      dp0

If f, g e H + then (E(~ )f, g) is absolutely continuous with respect to p  .

Proof.   We first prove the theorem for p = p..

Let m  be a countable dense subset of K+.   Then if f, g e\  we have

\(E(A)f, g)\ = |(E(A)TT_1/. TT-Xg)\ = \{T*E(\) TT~lf, T~lg)\

<(T*E(A)TT-1/. T-1/)/2(^*£(A)Tr-1g, T^gY* < pQ(A) ||/|| + ||g|| +.

The last inequality is a consequence of the fact that

p0(A) = Z (T*E(A) Tek, ek)    fot c.o.n.s. {e^S

fe = l

and T     //||T     /|L = T~  //||/||+ could be taken as e..   A similar argument ap-

plies to g.    This means, of course, that (E(')f, g) is absolutely   continuous with

respect to p .   Furthermore, the derivative d(E(') f,g)/dp    exists p.-a.e.   We

now make use of the countability of m  to exclude a set A.  of measure zero and

still preserve the existence of d(E( ' )f, g)/dp    V/, g € M when A £ AQ.

Finally, we use the inequality  | (E(A)/, g)\ < p(A) || /1| + ||g||+ to deduce that

the limit exists for all /, g eH+ and all  A ^ A..   The same inequality gives us

the result that

E(A)f
wk lim —-= <á.   . e K    ,

A-X     p(A)       ^x-f

and also that  || cóx ,|| _ <  || / || +.

Now if p is any nonnegative CT-finite Borel measure we have

(E(A)/, g) _ Po<^) (E(A)f, g)

p(A)      " p(A)  ~~p0(\)

Again, we let  A„  denote the pQ-null set (independent of /, g € K+) where

d(E(')f, g)/dp    fails to exist and introduce the p-null set A.   where dp /dp

fails to exist [15, Chapter 4, Theorem 15.7].   Then if A ̂  A. U A.,  the asser-

tions for p ate evident.   Let S C AQ - Aj.   Then pQ(S) - 0,  (E(S)f, g) = 0 and

by the Radon-Nykodym theorem

d(E(.)f, g)Is dp
■dp= 0

implying d(E(')f, g)/dp= 0 p-a.e. on  AQ - Ají  that is dE(')f/dp = 0 p-a.e.

on  A. - A..   The proof is complete.

Berezanskiï' gives several examples of suitable spaces H+  and operators  T
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for the case when K   = LAG), where G is a region in E", and A is a selfadjoint oper-

ator on G.   One of the simplest is to take K+C W2(G) (I > n/2) and (u, v)+= (qu, qv)t

where q  is a suitably chosen real valued function.

The next theorem establishes an abstract pre-Hilbert space of solutions to

A0 = X<p where A = jXE(dX).   Let JHA = \<pXJ: f £ K+L

We shall be primarily interested in Theorem 2 for p = p., although it is proved

here for any positive locally bounded Borel measure—i.e. one for which the various

derivatives can be proved to exist.

Theorem 2.  JH.   is a pre-Hilbert space with the inner product

(cp, ifs)x = d(E(-)f, g)/dp,

where  cp, i/t are the weak derivatives  dE(')f/dp, dE(')g/dp resp.

Proof.  We first show that the inner product is well defined.

Suppose E(A)/j/p(A) -» <p, and E(A)/2/p(A) -♦ cp as A shrinks to ¡Af; then

E(A) (/j - /2)/p(A) -» 0.   It follows from the inequality  ((FÍA)/, g)| <

(E(A)/. /)M (E(A)g, gYA  that (E(A) (/, - f2), g)/p(A) -> 0.   Consequently,

(E(A)/j, gl)/p(A) - (£(A)/2, g2)/P(A) .

= (E(A)(fl - f2), 8l)/p(\) + (f2, E(A)(g, - g2))/p(A)

—» 0    as A shrinks to {Al

and therefore the inner product is well defined.   Conjugate linearity for v, ')A

follows easily from the conjugate linearity of the original inner product (• , *)•

Now we prove that ||<7j|L = 0 implies 0=0.

