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ADEQUATE ULTRAFILTERS OF SPECIAL BOOLEAN ALGEBRAS

BY

S. NEGREPONTIS(l)

ABSTRACT.   In his paper Good ideals in fields of sets Keisler proved, with

the aid of the generalized continuum hypothesis, the existence of countably in-

complete,   /jf^-good ultrafilters on the field of all subsets of a set of (infinite)

cardinality   ß.   Subsequently, Kunen has proved the existence of such ultra-

filters, without any special set theoretic assumptions, by making use of the

existence of certain families of large oscillation.

In the present paper we succeed in carrying over the original arguments of

Keisler to certain fields of sets associated with the homogeneous-universal

(and more generally with the special) Boolean algebras.   More specifically, we

prove the existence of countably incomplete,   ogood ultrafilters on certain

powers of the   ohomogeneous-universal Boolean algebras of cardinality   cl and

on the  a-completions of the   ohomogeneous-universal Boolean algebras of

cardinality   a,  where   a= rc-^ > w.   We then develop a method that allows us to

deal with the special Boolean algebras of cardinality   ct= 2""". Thus, we prove

the existence of an ultrafilter p   (which will be called adequate) on certain

powers   S *   of the special Boolean algebra   S     of cardinality   a,  and the ex-

istence of a specializing chain  fC«: ß < a\ for   oa, such that C snp  is  /3+-

good and countably incomplete for ß  <  a.   The corresponding result on the

existence of adequate ultrafilters on certain completions of the special Boolean

algebras is more technical.   These results do not use any part of the generalized

continuum hypothesis.

Keisler, in the proof of his fundamental result stated above, made use of a

simple set-theoretic lemma on the "disjoint refinement" of certain families of sub-

sets of a given set.   In Question 7 of his paper he asks for generalizations of the

results of his paper to arbitrary Boolean algebras, considering the special nature

of the "disjoint refinement" lemma as a major obstacle to such a generalization.

Indeed the results of the ptesent paper rely on the analogue of such a lemma

(Lemma 2.1) proved for the Stone space of the homogeneous-universal Boolean
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algebras.   However, the proof of Lemma 2.1 makes use only of one of the two

characteristic properties of homogeneous-universal Boolean algebras (described

in 1.4(b) below), while (more specifically) the results of Part I use the second

characteristic property of such Boolean algebras (given in 1.4(c) below) as well

(in proving Lemma 2.2).

The paper is organized in two parts.   In Part I we consider powers of homo-

geneous-universal and special Boolean albegras.   In §2, Lemma 2.1 on disjoint

refinements and Lemma 2.2, which is the analogue of Keisler's Lemma 4C in

[K<], are established, leading to the proof of Theorem A.  The main result of

Part I on the existence of adequate ultrafilters (Theorem B) is proved for all

special Boolean algebras of cardinality a = 2-> co.   Part II deals with certain

partial completions of homogeneous-universal and special Boolean algebras.   In

§4, the proof is given on the existence of countably incomplete,  a-good ultra-

filters on the  a-completion of the  a-homogeneous-universal Boolean algebras of

cardinality  a (Theorem C).   An almost trivial, but basic, observation here is that

the a-completion Oa' of an  a-homogeneous-universal Boolean algebra C can

be identified with the a-complete field of subsets of the Stone space S(c) of C,

a-generated by L  (4.2).   The existence proof here is simpler than its analogue

in Part I, mainly because of any lack of complications in the proof of the analogue

of 2.2.   Theorem C can be generalized, by replacing in its statement "a-homo-

geneous-universal" by "atomless, weakly  a-atomic" (essentially in the sense

of Pierce [P]) (§4, Theorem C ).   However, the methods for completions of special

Boolean algebras in  §5  do not  workout as well, as for products in §3.   We are

forced to consider a chain of fields of sets that is not as closely connected with

a specializing chain for the special Boolean algebras, as one would wish; also

we have to give separate arguments for the regular cardinals and for the strong

limit cardinals.

The results of both Parts I and II may be considered as particular (indeed,

extreme) cases of a general procedure on partial completions, which is outlined

in the remarks at the end of §4.

The results of Part II may be used for various model-theoretic applications,

analogous to those given by Keisler [Kj], [K9], [Kg], [Kr], [Kg], [K-r], Kochen

[Ko], Galvin [G],  and especially Mansfield [Mj], [M9],  without making any use

of the generalized continuum hypothesis. These applications however are rather

cumbersome and in view of the definitive work of Shelah [Sh] on the character-

ization of elementary equivalence in terms of ultrapowers they will not be given.

The more satisfactory and in a sense deeper results of Part I do not seem to lend

themselves to similar applications.

1.   Preliminaries.   The axiom of choice is assumed.  Ordinal numbers are

denoted by  ¿5 £, 77, À with or without subscripts.   An ordinal coincides with the
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set of all smaller ordinals, i.e.  £ < ( is equivalent to  ¿j £ C   Nevertheless, we

make the notational distinction between the first ordinal 0  and the empty set  0.

