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ABSTRACT.     We consider the situation where we have two smooth zz-manifolds

N CM with Ht(M, N) = 0  and show that given a smooth embedding of N  into some

manifold  Q  we may, under suitable conditions, extend this to embeddings of M

into Q, Q X /,  or Q X /    (where  /  is the unit interval).   We can apply these results

to obtain smooth embeddings of homologically    /c-connected manifolds into

(2tz — k + l)-dimensional euclidian space.

0. Preliminaries.   We will be primarily interested in smooth manifolds with

(perhaps empty) boundary, by which we will mean a manifold with a  C    structure.

If  M is a smooth  72-dimensional manifold we will sometimes use the notation  M"

if we need to emphasize the dimension.   If /: M   —» Nn is a smooth embedding of

M into N, then we will frequently without explicit mention make the natural

identification of M and f(M) in order to avoid excessive notation.   All manifolds

and maps will be smooth unless otherwise stated.   If we are given an embedding

of a manifold  N  in a manifold  M, we can always change the embedding slightly

so that  N will be contained in the interior of  Al  by shrinking  N away from the

boundary via the collar neighborhood of  dM in  M.

1. Statement and discussion of main results.   The problem which we will be

most concerned with is the following.   Suppose that we have two smooth  zz-mani-

folds with boundary AI" and  N" with  N C M with H^(M, N) = 0.   Then it would

seem that  AI  and   N must be quite similar in many ways.   We might expect for

example that if we could embed  N smoothly into some smooth manifold  Q that we

could also embed   Al  into  Q.   We will shortly give a counterexample to this con-

jecture, yet we will be able to prove some theorems that are very close to this.

We will generally assume that  AI, N, dM, dN are connected.

The following three theorems are our main results along these lines. Let

Hypothesis (#) denote "Al" and N" are smooth manifolds with boundary with

N Ç Al, H^(M, N) = 0, and 72 >4."
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Theorem A.   Given Hypothesis  (#),   if there is a smooth l-trivial embedding,

f: N — Q" (i.e., an embedding such that /#: n^N) —» (0) Ç jTj(Q)) a72o' if n < q,

then there is a smooth embedding M x / C Q x I .

Theorem B.   Given Hypothesis  (#),  if there is a smooth l-trivial embedding

N x / C Qq, with q - ?2 > 3  then we can smoothly embed M x / C Q.

An additional assumption will allow us to obtain better results.   Let

Hypothesis   (##) denote   "Al" and  N" ate smooth manifolds with boundary with

N Ç Al, H^(M, N) = 0, 72 > 5  such that the map ;'#: ir^dM) —► /Tj ( Al - N) induced

by the inclusion is onto."

Theorem A'.   Given Hypothesis (##), then if there is a smooth l-trivial

embedding  N C Qq with n < q,   then there is a smooth embedding M C Q x /.

Theorem B .   Given Hypothesis  (##),  then if there is a smooth l-trivial

embedding  N C Qq,  with q - 72 > 3.   then we can smoothly embed M C Q.

Example 1.   In general, it is false that if H^.(M, N) = 0 and N C E9, then

Al C Eq.   For the example, let P" be a homology sphere which is not simply

connected.   Let D" be a closed  «-ball in the interior of  P,  let M = P - D;  let

N be a closed  72-ball in the interior of  Al.   Certainly we have  H ̂ (M) = 0; since

N is an «-ball,  N C F".   But Al does not embed in  E", fot if so then we would

have an embedding of S = <9AI in  E", this sphere would bound a ball in  E", and

we would be forced to conclude that Al was a ball, which it is not.   Thus the

codimension zero version of the conjecture is false; however, we have no such

counterexamples in other low codimensions.

Suppose we have  N" C Al" with  H^(M, N) = 0 (we may assume that Ai C Int Al).

What we really need to examine is the manifold  H = AI - N.   By excision, we will

have   H#(H. dN) = 0 and by duality   (Milnor   [11]) we will have  H#(H, dM) = 0.

Now if it happened that  H were in  fact  an  ¿-cobordism then the embedding

problem is trivial, for if the Whitehead torsion  t(H, dM) = a, then as in Stallings

[13] we can construct another è-cobordism   //', with one boundary component

dM such that  t(H', dM) = - a.  We then form the manifold Al' = Al + H' = N + H + H'.

But H + H' is an 6-cobordism with  t(H + II', dN) = 0    and thus H + H' *s dN x.1;

therefore  Al   ^ N.   Since we can embed  N we have an embedding of Al , but

since   Al C Al    this gives an embedding of Al.

Now if H and each component of the boundary of H were simply connected

then it would easily follow that  H would be an  A-cobordism, but if they are not

all simply connected then  H need not be an  i-cobordism.   The following two

examples are useful to keep in mind for relating properties of such manifolds  H.
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Example 2.   Take  H = M - N   where  M and N are as in the above example;

Al  is a Poincare' sphere minus a ball;  N  is a subball of  Al.   Then  H is an

example where both components of dH ace simply connected (they are spheres)

but  H is not an  ¿-cobordism, since  H is not simply connected.

Example 3.   Let  M" be a Mazur manifold   [9]-that is, a contractable mani-

fold with nonsimple connected boundary; let  N be an  n-ball in the interior of Al.

In this case, H and one of the boundaries,  dN, ate simply connected, but the

other boundary component,   dM,  is not.

Example 4.   We now give an example of an  H-cobordism  (H, MQ, MA such

that  77, (AL) ** n.(H) and  77, (Al. ) fh t7j (H) via inclusion and yet H is not an

¿-cobordism.   We will use an example of Stallings found in Kervaire   [7, Theorem

V],  of an embedding, /,  of an 72-sphere,  « > 3,  in an  (72 + 2)-sphere   with

771(5"+2 - f(S")) * Z and  772(S" + 2 - f(Sn)) ¿ 0.   Let y be the generator of

77,(S"+   - f(S")).  We may represent y by a smoothly embedded circle g: S  —►

Sn+2.   Both g(S  ) and /(5") have trivial normal disk bundles—call these   T.   and

T , respectively; we may choose these so that   T. O T   =0.   Note that

dT, *h dT   ^ S1 x Sn.   Now let H = Sn+2 -T, -T , and  let A1n = dT.,  Al. = <?T .
I n In' 0 1 1 n

The following three theorems give some indication of what implications

follow from the assumption that A4" ~¡) N" is a homotopy equivalence.   The

proofs are straightforward; the crossing with  /   , in 1.1, or the crossing with  /

together with the hypotheses about the fundamental groups in 1.2, is used to

assure codimension 3 spines of the manifolds in question so as to apply Lemma

2.10 for the fundamental groups.