Suppose  (cp, 0)A= 0; that is (E(A)/, f)/p(A) -* 0.   But  |(E(A)/, g)\ <

(E(A)f, f)'4 (E(A)g. g)l/2.   Hence (E(A)/. g)/p(A) -> 0 on a dense set of g - s and

therefore for all g en_.

One is led naturally to ask whether the norms   || - ||_, || * ||     are comparable

when restricted to % A.   In answer to this question we show in Corollary 2 that

I^A./H- ^ '"II^a./IIa anc^ *n t*le examPle at the end (aiso studied in [l, p. 345])

that the opposite inequality is not possible.

A further study of /fiA  requires some machinery.   If E(') is a spectral mea-

sure in H  and / £ K  we define

E-span(/) = clospan ¡E(A)/: A ranges over Borel sets)

where clospan = closed span.   We shall say that ig   I is an E-basis for H  if

(E(A)g , g   ) = 0 for all Borel sets A,  m -/. n,   and

£  ©F-span(gn) = ](.

n
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Such a basis exists if and only if K is separable.

It may be necessary henceforth to work with a sequence whose nonzero mem-

bers constitute an orthonormal set.   We call such a sequence practically ortho-

normal.

We shall also require the following result:

Lemma 1.   // a is an additive Borel set function,   p is a positive locally

bounded Borel measure and A   is any Borel set such  that,  for  X £ A,

Um      ff(A)/p(A) > a.   Then a(A)> ap(A).
A^A —

Proof.   The proof uses a standard technique [16, Chapter IV, Lemma 15.4]

together with a suitable Vitali Covering Theorem [ll].

The next two theorems are fundamental.

Theorem 3.  Let {g   j cK+ be an E-basis in H .   Then for p-almost all X

we can conclude that the elements  tp    £ JÏÏ>  defined by

,-¡;

>X,gn/|I^A,gA    V^.^0,

0 otherwise

satisfy  ln\\xfjjl< co and (0n> «Am\ = 0 for m 4 n.

Proof.  By definition we have, for A ^ A_,

||E(A)gn/p(A)-ç,AigJ|_-

and

|E(A)gJ2/p(A)->¡|0       || 2

as  A  shrinks to  ÍA}.   It follows that

||E(A)gn/v^(A)||E(A)gJ-^J_-0.

Let bn    m E(A)gn/||E(A)gJ, n = 1, 2, •••  .   It is clear that \hn J is

practically orthonormal for every A.

Since T is a Hilbert-Schmidt operator we note that

oo

Z H™n.J2<l|rE(A)|||< |mi

(the subscript S denoting Schmidt norm).

Let a be defined on Borel sets by

a (A) = || TE (A)|| ¡.
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To see that a is additive it is sufficient to observe that, if A.Ci A. = ç6 and

\e   \, \f \ are complete orthonormal sets for E(A,)K, E(A,)H resp., then  \e  ) U
n n * 1 ¿ n

\f  i is a complete orthonormal set for E(A, U A2)M.

Consequently, by Lemma 1 it follows that lim      (ct(A)/o(A)) is finite almost

everywhere.   Since

'l"n.J2        -    CT(A)
Zlim    ■ :   lim

A-Xx   û-x      p(A) A-.X p(A)

and

the first conclusion of the theorem follows.   For the second conclusion we note

that, if n 4 rn,

^(^)g„.gm)

■**..JJ*A..Ja<*<- *->» «  fe p(A) = °'
which completes the proof.

Corollary 1.   // {g   i C H+ z's a« E-basis for Hn,   fiezz ¿¿>e Hilbert space  f/>

spanned by  \(b       i, í^af z's /¿e completion of span  \(f>        \, is contained in H_.

Proof.   From Theorem 3 we have that the ifi    defined by

*n = KjWtx.Jx* —1.2.....

constitute a complete orthonormal set in f/^   and that S||i//  |j_ < ».   It ifj € H.

then  i/i = S°° . C   xfj    where S°° ,  |C  I    < oo.   We conclude that
t n = \      n  t n n = l   '    n'

oo /oo \^/oo \ M

IMI-<E \cn\un\.<(ZK\2)   £ ii^ii-    <00'
n = l \n = l J      \n=l I

whence  ifi € K_.