A cardinal number is an initial ordinal.   Cardinals are denoted by  cl, ß, y, 8.

0, 1, • • • , 72, k, « • •   denote natural numbers.   The first infinite cardinal is eo.   The

least cardinal greater than ß is denoted by  ß .   The cardinality of the set of all

mappings from  ß to  cl is denoted by  a".   The generalized continuum hypothesis

(G.C.H) states that cl   = 2    whenever co < cl.   The cardinality of a set A is de-

noted by  |Aj<  A set of cardinality a (and no additional structure) will usually

be identified with cl.   For a nonempty set A,  let SJ\A) denote the set of all non-

empty subsets of A of cardinality less than  cl.   For a limit ordinal  X (X 4 0),

cf(A) denotes the cofinality of À.   A cardinal a is regular if a = cf(a), singular

otherwise.   If a. is equal to ß    fot some cardinal ß, then cl is called a nonlimit

cardinal, otherwise a limit cardinal.   A cardinal  a,  satisfying the condition  2^ <

a whenever ß> a, is a strong limit cardinal.  If a is a regular and a limit cardinal, then

a is inaccessible; if a is a regular and a strong limit cardinal, then a is strongly in-

accessible.  The beths 3 c ate defined inductively by 3 0 = to and 3r= S[2 ^s: C < si

for  f 4- 0.    We set ctß= Mo1': y < ß\.  The following results are well known (cf. the

papers of Hausdorff [Hj] and Tarski [T] for 1.1(b), the text of Bachmann [B],especially

§§33—34, and Morley-Vaught [MV] for an explicit statement of 1.1(d)).

1.1.   Let a be an infinite cardinal.   Then,

(a) a ¡s a strong limit cardinal if and only if a =  3.   where  A= 0 or À is

a limit ordinal;

(b) Let À be a (nonzero) limit ordinal.   Then  cf(3.)= cf(A);

(c) cl - cl^ if and only if cl = 2s and cl is regular;

(d) a = 2 ' if and only if either cl = a^ or a. is a strong limit cardinal;

(e) [G.C.H.]  a = a'5'if and only if a is regular if and only if either a is a

nonlimit cardinal or cl ¡s (strongly) inaccessible;

(f) [G.C.H.]  a=  2°   holds for all (infinite) cardinals  a.

Note that it follows from  1.1(a), (b), and (d) that there are cardinals  a of

arbitrarily large cofinality,   such that a = 2y.   On the other hand, no uncountable

cardinals  cl  such that  a. = aw are known to exist without some additional assump-

tions, such as the generalized continuum hypothesis, or the existence of strongly

inaccessible cardinals.

The general theory of Jónsson classes has been developed in [Jj], [Jol» [Ko]»

[CK].   A convenient reference is the text of Bell-Slomson [BS].   We need here the

results of the general theory, only as they apply to the jónsson class of Boolean

algebras.(2)   A Boolean algebra C   is  a-homogeneous if for any Boolean algebra

1> of cardinality less than  cl,  and any embeddings h., by J> ~' C,  there is an

(2)   Alternatively, we may consider the complete and model-complete theory of atomless

Boolean algebras (cf. Lemma 3 in [JO]).
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automorphism h oí C,  such that h °h. = h2.   A Boolean algebra C   is a-universal

if given any Boolean algebra J^ of cardinality at most  a, there is an embedding

h: S)—'C   If C is a-homogeneous and a-universal, then C is called a-homogeneous-

universal.   For the notion of special, we adopt the following simplified definition (equiv-

alent to the original definition by Morley-Vaught IMV]), given by Chang-Keisler [CK].

Let a be an (infinite) cardinal.   A Boolean algebra Ç is called special of cardi-

nality a if \C\ - a  and if C has a specializing chain, i.e.  C is equal to the union

of a chain  |l»: ß < a\ of Boolean subalgebras of C,  where Co is ß -homogene-

ous-universal for all cardinals  ß less than  a.   We need the following facts.

1.2. Let  ß be any infinite cardinal and let  C.   be any Boolean algebra of

cardinality at most  2 .   Then, there is a ß -homogeneous-universal Boolean al-

gebra  C of cardinality   2 ,   and a Boolean algebra embedding of C    into  C.   (This

statement is a particular case of a result by Morley-Vaught; cf. Theorem 2.10 and

Remark (4) following Theorem 2.8 in  [MV]).

1.3. Let a = 2A   There is up to isomorphism exactly one special Boolean

algebra of cardinality   a.   (This Boolean algebra will be denoted by   aa.)   Further-

more, if  a is regular, then  &a is the unique, up to isomorphism,   a-homogeneous-

universal Boolean algebra of cardinality   a.   (This statement is a particular case

of Theorem 2.8 in [MV].)