Theorem 1.1 (crossing with  /  ).   Suppose that Al" 2 N", " > 3,   ¿s a

homotopy equivalence.   Let M' = M x I   , A/' = N x / .   We may consider

N   C Int Al';   let H' = M' - A/'. Then H'   is an h-cobordism between dM' and dN'.

Theorem 1.2 (crossing with  /).   Suppose that N" C M"  is a homotopy

equivalence with  n > 4.    Let M' = M x I; N' = N x I,  we can consider A/' CInt Al'.

Let H' = M' - N, H = AI - N,  and suppose that    rr^dM) -* n^H) and n^dN) -*

77.(H)  induced by inclusion are all onto, then H'   is an h-cobordism.

Theorem 1.3. (a) // N" C M" is a homotopy equivalence, H = M - N,  and if

N and dN are simply connected, then 2H  is an h-cobordism.   (b)   If N" C Al"  is

a homotopy equivalence with N simply connected,  N' = N x l,  M' = M x I,

H   = M   - N ,  then 2/7    is an h-cobordism, where 2/7' denotes two copies of H'

identified along  dM.

We can now use these theorems to obtain the following smooth embedding

results.
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Theorem 1.4.   (1)  // we have the hypothesis of Theorem 1.1   with  n > 3;

then if N x I2 ÇQ,  then M x I2 Ç Q.

(2) // we have the hypothesis of Theorem 1.2  with n > 4;   then if N x I C Q,

then  M x I Ç Q.

(3) // we have the hypothesis of Theorem 1.3(a) with n > 4;  then if N C Q,

then  M C Q.   If we have the hypothesis of Theorem 1.3(b) with n > 4;   then if

N x I ÇQ,  then M x I Ç Q.

Definition.  (H; AL, AL) will be called an H-cobordism, or homology

cobordism if dH = Al0 u Alj with  A1Q O Alj = 0, and such that H^H, A1Q) = 0.

(Note that is follows from duality that  HjjH, A1Q) = 0 implies that  H^H, Alj) = 0.)

2.   Handlebody theorems.   Suppose we write  D" as  DT x D"~T,  and consider

dDr x D"-r to be a subset of dD" via the formula: dDn = dDr x D"~r + Dr x

dD"~r~    where the identifications are on  dDT x dD"~r~  .   Suppose also that

N"  is a given smooth 72-manifold and that A  is a smooth submanifold of  dN

which is diffeomorphic to dDr x D"_r via a diffeomorphism  h, h: dDr x D"~T—>

A.   The map h is called the  a-map or attaching map.   The space  N + D" with

identifications via  h will be a smooth manifold called N plus the r-handle h;

this will usually be denoted more simply by  N + h.   If the value of  r is to be

emphasized, we will also call  N + h,   N  plus a handle of type  r.

The subset A   will be called the attaching set of h,  or the  a-set of  h.   The

subset of  A  corresponding to dDT x (0) will be called the attaching sphere of h,

or the a-sphere.   The subset of d(N + h) corresponding to DT x dDn~r will be

called   the boundary of h,  and denoted   dh.   A subset corresponding to a subset

of  dh of the form  x x dD"~r,  where  x £ DT, will be called a   b-sphere of h.

Definition.   A handle decomposition of M relative to N, where Al and N

ate both  72-manifolds will be a diffeomorphism of  Al with  N plus some handles;

we will write this as  M = N + h.+h. + ...+h.  If we wish to emphasize the

types of the handles in the decomposition, we will use superscripts so that, for

example,  N + hj + h'2 will denote  N plus a particular handle of type  i plus a

particular handle of type /.   Al"  is a handle decomposition relative to N"~

will mean that  Al has a handle decomposition on  N x I with all handles

attached on  N x (1).

Lemma 2.1.   Given a handle decomposition M = N + h,+...+h ,   then
r Is

there is a natural handle decomposition on M x I that has handles of the same

type as those in the decomposition of Al.   That is, we may write  M x I =

N x I + g, +••• + £    where if A . and S., 2 = 1, • • ■ , s,  denote the a-set and
° 1 °5 '        l l ' '

the a-sphere of h .,  then A . x I  and S . x A will correspond to the a-set and

a-sphere of g ..      D
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Proposition 2.2 (changing the order of the handles if the fl-sets are disjoint).

Suppose that M = N + b + h'; with A  and A' denoting the a-sets of h and h',

respectively.   If A  and A'   are disjoint subsets of dN,  then N + h + h   «fe N +

h' + h.      a

The following is a standard theorem about handlebodies  [6].

Lemma 2.3 (moving an a-sphere by an isotopy).   Suppose that M = N + h^ +

. . . + h     is a handle decomposition and that S denotes the a-sphere of h,.

Suppose that we are given an isotopy H    of S  in dN.   Then we can obtain an

equivalent handle decomposition M = N + g. + ■ ■ ■ + gs such that the a-sphere of

gt   is Wj(S).     a

The following lemma is a version of the product neighborhood theorem.

Lemma 2.4.   // P and Q  are smooth manifolds and h': P x \0\ —' Q x M is

a diffeomorphism then there is a diffeomorphism,   h,   unique up to isotopy,

h; P x I —» Q x I such that h\P x \0\ = h'.      D

Definition.   Suppose what we are given a handle decomposition  Al" = N" +

h j + h2 + • • • + h .   Then we will say that the decomposition is nicely handled if

(1) The handles are added in order of increasing type—that is, if  z < /' then

the type of h. is less than or equal to the type of h..

(2) Let N(k) denote  N plus all those handles of type less than or equal to

k  (N(k) is analogous to the  zs-skeleton).  We will require that the  ö-sets of all

the  (k + l)-handles in the decomposition are disjoint subsets of dN(k), fot all

values of  ¿.