So far we have been able to prove existence of cp p-a.e.   as well as some

of its properties for any given positive locally bounded Borel measure p.   If we

wish to prove completeness of the generalized eigenfunction expansion, however,

p must give nonzero weight to subsets of the spectrum of A - f\E(dk);  that is

p. = tr(T*E(')T) must be absolutely continuous with respect to  p.   To avoid

encumbering the formulas we shall simply assume in the Completeness Theorem

that p - P().

Theorem 4.  // p = p., / eK+ and \g   } cH+ z's an E-basis for K ,   then for
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p -almost every value of X there exists a sequence  \C  (X)\ of complex numbers

such that

oo

*A./=E    Cr^^,gn
n = \

with convergence in the  || • L   sense.

Proof.  Since we have already shown that Jf¡A is a pre-Hilbert space it suf-

fices to prove that

oo

(D I^A./Hx = Z   lC^|2|I^A.8JIA    Po—-  A.
rz=l

Since  íg  Î is an E-basis we have

oo

/=Zj~c*(A)£UA)s«'
n = l

and it follows that

oo

(2) \\E(A)f\\2= £ JA ||Cn(A)||2(E(JA)gn, gn).
n=l

Since  (E(')f, f) is absolutely continuous with respect to p0(") for all  / eH+,

||/||? = /^- (E(A)/./)PoUA)     V/eK+.

If we note, furthermore, that

(E(A)/,/)    d(E(.)f,f)
hm   -—— = ——-(A) = \\<p    .A-A      p0(A) dp0 ^x-l x

it is clear that (2) with  t\ = ( - oc, oo) becomes

(3) iUKf\\lp0^) = Z f\cn(x)\2WKJlPo^-
n = l

If we divide (2) by p(A) and take the limit as A shrinks to  iAl we deduce

that p-a.e.  A

<4> II^/IIa>Z K^\2Ux,gn
2
A'

n = l

Combining (3) and (4) we deduce (1).   This completes the proof.

At this point let us define ÎIA to be the  || ' |L-closure of Mx.   Then we have
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Corollary 2.   There exists a constant C such that

II«All- <C||0||X  for all (pef[y

Proof.  By Corollary 1 and Theorem 4 we conclude that    71» C K_.   The iden-

tity mapping from °KX  into K_ is certainly closed, so our result follows by the

Closed Graph Theorem.

Remark 1.  Corollary 2 has, of course, an obvious direct proof which also

yields

,2\A

C     (ÇIWIt
We now return to the study of Jï,   as a space of generalized eigenvectors for

A = f\E(dX).

Theorem 5.   The elements  (p € Jl.  satisfy A(p = A</>  in the sense that

((f>, (A - A)a)   = 0 for all u such that both u and Au  belong to K+.

Proof.  We prove the result first for 0 e^..   Then we have

(E(A)/, (A-A)«)
üm

Since

we conclude

Consequently,

\(FAA) f, (A - X) u)\

((f>, (A - A) u) =   li...
A-X p(A)

E(A)(/4-à)k= f (,L-X)E(du)u

E(A)(A-A)a|| <diam(A)||E(A)a||.

|"(E(A)/,/)"! Vi |"(E(A)a, u)
< diam(A

p(\)

which tends to 0 as A -» A.   Now let  (f> G 7Î»   and {</>  i C M.   such that

\\(p - (p  ||    -» 0.   Then, by Corollary 2,   \\d> - </>  ||_-»0.    But since we have

\(4>, (A - A)u)\ < \\(b - <p„\\.\\(A - A) «|| + . \(<pn, (A - A) u)\,

the proof is complete.

Remark 2.  The preceding proof shows that (</>, (A - \)u) = 0 also on the

fl ' ¡„-closure of /H^.   The example at the end shows that the || ' ||_-closure of Til.

can be strictly larger than 7(x.   Consequently, the condition (</>, (A - \)u) = 0 is

not sufficient to determine the generalized eigenfunctions (p e Tl^.
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3.   Generalized eigenfunctions and resolvent limits.  In practice wjien we deal

with a differential operator, the preceding theory cannot be applied unless we know

a considerable amount about its spectral measure from other sources.   Since the

spectral measure is usually the unknown, whereas the resolvent and its kernel are

more accessible, we show that the Hilbert space JIA  can be obtained also by taking

limits of the resolvent.