We make use of Stone's duality between Boolean algebras and compact zero-

dimensional spaces.   The Stone space of a Boolean algebra C   is denoted by

5(C).   We identify  C   with the field of open-and-closed subsets of S(C), or with a

field of sets of an appropriate subspace of S(t).   Let S be a zero-dimensional

space and  U  an open subspace of S.   The type  AU) of U is the least cardinal   a,

such that  U is equal to the union of  a open-and-closed subsets of S.   We need

the following facts:

1.4. Let C   be an (infinite)  a-homogeneous-universal Boolean algebra.   Then

S(C )  satisfies the following conditions:

(a) SiL) has no isolated elements;

(b) if U is open and 1 < r(u)< a,  then  U is not dense in S((?);

(c) if U and V ate two disjoint open sets, such that riu) + riv) < a, then

there is an open-and-closed set  W,   such that (/ C W and  V n W - 0.

(These statements are given in Corollary 1.5 and Theorem 1.7 in [N,]; they

are stated there only for the a-homogeneous-universal Boolean algebra of cardi-

nality a, but the additional assumption is not needed for their proof.)

Let ■>   be a field of sets.   An ultrafilter f on  i   is countably incomplete if

there is a sequence \Z  : n <&>| of elements of p  such that 11        Z   = 0.   We

introduce the notion of a good ultrafilter on a field of sets in analogy to Keisler's

original definition in (KJ.    A map  cp: So(ß)  —> A  is monotone if cp(F) C cp(F   )
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for F, F' £ SJ\ß), such that F A F',   and multiplicative if (j>ÍF U F ' ) = 0(F) ft

<pÍF') fot F, F' £ Sjlß).   An ultrafilter p on J is a-good if for every ß < a  and

every monotone mapping cf>: SJ/3) —> p,  there is a multiplicative mapping ifi:

Sj.ß) -* p,   such that  0(F) C </>(F) for ail F e S J.ß) (denoted by  xfj < <f>).   We set

F* = 3\!0|.   If E C F     and a is an infinite cardinal, we let Mon (a, E) denote

the set of all monotone mappings c/>: S J.ß) —» E fot all ß < a,  and Mult (a, É) the

set of all multiplicative mappings </>: $ J-ß) —' F fot all ß < cl.   Let further h:

S —* § be an embedding of fields of sets.   There are obvious induced embeddings,

denoted by

Mon (a, h): Mon (a, E) —> Mon (a, h[E]),

etc.   An ultrafilter f on y is called (a, E)-good if h[E] C p  and for every (/> £

Mon (a, E), there is tfj  £ Mult (a, p) such that if/ < Mon ia, h)<j>.   We will not give

a general definition of an adequate ultrafilter, but refer to Theorems B and D for

its meaning in each case.

Let C be a Boolean algebra and let 8 be an infinite cardinal.   We identify,

via Stone's duality, the power C    with the field of all open-and-closed subsets of

Si(¿) x 8,  the set  8 being given the discrete topology.   For a zero-dimensional

space  S,  we let JoiS) denote the Boolean algebra of all open-and-closed subsets

of S.   Thus,  C     and inMC) x 8) ate isomorphic.   An ultrafilter p on C    will be

called ¿5-uniform if for every  e £ p,  the set

\X<8: (î(OxW)n e/0\

has cardinality  S.   Let h: C     » C,   be a Boolean algebra embedding.   The induced

continuous epimorphism of Stone spaces is denoted by Sib): 5(C) —► SiC),  and

we let Sib) x ids: Si<*A x 8 — S«?) x 8 be given by isih) x id5) = iSih) s, A).

Some notation is also used in   § 3 concerning direct systems and direct limits, in-

formation on which can be found in Chapter VIII of the text of Eilenberg-Steenrod

[ES].

Let  a be an infinite cardinal.   A Boolean algebra C is  a-complete if every

subfamily of C  of cardinality less than   cl has a supremum in  (?.   A field of sets

A is  a-complete if for every  ß < a  and every family  (AA¿<aCJ,  the set-theoretic

union I l<c<g^A   is an element of A.   We note that in general an a-complete Bool-

ean algebra is not isomorphic to an a-complete field of sets.   A subset D of a

Boolean algebra C   is dense (in C) if, for every   cet,  c 4- 0»   there is   d £ D,

such that  0 ^ d C c.   Let S be a subset of an a-complete Boolean algebra (?.   The

intersection of all  a-complete Boolean subalgebras of C  containing 5 is called

the a-complete Boolean subalgebra of C   a-generated by S.   The following fact is

easily established.

1.5.   Let a be a regular cardinal and let C be an a-complete Boolean algebra
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a-generated by a subset of cardinality at most  ß.   Then  |C| < ßA

Let h: C —► L be a Boolean algebra embedding.   The pair ( J), h) is called

an  a-completion of C if h[\A is a dense subalgebra of SI, J) is a-complete, and

2) is a-generated by  h[L].