(3) If a  (k + 1 )-handle intersects a ¿-handle we will require that the  a-set

of the   (k + l)-handle goes right around the   ¿-handle.   By this we mean the follow-

ing.   Suppose that h is a  ¿-handle in the decomposition, that A'   is the  fl-set

of h', and that A O dh / 0.   We have A' «fe dDk + 1 x D"-k~l.   We will require

that  A     n dh consists of a disjoint collection of  (tz - 1 )-disks denoted by  D .,

each corresponding to a subset of the form   B. x Dn~ where the   B. ate

subdisks of  dD   + .   Furthermore, this cartesian structure must be compatible

with the cartesian structure of  dh «fe Dk x dDn~k.   That is, there is a collection

of  (t2 - ¿ - l)-disks in  dDn~k, \C.\, such that if /f: Dk — dDk + ï  is the inclusion

map of B¿ and if g.: Dn~k~l —* dD"~k is the inclusion map of C{, then the

inclusion of D . into dh is given by  fxg..

Remarks.   Conditions (1) and (2) are essentially the requirements of a "nice"

handle decomposition in the sense of Smale  [14]—i.e., one corresponding to a

"nice" or self-indexing Morse function.

Condition (3) essentially says that the set A' does not double back on the
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handle   h,  nor does it twist around  h;  furthermore the "fibers of A     line up with

the fibers of dh."

The proof of the following theorem is an easy generalization of the proof

that every handle decomposition is equivalent to a nice handle decomposition,

Barden   [1].

Theorem 2.5. Let M = N + h.+..- + h be a handle decomposition. Then

there is an equivalent handle decomposition of M relative to N which is nicely

handled.      D

In the constructions which are to follow, we will need the following concept

of relative transversality.

Definition.  Suppose that   A", B    and  Cc are submanifolds of Qq, with

C C A C\ B.   We will consider the tangent manifolds of A and  B to be contained

in the tangent manifold of Q,  thus   77(A)    will denote the tangent plane of A at

x which we will consider as a hyperplane in  T(Q)  , the tangent plane of Q at

x.   We will say that A  is transverse to  B relative to  C if the following hold:

(1) If x £ C, then   T(A)    and   T(B)    span an  (a + b - c)-dimensional

hyperplane in   T(Q)  .

(2) If x ¿ C,  then we require that  A  and  B  are transverse in the usual

sense; that is, that  T(A)    and  T(B)    span  T(Q) ,  it being understood that this

condition is vacuous if  x fL A O B,  and that if  a + b < q,  then transversality at

x will mean that x £ A C\B.

Lemma 2.6.   Suppose that M" = N" + h,  where  h  is a  (k + l)-handle;  and

suppose we have N" CQq.   Let A  and S  be the  a-set and a-sphere, respectively,

of the handle h.   Then we can extend the embedding of N to an embedding of M

if and only if

(1) there is a   (k + l)-disk B  in Q  with B n N = S = dB and B   is trans-

verse to A  (and therefore to N) relative to S,  and

(2) a certain obstruction  a.  is zero.   This obstruction is an element in

7Tk(V(q - k-l, 72- k-l)).

Proof.   The proof of the lemma follows easily after we define   a..   We first

define a map F: dB —> V(q — k-l, n - k - 1) as follows.   By our transversality,

we may assume  B is orthogonal to A.   For each x £ dB,  let f(x) be the

(n — k — 1 )-frame at x, normal to B,  corresponding to the standard frame of

D"-k~l  via  {x! x Dn~k-1 CA^dBx D""^"1; this may be considered a frame

in  Rq~  ~    by projection on the  (q — k - 1 )-dimensional fiber of the trivial

normal bundle of  B  in  Q.   Then   a. will be the homotopy class of / in

7Tk(V(q - k-l, n-k-l)).      a
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Lemma 2.7.   If q ~ n> k,   then nk(V(q -¿-l,72-¿-l)) = 0.

Proof.   By Steenrod   [15, 25.6, p. 132],  we find that  nk(V(x, y)) = 0 if

x - y > k.

Combining the above two lemmas we have

Lemma 2.8.   // we have M" = N" + h,  where  h  is a k-handle, and suppose

that  Nn CQq,  and suppose there is a  k-disk  B,   in Q  which spans  S,  the set

corresponding to the  a-sphere of h,   then we may find a smooth subdisk B     in

Q  which spans S and which is transverse to N relative to S  if  q > n + k.      D

Definition.   Suppose that  Sa and S    ate transverse subspheres of  Qa+ ;

and suppose that we choose orientations of each of these manifolds.   An orienta-

tion will give a specific orientation to each tangent plane, given say by a pre-

ferred ordered basis.   Then if x £ Sa n Sb, the intersection number will be

defined to be plus one if we take a basis of  T(Q)    by taking first the basis

vectors which correspond to the chosen basis of  T(Sa)    in  T(Q)    and then the

preferred basis vectors corresponding to the chosen basis of  T(S  ) ,  and if this

ordered basis gives the same orientation to  T(Q)    as the chosen one.   If the

orientation is not the chosen one, then we will say the intersection number of the

point  x  is a minus one.

If  h is a   ¿-handle, and  h    is a  U + l)-handle in some handle decomposition,

then the intersection number of these two handles will be the algebraic sum of

all the intersection numbers of the  «-sphere of the   (k + 1 )-handle and the   ¿-sphere

of the   ¿-sphere.   The sign of the intersection number will depend on the arbitrary

choices of orientations of the manifolds involved.

Definition.   A handle decomposition will be called an   ¿-decomposition if

M = N + h1 + --- + hs + kl + ... + ks where the  h . ate all    ¿-handles and the

¿¿ are all (¿ + l)-handles, with the decomposition nicely handled, where we

require that the intersection number of  h . and  ¿. is one, and that the intersection

number of  h. and   k   for   i / j is zero.   We will say that such a handle decompos-

ition is an  h-decomposition of type  (k, k + 1 ).