In order to accomplish this we shall make use of the following generalization

of a well-known result [15, p. 224] whose proof follows Theorem 9.

Lemma 2.   Let p be any Borel measure on  R  satisfying  /[|p.|(c(x)/(l + x  )]

< oo (\p\ z's the variation of ¡i) and p be a nonnegative Borel measure on R sat-

isfying  f[p(dx)/(l + x2)] < oo.   Then

fU/((x-y)2 + e2)]ß(dy)     du

«r¿+ fU/((x-y)2 + (2)]p(dy) " dP
(5) um   -:-:-=— (*)

An application of this lemma yields our basic theorem.

Theorem 6.   Let E(m) be a spectral measure,  A = fXE(dX), Rz = (A - z)~   ,

and let p satisfy the conditions of Lemma 2.   Then, for p-a.e.   X and f £ Jt+,

(RA-ze-/W/ ,.        E(A)f
wk lim -=   lim   -.

«-O*   f[2iep(dll)/((X-ß)2 + c2)]     a-*   p(A)

(Both sides in the above equality must be considered as functionals in K_ with

domain K+.)

Proof.  Certainly  (E(')f, g) satisfies the conditions for p in Lemma 2.   Fur-

thermore, for any /, g eHn,

Kfix-fc-JW/'g)      _ f[dE{dß)f. g)/((A-tt)2 + f2)]

f[2Kp(du)/((X-li)2 + e2)f       ¡Up(da)/((X-u)2 + <2)]

so that by Lemma 2 we conclude

«'Vze-W/'S) ,.     (E(A)f.g)
lim    -= lim-—-p-a.e. A.

e-°+ [[2kp(dp)/((X-ß)2 + e2)]      A-X       p(A)

Since we already know from Theorem 1 that, for /, g £n+,

wk lim       (E(A)//p(A))= <pXJ eK_ and Yim^(\(E(A)f, g)/p(A)) = <pXJ(g), the

proof is complete.

Remark 3.  If pQ(A) = tr(T*E(A)T) and  7 is as in Theorem 1, then we have

the estimate   |(E(A)/, g)| < || /|| + ||g|| + p0(A)  and it follows that

f-e——(E(du)f, g) < \\f\\ + \\g\\CJ—pQ(dß).
J (X-ß)2 + t¿ J (X-u)   + e
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In the case of general  p we still have

<C||/||+||g||+     p-a.e. A

\f[2kP(d(l)/((\-ß)2 + €2)]\

where  C  is independent of /, g  but does depend on  X , p  and has a finite limit

as p —► 0+.

Although Theorem 6 is stated for fairly general  p,  it is still more useful to

use the measure pn  especially if completeness of the eigenfunction expansion is

desired.   The next theorem gives a formula showing that p.   can in fact be easily

computed.

Theorem 7.   Let  \e   \ be a complete orthonormal set in K„  and f   = Te ,
n r 0 ' n n

n = 1, 2, • • •   .   Then

r    2iep0(dp) ~

(X-p)   +(      „=1

Proof.   We have

««X-* - *W /„• 0 = / r *        2 (^ k /„)
J  (p - X)   + e

=   f-Í-(T*E(dX)Te , e ).
J (tz-A)2 + f2 '    "

Hence

n=l „ = l  (fi - *)    +e

OO

=   f-  y   (T*E(dX)Te . e ),
J (fi - A)¿ + f¿ „=1

where the interchange of summation and integration   is   justified because both the

measures and integrand are positive.   This completes the proof of the theorem.

4.   Figenfunction expansion.  We now state and prove a theorem showing how

an eigenfunction expansion can be obtained from any sufficiently large family of

generalized eigenfunctions.

Theorem 8.   Let îc6(A, a): A e R, a= 1, 2, • • • Î be a family of elements from

K_ such that for fixed X !</>(A, a)¡ spans Jlx.   As before let pQ( ■ ) = tr (T*E(- )T).