1.6.   Let  a be an infinite cardinal and let C be a Boolean algebra.   Then,

there is an  a-completion  (D, h) of C,   which is unique in the following sense:

ii (Au , h   ) is an   a-completion of C,   then there is an isomorphism  g of i) onto

5)' such that g °h - h'.

We will consider C   as a subalgebra of its unique  a-completion, which will

be denoted by   C'a'.

The reader is referred to the text of Sikorski [S] for detailed information on

Boolean algebras. (Note, however, that Sikorski's notion of a-completeness co-

incides with our notion of  a  -completeness.)

PART I:   PRODUCTS

2.   Good ultrafilters on products of homogeneous-universal Boolean algebras.

In the present section we prove two lemmas (the first of which will be of use for

the remainder of the paper), and Theorem A on the existence of countably incom-

plete, good ultrafilters on certain powers of the homogeneous-universal Boolean

algebras.   The first lemma (on  "disjoint refinements") is the analogue of Lemma 4A

of [K4].(3)

2.1.   Lemma.(4)   Let (:  be an  a-homogeneous-universal algebra, let ß < a,

and let ÍV A) ¿r< o be a family of nonempty open-and-closed subsets of 5(C).   Then,

there is a family  ÍW A)z<a of nonempty, open-and-closed subsets of S(C), such

that  W, CV¿ for <f < ß, and W z nW r= 0 for Ç < £ < ß.

Proof.   We employ transfinite induction on  ß.   Let   W1- °'= V .   Let  B,^ß

aand assume inductively that we have defined sets   WL     for  r¡ < rf and rj < Ç, < zf,

such that

V0 = W(00) D W*,1' D .. O Wf> D ... D W& I) • •

Vx J DW[l) D ■■■ DW\V)D ■■■ DWp 3 ••

V V V

(3) Lemma 4A of [K^]  has been obtained earlier as Lemma 1 in Kuratowski  [Kur]   and

as Lemma 4.6 in F.rdös-Gillman-Henriksen  [EGHJ.

(4) The proof of this lemma is also given in  LNjJ;  it is repeated here for completeness
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where

tU)Mi"      is a nonempty, open-and-closed subset of  5(C),

H/(D n WU) m 0  for all  ^rf <C, T)/ r¡'.

We define   W<^)   fot all  77,   such that  77 < rf.   Note that the set (~\vsi<g w\f

is nonempty, by the compactness of 5(c),  and it has nonempty interior, for every

7] < g, by 1.4(b).   Let  W)?     be any nonempty open-and-closed subset of

l\¿r<icW[^'.   Clearly the family  [wLf':   all  77,   suchthat  17 < ^ i  consists of

pairwise disjoint, nonempty subsets of 5(C).

We now introduce the set  Vt,   and employ a subsidiary transfinite induction

on all ordinals 77, 77 < <f.

For 77 = 0,   choose sets  Wq    » V e 0   such that

Wq   « ^¿f 0  are nonempty» open-and-closed subsets of 5(C),

«#>cV/>.  Vf|0cvf(  <f,nViiO = 0.
In choosing such sets, we only need the fact (stated in 1.4(a)), that  5(C) has

no isolated elements.

Let 77 < f.   Assume inductively that, for all A < 77, we have defined sets

Wx?)' V£,\ such that

W\> Vp \ are nonempty, open-and-closed subsets of 5(C),

w<pc¥¡f\

Using 1.4(b), we choose a nonempty, open-and-closed set  V¿r       such that

ÎV „ c í\*-n  Vfi v   We then choose sets  W</>, V, „   such that

W(5', V,      are nonempty, open-and-closed subsets of 5(e)»
/ Si'/

W(/> C WLf \   KA „ C¥e „,   W[f> ft VA „ = 0,

again only using the fact that 5(C) has no isolated elements.   This completes

the subsidiary induction.

Let  Wv=     be any nonempty, open-and-closed subset of f 1      ? V ¿     ,  using

once more 1.4(b).   It is now clear that the family   [W*   ':   all   77,  such that 77 < ff i

consists of pairwise disjoint, nonempty, open-and-closed subsets of 5(C) for each

tf < ß.   This completes the induction.

We have defined nonempty, open-and-closed sets W^.     for all tf> 77,  such that

tf < ß, 77 < ff,  satisfying the conditions:

^Vllf for ff<ff'</3,

T) 7J'

ju/lsl.  ajj  ^ such that 77<<f] consists of pairwise disjoint sets for each

f</3.
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We employ 1.4(b) once more to find a nonempty, open-and-closed subset  W

of f 1   sa<« Wl|   .   The family  (H/^)^r<„ satisfies the conditions of the lemma.

For a Boolean algebra  C   and an infinite cardinal   ¿5,  we set  S(c). = S((A) x

\X\ fot all  À < 8.   We will identify C     with the Boolean algebra of open-and-closed

subsets of S(C ) x 8.   Recall that a set E C C     is closed under finite intersection

if the intersection of any nonempty finite subset of E is an element of E.  We

prove now the analogue of Lemma 4C of [K.].   We note that the proof will use not

only the more "elementary" condition 1.4(b), but 1.4(c), as well.