Theorem 2.9 (the ¿-decomposition theorem).   Suppose that Al" D Nn with

H^(M, N) = 0,  with dN and dM connected and n > 3,  then M can be written as

"N  plus a sum of h-decompositions";  that is, we may write

M = N + h\ + ••• + hX    + k2 + ... + ¿2
1 s, 1 s,

+ h2 + ... + h2 +k] + ... + k2 +hn~2 + ... + hn~2 +¿"-1 + ... + k"-1
1 S2 l s2 l Sn-2 X Sn-2

where, if we let N(j - 1 ) = N + h\ + • . . + k>\      (i.e., N(j - 1 ) is N plus all the
7—1

handles of type  j -I   or less, plus all the j-handles of the type denoted by  k'A
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then for each j,  we have  2*'.% + 2*I1^'+1   is an h-de composition on N(j - l).

Proof.   (Al, N) has some relative handle decomposition, say,  Al = N + gj +

• • • + gn_1;  we will refer to this decomposition as  -D.   We will show that we can

find an equivalent handle decomposition with the desired properties.

Let C^.(M, N) be an associated algebraic relative CW complex associated

with 5).   This will have one  r-cell for each r-handle.   Let d   denote the boundary

operator,  d : C   —> C     ,.  Let Z   = ker d , and let  B     , = d (C ).   Then we have
* '      r       r t—\ r r' r— 1 r     r

an exact sequence:

Z -^c

Thus we may write  C   = Z   © D   where if we let d  = d \D ,  then d : D   —>
' r r r r r<    r' r       r

B     .  is an isomorphism.   However, since we have H^C^.) = 0,  B _. = Z _., we

may also think of this as   d': £>r ** ̂      |.

We will prove the following statement by induction, on  222.

Statement S   .   There is a handle decomposition, equivalent to D, such that

Al = N + h. + • • ■ + km plus some additional handles  \g'\ such that if z;. is
1 sm— 1 * l

the generator of  C. corresponding to the handle  hi, and if dl is the generator of

C. corresponding to the  kl,  then for all k < 722 we have  ¡z*j generates  Z,   and

fa*! generates  D,   and  ddk = d'(dk) = zk~l .   (Of course,  dzk = 0; the z^'s  are
I K, t T Z Z 1 Z

cycles.)

The theorem we wish to prove is  S     ,.
r n— 1

Proof of Sj.   We have no zero handles in our decomposition, thus no zero

cells in the relative CW complex, and so  Cj = Zjj and we simply choose the

{z   ! to correspond to the generators of the handles   jg . i in the decomposition  -D;

there will be no  \d. j.

Proof of S     for m < n - 2,  assuming S      ,.   We have two bases for  C.   One
m — ü     m — 1 z

will be the basis determined by the   2-handles of the handle decomposition

obtained in 5\_j, this will be denoted by {c!.j, these will be the  ig*i's.   The

second basis for  C. will be denoted by  \e\\ where   \e'.\ = \d'.\ U fz'.j.   Here   \zl\

is an arbitrarily chosen basis for Z.,  and we define dl by d\ - (d')~  (z\~  ).

Let A be the matrix relating the basis  \cl.\ to the basis  \e\\; that is, the

/th column of the matrix A is the coordinate of c1. with respect to the basis  ¡ezj.

Since  A  is an invertible matrix, it can be reduced to the identity matrix by

elementary column operations.

Ufe wish to show that corresponding to each elementary column matrix with

matrix, say,  Ek, we can find a manipulation of the handle which realizes this

change.   That is, we want to find a new handle decomposition, equivalent to the

one obtained in Sm_x (in fact, it will be identical to it on  N(i - 1)) such that if

\c\ ! is the new basis of C. determined by this new decomposition, that the
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matrix relating \c'.'\ to  \e'\ will be the matrix  EA.   If we can do this successively

to each   E,,   k = 1, • • • , w,  we will finally obtain a new handle decomposition

whose handles correspond to a basis  \c\   } of C   and such that the matrix

relating the basis   \c'.    } to  \e'.\ is   /.   This means we will have found a handle

decomposition such that the cells of  C. corresponding to the handles are

\d'.\ U \z'.\.   We will then denote the handles corresponding to the  d\ by  k1. and

those corresponding to zl. by  b\ and then  h\~l + • • ■ + hl~      + k\ + ■ ■ ■ + k'f 6      _    ;    '     7 ■ _ i '-1 '-1

will be an ¿-decomposition since we have  ddl. = z'~  .

We consider the two types of elementary column operations:

Type I.   Adding one column to another.

Type II.   Multiplying one column by a nonzero integer.

Operations of Type I are done by using Lemma 1.4 of Barden  [l] or the

corresponding operations in the proof of Lemma 2 of Kervaire   [6]; here, however,

we need  i< n — 1.

Operations of Type II are also done by the Lemma 1.4 of Barden except for

multiplication by - 1. But this simply amounts to changing one's mind on how

to pick an orientation for the cells in the associated  CW  complex.

The argument for S     with  ztz = 72 - 1   involves the same sort of argument as

above using the dual decomposition.   S  _ ,  will not be needed in our application

of this theorem, only  S      ..
'        '      n-2

Lemma 2.10.   // N" D Int Al" and H = M - N and if the handle decomposition

of M tel N has handles of type  k  or less, then the inclusion map induces

isomorphisms  77 (dM) «fe 77 (H) for  i < n — k — 1.

Proof.   This is essentially Corollary 12.3 of Mazur [10].       D

3.   Proofs of main theorems.   The following construction of the space   N

is fundamental in the theorems which are to follow.   The conditions we need for

this construction will be denoted by "Hypotheses   (*)"; and are as follows:

Hypotheses (*). Suppose Al" D N" with Hj,M, N) = 0, and that Al has a

handle decomposition on N with handles of type less than or equal to n-2,

where   tz = dim Al,   72 > 5.

First we use Theorem 2.10 and write  Al as   N plus the sum of  ¿-decomposi-

tions of type  (72 - 3, 72-2) or less.   That is, we may write

Al = N + h\ + ... + hl    +k2 + ... +k2    + ...

+ ¿"-3 + . . . + ¿"-3    + kn~2 + ... + kn~2   .
1 V-3        l sn-3

Let us consider A/[l] = N + h\ + ■ • • + ¿]   + k\ + ■ ■ • + h* .   Now  rr,(óW[l ]) has

finitely many generators, and since dim dN[l] > 4, these may be represented by
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disjointly embedded circles,  Sj, • ■ • ,Sm; and these circles will have disjoint

product neighborhoods   Tj, ■ • • , Tm,  with the following two properties:

Property I.   The   T. do not contain any points of the  2-handles   k^,- • • , ks  .