Then there exists a matrix valued function  \o~  n(X)\ such that, for all f, g

(A «) = /Po(^ ZZ(/- <PÍK a))0CTa^(AHg7cMÄ^8))~.
a    ß
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Proof.   Since  (E(')f, g) is absolutely continuous with respect to  pn(')  we

have

(6) (/- «}o = f Po{dX) dJ-0 (£('}U g)°= /p°{dkUx.r g)o

where <p.   . £ Jlx   whenever /, g £ K+.   For each real A w'e choose a basis

icS(A, a): a e /Ai C \cp(X, a)].   Since clospan \<f>(X, a)] = Jl ,  we can find unique

constants  C (/), a e L,   suchthat

(7) <¿A./ =   Z   C<SÏÏ </>(*> a>
ae'X

with convergence in the  || * ||     norm.   It is easy to see that \(p(X, ß): ß £ L,

ß 4 a]    is a one dimensional subspace and contains an element cS*(A, a) such

that (<p(X, a), cp*(X, a)) = 1.   In fact ioi>*(A, a)i is a dual basis satisfying

(8) <cp(A, a), <p*(X, ß)) = 8aß

(San being the Kronecker delta).   From (6) and (7) we conclude that

(9) Ca(f) = (cf>XJ, cp*(K o)).

Suppose now we write each  r/>* in terms of the <p basis, that is

¿>*(A, a)=^o~(A)^.(A, ß),

and substitute into (9) obtaining

(10) Ca(f) =Zffa/?(Wx /. <f>(K j8)>.
0

If we recall the definition of   (', ') it is clear that

dl) (<t>Kf,<p-(Kß)) = (f,<p(Kß))0.

Certainly from (7) we have

(12) (^./'«>0=   Z   Ca(f)(<p(X,*),g)0.
ae'A

If we now combine (10), (11) and (12), and substitute into (6) we obtain the theorem

with the sums being taken over a, ß £ L. This, however, completes the proof if

we let 0-^0= 0 for (a, ß) $ I^x Ix.

Remark 4. If the <p(X, a) fail to be measurable then the set Aa= i A: ae/jl

or the functions  (/, <^>(A, a))n> aaa(*> could fail to be measurable.   The conclusion

of Theorem 8 is not affected because 1^ ß(f, çb(X, a)), aa  (X) (g, (p(X, ß))0 =

(d/dp.) (E(~ )f, g) is always measurable.   If the hypothesis of Theorem 8 is bol-

stered by the assumption that, for each  a,  di(X, a) be weakly measurable, then

the /.   can be chosen to yield measurability of Aa, (/, <£(A, a))0»  and oa   (A).
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An effective choice strategy is as follows:   For each fixed  A delete each element

in the list </>(A, l), cô(A, 2), • • •   which happens to be dependent on its predecessors,

starting from the beginning and working up.   Then the set /.   of remaining indices

yields the required measurability properties.

5.   Pointwise limits of the resolvent.   Finally, we recall the well-known result

from the theory of a selfadjoint differential operator A  that the pointwise limits

lim   (R.    .  - R.. .)/

exist whenever / is in the absolutely continuous subspace corresponding to A.

It is obvious that such a limit fails to exist when  / is in the eigenspace of A.

Lemma 2, however, enables us to obtain a straightforward generalization of this

result from the theorem of Gârding [9].

Theorem 9.  Lez A  be a selfadjoint extension of the formally selfadjoint el-

liptic partial differential operator L acting on a domain  G in  E".   Then, if f is

a function of compact support in  G and p is a locally bounded Borel measure,

there exists a set A_ with  p(An) = 0 such that

««X-*' W/Kx)
(!3) hm-

^o+/[2zfp(4i)/((A-(i)2 + f2)]

exists for x £ G and X §   A  .

Proof.   From Girding's theorem we have

[<V* - W/iw - L dy (irUX) flfr^*-y- A))/(y)

=   , r(a-A) ____f5- ( f   0 (x, y, X) f(y) dy)

where 0( ' , ' , A) e Cm(G x G) r-a.e. A, m being the order of L,  is integrable on

compact subsets of G x G x R,   and

Lx6(x, y, X) = Ly6(x, y, X) = X0(x, y, A).

If we let |G0(x, y, X)f(y)dy = h(x, A),  then

(15) Lxh^x- À) = \h{x, y).