2.2.   Lemma.   Let ß < a,  let C   be an  a-homogeneous-universal Boolean

algebra, let E be a subset of i>   (S(C) x 8), closed under finite intersection and

of cardinality less than  a.   Let

cP: Sjß) - 8*(S(Q x 8)

be a monotone function, such that cp(F) C\ e 4 0  for all F £ Sj.ß),  e £ E.

Then, there is a multiplicative function

if,: SJß) -+ %*1SiC) x 8)

such that 0(F) Oe/0,  and if < cp for all F £ S J,ß),  e £ E.

Proof,   (a)   This part of the proof follows closely the proof of Lemma 4C in

[K4].   We define

X: SJß) x E — 5B*(5(C) x 8)

by  x(F, e) = 0(F) n e.   We, further, set for X < 8

lx = \(F, e) £ Sjß) x E: 0(E) n e n S(&x 4 01

Clearly,   \Sj<ß) x E| < a,  and thus   \I  \ < a.   By 2.1, the family  ytzj  admits a

disjoint refinement, i.e. there is a family  \tAF, e): (F, e) £¡A consisting of non-

empty, open-and-closed subsets of  S(C)^,  such that

rx(F, e)n rx(F', e')= 0   for  ( F, e) 4 (F ', e '),

rx(F, e) C xiF, e),

where   (F, e),  (F',   e  )e/ .   Define

t: SJß) x E _ SB*(5(C) x 8)

by

r(E, e) = U Í7-A(F, e): all A < 5, such that (E, e) e /J.

For  E e Sj/3),  set

<D(E) = \JW1G, e): G £ Sjß), G D E, e e E¡.
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It follows, as in  [Kj], that  0  satisfies the following conditions:

0(F) C 0(F) for F £ Sjß),

0(F u F ') = 0(F) n(F') fot F, F' £ Sj,ß),

0(F) n e 4 0  foi F £ Sjß), e £ E.

(b) Remark.   In general, we cannot expect 0(F) n S(c)    to be open-and-closed

in  5(C)  ,  since 0(F) has been defined as a union of less than   a pairwise dis-

joint open-and-closed sets.   We may try to correct this difficulty by setting  0(E) =

closure of 0(F) in   5(C) x 8.   Then,  0 does satisfy the following conditions:

0(E) C0(E) for F £Sjß),

0(E u E') = 0(F) n 0(F ') for F, F'e Sjß),

0(E) n e 4 0  foi F £ Sjß), e £ E.

(The second of these conditions holds because of the form of 0,   and by  1.4(c).)

However, 1.4(b) clearly shows that 0(F) is open-and-closed if and only if 0(E)

is open-and-closed.   Hence, we have to do something more than just taking closures.

(c) We complete the proof of the lemma.   We begin by noticing the following

property of 0:

The set  0(E)\0(E') is open and of type

less than a, for all  F, E' £ Sjß).

Indeed,

0(E)\0(F') = \J\r(G, e): G £ Sjß), G 3 F, e e E, G 7j F'\.

We now define mappings

0.: ß _ %*iSiQ x 8),       1 < i<co.

Let  0 j(zf) = cpi\¿;\).   Inductively, suppose that we have defined

0.: ß — ÍB*(5(C) x S),       1 < / < i,

where   1 < i,   such that

(i)   O(^Oc0Xf)C0!_,(^)C... C0j(<f)=0(í£¡), and
(ii)   if  |F| < i,   say   F ={£,,... , rffl,  then  0(E) C 0.(£1) H ... n 0f(£.) C 0(f).

We define 0.+ 1: /3 — 3? *(5((J) x S).   For  rf<)8,   set

5z+2(/3,rf) = ÍFe5£ü(iS): |F|<i + l,£e F}.

Let F e 5.+2(/3, 0.   If \F\ < i + 1,  set 0f+I(£) = 0,(f )•   If |F| = i + 1, say F =

iç, Çj, • • • , ci, we proceed as follows.   Let

R(F) = i0t.(£) n 0.(£1) n .. - n0i(rff)}\

[0.(rf) n 0¿(rf,) n •.. n 0.(£.) n 0(¡f, £,, • • •, £.})!.
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Thus,  Rip) is open-and-closed in 5(C) x ¿5.   Let F(?)=|A:ACF, |A| = j\, where

1 < ; < i.   Note, at first, that  Ri F) H 0(F) = 0, since 0(F) C r/>(F).   Set 2(F) =

0, and 2(A) = RiF) O O(A), for -4 e F(!).   Clearly,  [2(A): A e F(f)¡ is a finite

family  of pairwise  disjoint  sets.    For A £ F^l~    ,   set 2(A) = RÍF) ft

(0(A)\U !<I>(b): B e F(l)i),  etc., by finite induction.   Thus, we have defined sets

2(A) for all A £ 5 Jf), such that

2(A) ft 2(B) = 0 if A 4 B,

2(A) c RiF),

2(/4) is an open subspace of   5(C) x 8,  such that  2(/4) n 5(C)    is of type

less than  a,  for all  X < 8,

R(F)n (Duff!) = lJÍ2(A):rf e M.