Property II.   None of the a-sets from the handles  h.,-■■, kn~      have
1 sn — 3

points in common with any of the sets   T..

Now we will use these  T. to attach 2-handles to N[l]; denote these handles

by gi',-,'gm'   Define  N*=   N[l] + g2 + • ■■ + g^.   Note that we have  27j(<9/V*) =

0, since we have killed off the fundamental group of dN[l] (Lemma 5.2 of

Kervaire and Milnor  [8]).   By Property I we can consider the handles  gj, ■ ■ ■ , gm

to be attached to the manifold  N + h.+---+h.   By Property II and Proposition
1

2.7 we may define  Al   = N    + h, + ■ ■ ■ + k"~     .   Note also that we may consider* l s"-3

Al Ç Al*.

The corollary of the following lemma is a key step in our embedding theorems.

Lemma 3.1.   If Hypotheses  (*) hold   and if also   77.(<9A1  )—> n.(H ) is an

isomorphism (this is equivalent to demanding that 77.(¿Ml  ) = O), where we let

H   = AI   - N ;  then H    is an    h-cobordism.   (This will be a trivial h-cobordism

since  rrAdN ) = 0.)

Proof.   First we note that n.(H  ) = 0.   This is true since  dN    is simply

connected, and thus the handles   h., • ■ • , hs    are homotopically trivially attached

as subsets of dN  .   Since the rest of the handles are of type 3 or greater, none

of the other handles composing  H    change the fundamental group.

Now since H is built from the sum of ¿-decompositions, it is clear that

H^(H , dN ) = H^(H , dM ) = 0. Since we have everything simply connected,

H    deforms to either boundary component.   Thus   H    is a (trivial) ¿-cobordism.   □

Corollary 3.2.   // we assume Hypotheses (*) with 77.(dM ) = 0 (or equiva-

lently TrAdM  )—► 77.(H  ) is an isomorphism onto) and we somehow find a smooth

embedding of N     in some manifold Q,   then M ,  and therefore the submanifold

Al C Al , will smoothly embed in Q.      □

Lemma 3.3.   // N' = N" + hl + • ■ • + hls  is N" plus some I-handles,  n > 3,

and if we are given an embedding N C Int Q  with a > n,   then we can extend the

embedding of N to an embedding of N .   (We assume here that the l-handles are

attached on a connected manifold.)

Proof.   We may easily find disjoint arcs in dN which span the  a-spheres

(0-spheres) of h ., and these may be pushed out from N into Q so as to obtain

a collection of 1-disks relatively transverse to  dN.   There is no problem

thickening these into l-handles since all the   V    ,'s ate path connected.       O

We are now ready to consider the problems of extending an embedding over
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the  2-handIes.   For the two handles, we will use the obstruction Theorem 2.6

which states that given  N + hk+1  and an embedding of N" Ç Qq we can extend

this embedding to an embedding of  N + h if

I.   There is a (¿ + l)-disk in Q which spans the a-sphere of the handle and

which intersects the manifold N only in that a-sphere.

IL   A certain obstruction vanishes.   Since we have  ¿ = dimension of the

a-sphere of ¿, this obstruction will be a homotopy class in trk(V(q - k-l, n- k-1)).

This group will be zero if (q - k - I) - (n - k - I) > k; i.e., if q - n > k.

If we are to be concerned with 2-handles, condition II will cause no problem

if we assume that q - n > 2.   In Lemma 3-4, we may obtain disjoint spanning

2-disks by the codimension hypothesis; in Lemma 3.5 we may push the interiors

of the 2-disks into Q x (0, l] so that they miss  N C Q x !0}.

Lemma 3.4.   // N" C Qq is a 1-trivial embedding with q - tz > 3,  then N can

be extended to an embedding of N    Ç Q.

Lemma 3.5.   // N" C Qq  is a l-trivial embedding with q - n > 1,   then

N* ÇQ xl,  q>5.

The following lemma is a version of the Whitney separation of spheres

lemma.   The result of the isotopy is that we will have removed the points of

intersection  p and a from S   O S,.

Lemma 3.6.   Suppose that Al" = A/" + ¿""3 + ¿""2   with n > 5  and

TT.(dN) = 0—and thus d(N + ¿"~3) will be simply connected.   Let S    be the

sphere of the  (n — 2)-handle; let S,   be the  b-sphere for the  (n — 3)-handle;  we

will choose a  b-sphere lying in dN.   Vie may suppose that S     and S,  are trans-

verse and thus S    OS,   consists of a finite number of points;  suppose that  p

and q are two such points with opposite intersection numbers.   Then we may

perform the following construction:

Vie can find an arc  a, in S    from  p to q and an arc ß  in S,   from p to q

so that the circle   a u ß will lie in  dN and such that the only points of S   C\ S,

which will lie on this curve will be  p and q.   Then we may find a 2-disk,   B,

in d(N + ¿"~3) such that the boundary of B  corresponds to  a u ß.   Such a disk

may be found so as to enable us to construct the following isotopy.   Vie can find

a small neighborhood Vi'   of a in S    with  a contained in the interior of Vi',

and a small neighborhood,  VI,  of B  in <9(A/+¿"~3) andan isotopy f   of Vi'  in

W fixed on dVi' such that /j(W') n Sb = 0.

The construction of /   is essentially the same as the Whitney isotopy as

described in Milnor [12, Theorem 6.6].   However, this is not the same removal

of pairs of intersection points.   The reason is this:   The isotopy of the disk Vi'
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given by our lemma will not, in general, give us an isotopy of Sa,  as is usually

obtained in versions of Whitney's theorem—we will only obtain an isotopy of part

of S .   This is due to the particular dimensions involved.   The dimension of S
a L u

is  72-3; and the dimension of S,   is  2; both of these spheres are contained in

d(N + ¿"~3) which is an  (72 - l)-manifold.   We will obtain  B by using relative

general position on the disk which spans   a U ß via the hypothesis that nx(dN) =

0  and  72 - 1 > 5.   S,   is a   2-sphere and, again, since  72 - 1 > 5   it is easy to make

sure that  B D S, = ß.   But the codimension of  S    in  d(N + h"~i) is  2  and thus,

in general, the intersection of  B  and  S    will be zero-dimensional.   The effect of

this is that after the isotopy / ,  f .(W ) may intersect S   - W   and thus we will

not end up with an embedding of S a.   However, the se If-intersections of S    will be

of such a nature that we will, later, be able to handle these without difficulty.