Let G. be a compact subdomain of G and m(X) = sup   f»   |¿(x, A)|, h Ax, X) =

h(x, X)/m(X).   Then (14) becomes

(16) [(Rx_ze - Rx+^fUx) = J-—2--hAx, X)m(X)r(dX).
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Since Ljo^x, A) = Xh^x, X) where  L is elliptic and  \h (x, X)\ <_ 1, it follows

from the elliptic estimates that h     will satisfy a Lipschitz condition in x £ G.

with constant independent of A.   Furthermore, "using Lemma 2, we can show that

there exists a set A_ of m(X) r(dX) measure zero such that

llm    -

í-*0+ f[2iem(X)T(dX)/((X-ß)2 + e2)]

exists on a countable dense set of x in  G .   The Lipschitz condition is then used

nc

from another application of Lemma 2 to the ratio

to extend the result to all x £ G_.   The conclusion of the theorem now follows

f[2i(m(X)r(dX)/((X-p)2 + e2)]

f[2up(dX)/((X-ß)2 + e2)]

Proof of Lemma 2.  It suffices to prove the result for the positive and nega-

tive parts of the real and imaginary parts of p separately.   Hence we shall assume

in the proof that p is also a positive measure.   It is known that (dp/dp)(x) exists

for p-a.e.  x as a limit of quotients (see preamble to Theorem 1).   We prove in

fact that (5) holds whenever the derivative exists, and in order to convey the idea

of the proof with a minimum of notation, we take x = 0.

Let h(e, y) = t/(y2 + e2).   Then if 8 > 0,

(n) í¿(c' y)nUy) _ (f-s + f\y\>?)h{i> y)^dy)

fbU,y)p(dy)~        '   fh((, y)p(dy)  ~

which we denote in the remainder of the proof by 2(f).

The starting point for the proof is the integration by parts formula

(18) ¿g bit, y)p(dy) = h(e, 8)ß(\%) + P0ß(As)h'(e, s) ds

where  A    = [- s, s]  and h  (e, s) = - (dh/ds)((, s) >^ 0,   which can be proved by

techniques similar to those of [15, p. 225, Lemma 11.91«

Suppose now that (dp/dp)(0) = C.   Given C' <C and C" > C we choose 8

such that 0 <s < 8 implies   C 'p(Ag) < p(As) < C"p(As).   Then

(19) C flpiAJh^, s)ds< /0SM(As)ij(e, s) ¿s < C"f& p(As) h^c, s) ds.

If we now combine (18) and (19) with (17) and rearrange terms we find that

Q(() is bounded below by

B(C, e) = C'

/|y| 28 h^ y>nUy> + h^ S)p(A8) - C'[/|yh8 ¿U, y)p(dy) + h(e, 8)p(AB)]

/ h(e, y) p(dy)
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and above by  B(C", e).   We know from Lemma 3 that the denominators above vanish

only on a set of p-measure zero.   Furthermore,  lim^.    B(C, () - 0 so that for e

small enough we have C' < Q(e) < C .   Since  C , C"   was subject only to the con-

dition C' <C < C",  it follows that lim e_„ + Q(() = C.

Lemma 3.   // p is a positive Borel measure on the real line for which

f[p(dx)/(l + x  )] < oo,  then the set of points

\x:   lim     f-—--p(ay)=0
I      e->0+ J (x - y)2 + (2 )

has a p-measure zero.

Proof.   Since

-p(dy)>  I.       ,.-p(dy) > — p([x - t, x + f]),

it suffices to show that the lower derivative vanishes on a p-null set.

Let N be the set

..       p([x-h,x+h\)        )
x:    hrn    £--= 0 >.

Given f > 0 and x eN there exists a sequence {¿,1 decreasing to 0 such that

p(j    k) < 2(hk, where Jx k = [x - hk, x + Afc].   Then 5 ■ i/x ¿S ¡s a Vitali cover-

ing for N,  and by the Vitali Covering Theorem there exists a disjoint subsequence

\]k\ C5  such that p(N - Uj. /fe) = 0.   Then p(jfe) < 2*fcf, and p(Ufe /fe) <  (è-flV,

which implies p(/V) = 0.