(The third property follows from (1) and the fact that  RiF) is open-and-closed.)

We use 1.4(c) to find open-and-closed sets  VÍA), fot A £ SJ.F), such that

V(A) n ViB) = 0 if A¿B,

2(A) CV(A)CR(F),

V(A) = 0   if 2(A) = 0,  and thus in particular  VÍF) = 0.   We set  R £ =

\J\ViA): A e5JF), ef e F\, and

<Af+1(<0 = ty.-tfrW.-tf) n ^.(f,) n • • • ft ̂ tf.))|

u!^¿(ff ) n ^.(cfj) n •.• n .¿.(£.) n0(f)} ur[.

Note that  <Af+j(f ) is open-and-closed in SiC) x S,  and that 0(|<f 0 C 0f+1(f)

for all  F £ S.  Aß, tf).   We use once more 1.4(c) to find an open-and-closed set

i/z.   ,(ff) of 5(C) x 8,  such that

í>arfS)C«A¡+1(f)C n<>Af+1(£): P e si+2iß,a\,

since   |5.   Aß, ff)| = ß < a.   This completes the definition of  \p.   ..   We now verify

that  i/z.   .   satisfies the inductive conditions (i) and (ii).   Condition (i) is obvious.

For (ii), let \P\ < i + 1.   If |F| < i + 1,  say  F = ¡rfj, • • • , rf;| (with possible rep-

etitions), then

0(F) c <A!+1(f ^ n • • • ft ^.+1(£.) c ,/>.(£,) n... n </>.(£.) c </>(f),

using the facts that 0 is multiplicative, and that 0f+1 5 VV   Let now |F| = z'+ 1,

say  F = íffj,..- » ç"! + 1î-   Then

*<+Itfx) n • • • ft +M<£W) c ^f+1(^) n .. • n *f+1Cfi+l)

c (^.(f,) n ... n ^.tf.+1) ft <biF)) u [R^ n • • • ft R^l
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Let P £ Ri    H ... fifi,      ; then,  p £ VÍA) fot some unique A e 5 (F).   Hence,
r ç j S/+1 r b

<£,, • • • , £•  ,  e A,  i.e., A = F.   But 2(F) = V(F) = 0.   Thus,  RF,   n . • • O RA .

= 0.   It now follows that 0.   j(rfj) n . •. n 0    j(<f   j) C 0(F), proving (ii).

To  complete the proof of the lemma, use once more 1.4(c) to find an open-and-

closed set 0(,cf i) in 5(C?) x 8,  such that

OÜ6)C0(¡£¡)C n<0¿(£):l <¿<oi}.

Define  0: Sj/S) — SB*(5(0 x 8) by  0(F) = f\-£F0(i£i).   It is clear that  0  sat-

isfies the conditions of the lemma.

The main result of this section can now be obtained.

Theorem A. Let a = a^> co, co < 8 < a, Í7W let o denote the a-homogene-

ous-universal Boolean algebra of cardinality a. There is a countably incomplete,

8-uniform, and a-good ultrafilter of open-and-closed subsets of 5(öA x <5.

Proof.   Note that  |S   (5(S ) x 8)\ = |«a| = a   = a,  and hence that there are,

at most,  ap monotone maps from  5 (j8)  to Jj   W°a) x 8), fot ß infinite; thus,

there are, at most,  aw= a monotone maps from Sjß) to Jo   (S(öa) x 8),  as ß

varies over all infinite cardinals less than  a.   In view of Lemmas 2.1 and 2.2, the

proof of the theorem follows the argument given by Keisler in his proof of The-

orem 4.4 in  [K^].

2.3.   Remark.   For an ultrafilter p of open-and-closed subsets of a space, let

G(p) be the least cardinal y,  such that p is not y-good (if such a cardinal exists).

(This is Keisler's notion of the degree of goodness of p.)   It is proved, in The-

orem A, that there is an ultrafilter p of open-and-closed subsets of 5(öa) x 8,

such that Gip) > a.   I have not been able to settle whether Gip) = a.   It is likely

that this is so, and that the ideas involved in the proof of Theorem 3.7 in  [Ni]

are relevant in this connection.    This problem is related to Keisler's problem

no.  2 in  [K .].

3.   Adequate ultrafilters on products of special Boolean algebras.   In this

section we extend the methods of §2 to the larger class of special Boolean algebras.

The main result (Theorem B) establishes the existence of adequate ultrafilters on

certain products of special Boolean algebras.