We may now apply Lemma 3.6 to homotope the  a-spheres (and thus the  a-sets)

of the   2th  (n - 2)-handles off all  (n - 3)-handles except for one disk which goes

around the   2th    (72 - 3)-handle.

Lemma 3.7.   Suppose that M = N  plus an h-decomposition of type

(n - 3, 72-2) with 72 > 5,  dN simply connected.   Let A . and S . denote the a-set

and a-sphere, respectively, of the  ith  (n - 2 )-handle,   k.~.   For each A. and

(n - 3)-handle h.,  choose one component,   Y. of A. n dh.;  this will be an (n-l)-

disk and will go right around the handle h . as in the definition of a nicely

handled decomposition.   We will assume that the (n — J>)-disk X . = S. D V.

intersects the  b-sphere of k^."'*' with intersection number 1;  we may now pair

off the rest of the intersection points of S .  with each of the   b-spheres of the

(n — 3)-handles so that we may apply Lemma 3.6 to each pair.

There is a set of subdisks   W.. such that each   W..C S . (the   /-index is an
Z7 lj -     i '

arbitrary ordering of the   W.. fot fixed   i) and subsets   U .. of A. corresponding to

W.. x D  , and an isotopy,  C, of dN such that if we let Z . = (A . - Y. - 2. U..) u
Z7 * ' t I l l ;      i)'

SyGj(f/.. ), then  Z. n dh. = 0 for all   i 4 /'•   In other words, if we consider the

homotopies,   Gl,  on  A¿ defined as   G    on   2.Í7.. and the identity on the rest of

A . then we will have

(1) Gil(A.)ndb. = 0 if i4i;

(2) G\(A.) ndh.= Y..      D
1      z z z

The next theorem is the result which will allow us to extend a given embed-

ding over an ¿-decomposition of type   (72 - 3, n -2).

Theorem 3.8.   Suppose that Al" = N" plus an h-decomposition of type

(n - 3, 22-2) with 72 > 5  with dN   simply connected.   If we have an embedding

of ¿V" C Int Qq with n < q,   then we can extend the embedding of N  to an embed-

ding of M  in Q.
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Proof.   Recall the  Z. of the previous lemma; these are (72 - lVdisks with

self-intersections.   Z . is  A. minus   Y . after the homotopy which removed

cancelling intersection points.   Let  T. = G^(S   - X.), that is,   T. is the part of

G.(S.) which lies in Z..   These are  (72 - 3)-disks with self-intersections; these

self-intersections are due to the isotopies of subdisks  W.. of S. used in the

deformation disks  D .., and are confined entirely in the collection of neighbor-

hoods   VI.. of D...   Also we note that we do not have any singularities on dVi..,

since the  dVi .. are not moved in the isotopies.

We will now define a subset  T. of dN x I which will correspond to T.

pushed into this set from the boundary,  dN x (O).   We will also define a similar

set Z. for Z..   Then we will define a set which we will call H., which will

essentially be a thickening of the set Z.   in dN(n - 3) x /.

Let  C. = X. (~> T.; C. corresponds to r9X. and also dT..   Then we define

T\ by

7\' = C.x[0, 1/3] u l T.-   Y VI A
\ '    T  7

(1/3)

U (Z dVi\ x [1/3, 2/3]  u (% W.\ x (2/3).

Let  Ei = Y. n Z.,   Let  U.. be the subset of Z. corresponding to
it 9

W.. x z9  ;  let  [/.. be the subset of Z. corresponding to dW.. x D .   Now we will

define  Z. by

z; = E. x [0, 1/3] u IZ~~Zlj~) x (1/3)

u ZK [1/3,2/3]  u   (Z t/,.,) x(2/3).

Note that if p: dN x I ~^* dN is the projection on the first factor, then

p(r;.) = T. and  p(Z'.) = Z..

We will illustrate these definitions by the following example:
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Here  A    is the  a-set of the   z'th     (n - 3)-handle,  h..   This example shows a

situation with a  1-handle and a 2-handle.   These are not correct dimensions for

our hypothesis, but we will be able to depict our sets with these examples.    T.

will then look like this:

'dN(n- 3) x /
-~—~^\

dWn x[l/3, 2/3]—

W ., x (2/3) A /

And then  Z. will look like this:

Í---¿

N

Let  R.. be a small collar neighborhood of  U.. in  Z..   We will define a
Z7 z? z

subset  W. of dN x I by

H' = A.'x[0, 1/2]  U    Z. -   X (/..] x[l/3, 1/2]

u /£R.\   x [1/2,1]  u  fe 1/..J  x [2/3,1].

Now  H'. is an 72-ball in  dN x I which intersects  dN x (O) in A..   Furthermore,

Z.  lies on the boundary of this ball.   Thus   H. is just like the handle   h^, but it

is inside  N rather than outside:
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Now let / = [ - 1, 0].  We are given an embedding  N Ç Q.   Let N' = N +

(dN x }), where we identify dN with dN x (0); then we can extend the embedding

of N to an embedding of N .

We now consider dN x D  .   Using polar coordinates for D    we will consider

D1 =\(r, 9) £D2 with 0=0 or 0=77}, / = !(r, 9) £ D2 with 6 = 0} and / =

!(r, 9) £ D2 with  9 = 77}.   We now define an isotopy  F   of dN x D    by rotating

half a revolution by means of the disk  F (x, (r, 9)) = (x, (r, 9 + tn)).   Let

H. = F .(H.); these sets will correspond to our handles  h ..

To see that the  a-rnap of H   is the same up to isotopy as the  a-map of h.,

we may argue as follows.   Write  Dn = D"      x D  , then  h   is a smooth embedding

of <?D"-3 x D3.   Suppose we write  D""3 x D3 = D"-3 x D2 x /.   Then since our

handle decomposition is a nicely handled decomposition, if we may think of  C.

as the  2-disk C. = \0\ x D2 x Í0} then   V\ will correspond to D"~3 x C. x ¡0} Ç

dh..   If we let  h. = h.\dD"~     xC.xlO}, then  ¿determines   h . (up to isotopy)

as we may see by applying Lemma 2.4 with P = dD"~i xC, Q = ¿.((9D"~3 xC.x \0\)

and thus the  a-set of  ¿. corresponds to  Q x I.   If we consider  H. to be a handle

attached from the inside to  dN,  then the  a-map of this handle, call it also  H. ,

will similarly be determined on the set corresponding to  C. and thus we may

have  f7. = h. ° if/ where if/ is the orientation reversing diffeomorphism on

dDn~i x D    = dD"~i x D   x I defined as the cartesian product of the identity on

dDn~  ,  the identity on  D    and the linear orientation reversing map on  /.