Example.  We show in this example that TI x can be strictly smaller than H_.

Let H0= L2(£2) and let a(x) = (l + |Xj|),+r(l + |x2|)1+e where e > 0.   We

define  T~     by  (T~lu)(x) = q(x)(d2u/dx ax2)(x) whence

Tf(x)= JK(x,Of(0^,

where

KU O = X5(?)(^)sgn(^)sgn(í2)/a(a,

5(rf) being the square with diagonally opposed corners at the origin and at rf re-

spectively.   That is, if we let  l(x.) denote /°° d£. fot x. > 0  and - f xi  d£. fot

x . < 0,  we find
;       '

T/(x) = /(* ) I(x2)(f(0/q(0)-

It is shown in [l] that  T is a Hilbert-Schmidt operator.

Suppose now that E is the spectral measure corresponding to multiplication
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by x.,  i.e., for any Borel set A,

(E(A)/X*) = xA(*i>A*>-

In order to compute the measure pQ we consider the operator T*E(A)T whose ker-

nel is fdy K(y, x) xj^i^^' *)■ We restrict our attention to the diagonal values

and compute

/^xA(y,)|K(y. *)|2 =fdyX¿y1)
xsíxíy}

q(x)

The

p0(A) = tr(T*E(A) T) = jdx dy yiyj
XsixW

1^1   ídy2  fdx
Xc{x)(y)

Z(x)

q(x)

= ^o(yx)dyv

whe

ff(yj) = J dy2 J  dx
xs(x)(y)

,(x)

Thus, if / e K+,

E(A)/(x)       S(x1-A)/(A, x2)
(p. Ax) = lim-=-,

A,/ u—X /act(x.) dx. a(X)

where  S is a delta function at the origin.    Futhermore,

'|E(A)/||2

II^X./I

(20)

=    lim
A—xi   )¿o(xl)dx1

2 „   \|2
TAa'x1/a'x2|/(x)|2    /|/(A,x2)|2¿x2

lim-=--—-.
A-X f^a(xl)dxl a(X)

If we assume in addition that / has support in the first quadrant and  A > 0,

then

(T<pAj/)(x) =

/; *« s:JÇ2
S(£.-A)/(A, £.)

2   "aíAXl + I^P^U + I^P

0    otherwise,

—,       xvx2>0,
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(TciAj/)(x)

/(A, £,)

a(A)(l + |A|)1+f Jx2 (l+|f2|)1+f

0    otherwise.

Hence,

(21)1^,1^ hi^a,ii^----——/:^/:2-
f(K L)

+ \e*,i+f 2

If we now let /(x2) =1  for x   > 0 and 0 for x    < 0 and take f > H,  we find that

A"X
= co but

1 1H .     n 2 =_*_C°° _L_L
II9X'/I1_    a(A)2(l + |A|)2 + 2i Jo   f2 (1 + x

•iix„ <
|A|)2+2f JU   e2 U + *2)2f

which is what we intended to show.

It is an easy matter in this example to prove a special case of Corollary 2.

We proceed as follows.   From (21) we have

A r~  .     r~   .,   roo   m>,        f(K t2) f(K Q
H

A,/"      ff2(A)(l + |A|)2+2iJo       2J*2   '2J*2   '2(i + l£2l)1+f(l + l£2'l)]

in(A, a f(\ Q f(K K)_A_/•<*>     ¿.     roo      ,

a2(A)(l + |A|)2 + 2fJo       2jo      2    (l+|f2|)1+f(l+|£2'|)1+f

If we observe that min(£., £.) < V£?f ■>     we ^"d the last expression becomes

\*

'2' -=2

X

kJ   "    a2(A)(l + |A|)

ñ(/:(77^)(jTiM^«í)a2(X)(l+\X\y

from which we conclude that

II^X./ll-^Wa(A)(l+|A|)2+2i)||çix</||2.

If / does not have support in the first quadrant then certainly it can be writ-

ten as /= /j + /2 + /3 + /4  with f. having support in the z'th quadrant.   An in-

equality of the above type can be deduced for each f{ and then shown to hold for

the sum.   It follows then that

Hxjl<C\\<rXJ\\l

for all /fK+.
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