3.1.   Lemma.   Let ß, 8 be infinite cardinals, such that 8 < ß.   Let C?.   be a

Boolean algebra, such that   |CQ| < 2 ,  and let  EQ  be a family of nonempty, open-

and-closed subsets of SiCQ) x 8 such that  EQ  is a filter, and SiC ) x 8 i  E

for all D e5g(z5).   Then, there is a Boolean algebra embedding h: (?. —* £.,  and

there is an ultrafilter p,   of open-and-closed subsets of S(C A x <5, such that

pj   z's 8-uniform and countably incomplete,

(S(h)x idg)"1 [E0] Cpj,  izrzzi

px  is  (ß + , E0)-good.
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Proof.   Using 1.2, we embed C„  into a (2*; -homogeneous-universal Boolean

algebra C of cardinality   2*ß,   hQ: CQ — C.   Note that   \E\ <(2^)S= 2ß,  and,

thus,

\Moniß+,E0)\<i2ß)ß =2ß.

We transfer all considerations to  C:   Let

E* = (5(¿0)xids)-1[F0],

ci* = Mon (/3+, è0)f/S    for </> £ Mon (/3+, EQ).

Well-order Mon iß , EQ): i4>-r}\<2fa  anc* iet <•£ v \<2ß ^e tne corresponding well-

ordering at C.   We proceed by transfinite induction on  2P, using 2.2 at every

stage (with   a = (20 ).   We first adjoin to  F     the family  [5(C) x Í8 - D):  D £

5g(z5)|,  and call the resulting family  D .

Fot 0 < C<2ß,   C a limit ordinal, we set  D^ = UT;<i D   .

We define D      ,  for all 77 < 2   .   Let </>   : SA\y) —' £.,  for some cardinal y

(depending on  77),   y < ß.  We apply Lemma 2.2, to find a multiplicative mapping

"/V 5Jy) -* S*(5(C) x 8),  such that

•A ̂ 5 0 v  and
0*(F)n ¿¿0  for all  F £ S ¿¡.y), d £ D ̂

Let D      ,   be the smallest subfamily of S   (5(C) x ¿5),  containing

O^I^Flflti: F £ Sjy),d £Dv\

and closed under finite intersection.   Inductively, it is easy to prove that  |D  | < 2^ fot

all 77 < 2^, and that D    consists of nonempty (open-and-closed) subsets of S   (5(C) x 8).

Let  F . = UT)<2/3 D   ;  thus   |F j| < 2   .   Let  C,  be a Boolean subalgebra of  C,

having cardinality   2  ,  and containing C     and all elements of C of the from

e n(5(C) x iff!) for all  e £ E y <f < <5.   Let px be an ultrafilter of open-and-closed

subsets of 5(Cj) x 8, containing  E ..   The conditions of the lemma are, clearly,

satisfied.

By a repeated use of 3.1 and 1.2 we obtain the following result.

3.2.   Lemma.   Let ß, 8 be infinite cardinals, such that 8 < ß.   Let C be a

Boolean algebra, such that |C  | < 2   ,  and let  E.   be a family of nonempty, open-

and-closed subsets of 5(C) x 8, such that E.   is a filter, and SiCA x D 4 E.

for all D e 5r.(<5).   Then, there is a Boolean algebra C,  such that

C  is  ß -homogeneous-universal,

there is a Boolean algebra embedding h: C.    * C,  and there is an ultrafilter p

of open-and-closed subsets of 5(C) x 8, such that

p is countably incomplete and 8-uniform,
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(5(i)xids)_1[E0] Cp,   and

p  z's  ß -good.

Proof.   Using 1.2, we embed CQ  into a (2^) -homogeneous-universal Boolean

algebra 3) of cardinality  22 .   We may assume that C    C 3).

The proof proceeds by transfinite induction on ß .   With no loss of generality,

we may assume that E   contains the family  ¡5(C) x (8/D): D £ 5s(r5)i.   We start

with e0. e0.

Let £ < jß .   Assume inductively that for all  £< rf we have defined Boolean

subalgebras C» of L,   such that  |C A = 2 ,   and ultrafilters pr of open-and-closed

subsets of 5((l») x ¿5,  and that for all   Ç, < t] < <f we have defined Boolean algebra

embeddings h »    : C »     ' C   ,  in such a way that for all   £< £, a direct system over

£ is formed, and in addition (S(h »    ) x id g)-  [p A Cp   .

If  zf is a limit ordinal, let Cc   be the direct limit of the already existing di-

rect system (over rf), and let h » ¿: C»    ' C,  be the induced injections for £ < <f•

Also, let p c be the direct limit of the corresponding direct system of the ultra-

filters ip f. C < rfl with connecting maps given by  (S(h »    ) x idg)~   : pr —> p

for  Ç, < 7) < £.   It is clear that p ,  is an ultrafilter of open-and-closed subsets of

5«?p x 8.