Similarly, if H . denotes the  a-map of the handle  H ., we will have  H . = //.' ° i/z

and so H . = h . °<f/ ° t/j = h ..

Thus we may define an embedding  cp: N + h).n~2'+■•■ + h^n~2' —> A/' so

that  (f>(N) = N, <p(h.) = H. and  <tS(Y.) = Z". .

Consider the isotopy  F   as giving a map F-. (dN x l) x I —> dN x D  ; then

define   P. = F(Z. x I).   Viewing  dN x D2 * dN x D' x I,   P. will be an 72-ball

which will hit  dN x D' x 10} in Z! U Z"  where  Z". = FAZ').
I l l 1      z
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We will next use Lemma 3.9 below to obtain corresponding 72-balIs, V. in

dN x D' x {Oj with Z.'u Z"cóV.; we can arrange it so that the collection \V \

is a disjoint collection of balls.

Lemma 3.9.   Suppose A % Sk x DT, A C Ww with w - k>3, w > k + r;  then

A   lies on the boundary of a  (k + r + l)-disk in  W  iff A x \0\  lies on the boundary

of a  (k + r + l)-disk in  W x I.   (In the case  r = 0,  this is Lemma 1.5 of

Haefliger [2].)

Next, we define a homotopy, ift , of   dN x D' such that ^|Z. U Z.   is an

isotopy and  i/>j(Z. U Z! ) = <ß(A .).   This homotopy will be essentially given by

K (x, r) = Gj_((x, 1/r) on dN x I; K((x, t) = [identity on dN(n - 3) x /].   However,

K \Z. u Z"  will not be an isotopy since   K. will collapse subsets of Z.   corre-

sponding to  F   x [O, I/3] and  (1U..) x [1/3, 2/3].   We may avoid this problem by

first applying an isotopy that tilts these sets slightly in the  / direction so that

the restriction of the projection dN x I —> dN to Z.   will be a one-to-one map of

Z.   onto Z..   If we now apply  K , we will obtain our t/z .

Next we may extend the isotopies  i/f,\Z. U Z.   to isotopies  \ft   of the 72-balls

V.;  let   V. = i/fj(V¿).   Then \V*\ is a disjoint collection of 72-balls in A/', and the

restriction of the normal bundle of N    in Q to  SK. is trivial; thus we may extend

the embedding of  N    to an embedding of  X = N   + EV. x /.

Let  K. be the  77-ball of X corresponding to A . x / U V. x {l !.   These   K.

will be our  (72 - 2)-handles.    We may check from our construction that the   a-map

of   K , call it  K., is the same as  k..   However, it is easier to argue that these

maps are isotopic as follows.   The  a-spheres of these handles are clearly the

same, so we may view  K. and  k. as giving two framings by 2-frames of this

(72 - 3)-sphere.   These framings determine elements of  77  _,(S02) and the framings

will be equivalent  (and thus   K. and  k. isotopic) iff they determine the same

element; which they must since, in fact,  n _ASO 2) = 0 if 72 > 5.   Thus the

desired embedding of A4 is given by  N + H.+---+H   + Kx + K2 + ■ ■ ■ + K .      a

Proof of Theorem A.   We begin by considering some handle decomposition of

Al  on N.   Since Al has nonempty, connected boundary, we may assume that this

decomposition has no  72-handles.

We will eliminate the problem of having handles of type one less than the

dimension of the manifold by considering  Al   = Al x /,  and  N   = N x I.   Let

m =Dim Al   =22 + 1.   By Lemma 2.1 we can get a handle decomposition of  Al   on

N   where the largest type handle is of type  22-I =722-2; so Al' has a handle

decomposition on  N    with no  w-handles and no  (m - l)-handles.

Since we can embed N in 5, we certainly can embed  N x I in Q x I.   Now

we consider (N )  .   By Lemma 3-5 we can embed  (N )   in  (Q x I) x /.
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Now let M " = (M')*((« - 4)); this will be all of the decomposition of Al'   on

N'   except the last  ¿-decomposition of type   (72 - 3, 72 - 2).   Now we may use

Lemma 3.2 on  Al",  since Lemma 2.10 assures us of the condition on the fundamental

groups; therefore we can embed  Al"  in Q x / .   Finally we use Theorem 3.8 to get

an embedding of all of  (Al')* in Q x I2.   But then we have  M' = M x I C Q x I2.      □

Proof of Theorem B.   We will define  N    and  Al    as in the previous theorem.

We are given  N   C Q; this time we will use Lemma 3.4 to embed  (N ) in Q.

We define Al as in the previous theorem, and the same argument will show

us that we can embed  Al    in  Q,  and thus we can embed  Al   C Al x / in  Q.      □

Proofs of Theorems A    and  B .   If we now proceed with the proofs of the

previous theorems, using  Al and  N instead of  Al    and  N ,  and assuming  72 > 5,

we could conclude in Theorem A that we could embed  Al  in  Q x I;  and we could

conclude in Theorem B that if N C Q, then  M CQ.      D

4.   Embedding homology connected manifolds.   A homology cobordism is a

triple   (W; MQ, Al,) where  dVi is the disjoint union of A1Q and Al,  and  H^(Vi, MA =

H^VI, Alj) = 0.   If A10 is a manifold with boundary, a homology cobordism of  Al.

is a 4-tuple   (VI; H, MQ, M^ where  dW = H u MQ u My  H n MQ = dM0,  H n Alj =

dMy  H^(W, MA = H^W, Alj) = 0 and  (H, dMQ, <9A1,) is a homology cobordism

as above.

In the theorem below, we will assume for convenience only that M- has no

boundary. If Al. has boundary then the homology cobordism we would obtain in

the proof of the theorem would be a 4-tuple   (W; H, AL, M A with  H «fe dM- x I.

Theorem 4.1.   Let Al"  ¿e a smooth compact, orientable manifold n > 5,  with

/7¿(A!q) = 0,   1 < /' < k,   then there is a homology cobordism  (VI; Al0, Al   ) such that

M.   is  k-connected.

Furthermore, if MQ  is a  n-manifold, so is  Al.;   if Al.   is almost parallelizable,

so is  M ,.

Proof. As in the proof of Theorem 2.9, we may find a handle decomposition

of   Al     of the following form:

M0 = b\ + h\ + ... + h\ + k\ + ... + k] + K

where  K  is the sum  of handles of type two or greater and  h. + • ■ ■ + k    is an

¿-decomposition of type  (1, 2).   Let NQ = ¿° + • . . + k2, then H^(N A = 0.   Also,

the map 77j(A/0) —> tt^MA induced by inclusion is onto since every loop in  AL

can be represented by a loop in  h . + ••• + h  .

Thus  N 0 is a smooth homology disk and since all obstructions to trivializing

the tangent bundle plus a trivial line bundle vanish,  NQ is a  77-manifold.   Now

771(A/0) has  k generators; each may be represented by an embedded circle with a
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product normal bundle.   We may attach    2-handles to A1Q x / along these circles

considered as subsets of NQ x {1 ! C A1Q x Ü !;  call the resulting manifold  W1,

then  W' will be a cobordism between  A1Q (corresponding to A1Q x {0!) and another

manifold which we will denote by  Al'.   We will let  V    denote the subset of W

corresponding to NQx I plus those  2-handles;   V    will be a cobordism between

N0 and another manifold, denoted A/'.   By a proper choice of trivializations of the

product bundles, we may add our handles in such a way as to have  N    a

77-manifold   [5, Theorem 5.5].

Also, from the same theorem, we may conclude that N    is simply connected.

Since  77.(AL) —» 77.(AL) was onto, we will then have  Al    simply connected.

Now H AW , AL) = H AV , Nn) is free on  k generators; we will now show

that each of these can be represented by an embedded 2-sphere in  N.   We consider

the exact sequence

H2(V') -ii-, HAY', NQ)-> HANQ).

Since  /7j(A/0) = 0,  ;#: H2(V') -* H2(V', A/Q) is onto.   Viewing  V'   as a cobordism

obtained by adding handles to N    x I we see these must be  (72 - 2)-handles.

Since  72 > 5, these are handles of type 3 or greater, thus adding them to N   x /

does not introduce any (nontrivial) relative 2-cycles and so H (V , N ) = 0 ; thus

we obtain an onto map  2 + : H AN ) —» H  (V ) via the exact sequence

h an') -!•-. h2W) —* h Ay', a/').

Thus, via   it °/+, any element of H AV , AL ) can be represented by an element

of H AN ).   But since N    is simply connected, we have  ttAN ) *fc H (N ); and

since  72 > 5  any element of ttAN ) may be represented by an embedded 2-sphere.

Since  N    is a  77-manifold of dimension larger than 5, the 2-spheres will have

trivial normal bundle (Lemma 5.3 of   [5]).   We will now add to  N    k 3-handles,

one for each generator of H AV , A/„) so that if we let  V denote   V    plus these

3-handles, then   V will be a cobordism between  N and, say,  N..   Also, since

N   C Al ,  we may consider these handles as being added to   W1;  if we do, the

resulting manifold will be called  W and will be a cobordism between  AL and a

manifold Alj.   Alj will be simply connected: since it is obtained from Al' by add-

ing  3-handles;  Al    was simply connected and the process of adding a  3-handle

does not affect the fundamental group.

We next claim that  (W; MQ, Alj) is a homology cobordism.   By duality, it is

sufficient to show  HAW, A1q) = 0.   The skeletal chain complex      JW, AL) is zero

except in dimensions 2 and 3 where in each case it is free on   i    ■   nerators, one

for each handle.   By our construction, the boundary map will g . isomorphism

between the   3-chains and the  2-chains since it gives a 1-1 co idence on the

generators;  thus  CAW, MA is acyclic and  H^(W, MQ) = 0.
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Now by duality   [11], we will also have  H A\Vi, MA = 0.   From the exact

sequences of the pairs, we see that if  MQ is homology  ¿-connected, so is  My

But since  Al,   is simply connected, it must be (homotopy)  ¿-connected.

To prove the second assertion of the theorem, we note that our surgery was

performed in such a way that if A10 were a 77-manifold then so would be Alp if

AL  were almost parallelizable, so would be  Alj.      Ü

Many embedding theorems assume that one has a   ¿-connected manifold.   The

theorem of this paper in conjunction with theorems of  [5] allow us to use some of

these theorems to obtain results on embedding homology  ¿-connected manifolds,

such as the following

Corollary 4.2. // Mn„ is a smooth compact homology k-connected manifold,

¿ > 1,  72 > 5,  then Mq  embeds smoothly in R2n~k + l.

Proof.   By Theorem 4.1 there is a smooth homology cobordism  (VI; M0, Alj)

with  Al,  a  ¿-connected manifold.   Let C denote a collar neighborhood of Alj  in

VI; C «fe A4j x /.   In the proof of the theorem we have seen that  W will have a

handle decomposition relative to  Alj  consisting of handles of type three or

greater, thus   VI will be simply connected and thus the map  77, (AL) —> n.(VI — C)

induced by inclusion will be added onto the map and we may use Theorem B .

By   [3], since  Alj  is  ¿-connected,  AL  embeds in  R  "     , thus  C embeds in
p2n —fe + 1

Remarks.   The hypotheses and conclusion of the above corollary are weaker

than those of Theorem E of [4].   It is also interesting to note in view of the

particular handle decomposition of VI relative to Alj,  we are essentially making

direct use of Theorem 3.8.

The author thanks the referee for pointing out errors in the original manuscript.
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