Let zf= £+ 1.   We use Lemma 3.2, with C », p »,  in place of (_n, E .   This

gives a Boolean algebra Ç ¿ .,   such that  |C ,    | = 2P,  a Boolean algebra embed-

ding hr p Q: C»     * C>r 0,   and an ultrafilter pp Q,   satisfying the conditions of 3.2,

in the context of our present notation.   Using the (2^) -homogeneity, (2^) -uni-

versality of i),  in the usual way, we may assume that L.C C t 0 C 3/  and that

/r » a -  is the indicated inclusion.   We, now, use 1.2  to embed Ci n  in a /3 -homo-

geneous-universal Boolean algebra  C,  of cardinality   2 .   Using the (2*J -homo-

geneity, (2P) -universality of i),  in the usual way, we may assume that  t r n C

C; C X.   Let  it 0  be the inclusion  C r Q C C ,.   Let bre=hc0°hrc 0,   and

let pt  be any ultrafilter of open-and-closed subsets of S((¿ A) x o,  containing

(S(h c q) x idg)—   [pc A.   This completes the inductive definition.

We let C be the direct limit of the direct system  \(¿c'. <f < ß  i, with connect-

ing maps  hr ¿r,   £ < £ < ß ,   and let  p be the direct limit of the corresponding di-

rect system  \pc'.t;<ß  \,   with connecting maps (S(h »  A) x id§)~   ,  (<£<ß*.

Clearly, p is an ultrafilter of open-and-closed subsets of 5(C) x <5.   Further, it

follows inductively that  |C\| = 2 ,  rf < ß ,  and hence  |(?| = 2*\   By the regularity

of the cardinal  ß ,  it is clear, using the familiar chain arguments, that C is /3+-

homogeneous-universal and that p is ß -good, countably incomplete and f5-uniform.

We are now in a position to prove the main result of this section.

Theorem B.   Let a = 2"3/>cu, ca < 8 < a, and let §a denote the unique special
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Boolean algebra of cardinality  a.    Then,  ha has a specializing chain  [C„: ß < cl\,

such that  |C J = 2" for ß < a, iand C^ is  ß   -homogeneous-universal for ß< a),

and an ultrafilter p of open-and-closed subsets of Sib ) x ¿5 which is adequate,

i.e., one that satisfies the following conditions:

p  is countably incomplete and 8-uniform, and

pß=p ft% *iSi€.ß) x 8) is ß+-good for all ß,  8<ß< cl.

Proof.   Let  í33«: ß < a\ be a specializing chain for §a,   such that  |3) J =   2ß

fot ß < cl,   (This is possible because of exercise 6] in  [CK]   and the fact that a

ß -homogeneous-universal Boolean algebra must be of cardinality at least   2 ,

because of the corresponding statement for 77  +-sets  [Ho]  and Corollary 1.2 in

[Nj].)  Let Cßm$ßtot ß<8.

Let 8 < ß < a.   Assume inductively that for every cardinal y, eo < y < ß,

we have defined Boolean algebras  C       such that

|Cr| = 2^  for y<ß,

C     is y -homogeneous-universal for y < ß,

eyiCCy2fotyx<y2<ß,

and that we have defined ultrafilters py of open-and-closed subsets of 5(C) x 8,

such that

Pyx = P72 n S*(5(C7i) x ¿5) for yx < y2 < ß,

py is countably incomplete and S-uniform for y < ß,  and

p     is y -good for 8 < y < ß.

We now define Cß, pß as follows.   Let C^= \Jy<ßCy and P"ß=Uy<ßPy

Clearly,   |Co| < 2^,   and "frß is a filter  of open-and-closed  subsets  of SiCß) x ¿5,

which is countably incomplete and (5-uniform.   Thus, Lemma 3.2 applies.   Let

8' $ß ke tne boolean algebra and the (ß -good) ultrafilter, respectively, that

satisfy the conclusion of 3.2, in the context of our present notation.   This com-

pletes the inductive definition of the (specializing) chain  \Cn, ß < a\.   Thus

Ufl<a Cß is isomorphic to  §>a.   Let p = U/S<a pp    It is clear that p is a count-

ably incomplete and S-uniform ultrafilter of open-and-closed sets of 5(ö ) x 8,

which is adequate.

It is easy to see that if, in addition,   a is regular, i.e., if a = a%z,> <y, then

the adequate ultrafilter p of Theorem B is, in fact, a-good.   Thus, Theorem A

may be considered as a special case of Theorem B.

PART II: COMPLETIONS

4.   Good ultrafilters on a-completions of a-homogeneous-universal Boolean

algebras.    We will prove in this section the existence of countably incomplete,

a-good ultrafilters on the a-completion of the a-homogeneous-universal Boolean

algebra of cardinality   a (Theorem C).   Our first step is to identify this a-com-
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pletion with an a-complete field of sets a-generated by the a-homogeneous-uni-

versal Boolean algebra.   For this purpose the following notion of the 77a-topology

is helpful (cf. §3 in [N j]).   For any Boolean algebra C,  and any infinite cardinal

a,  we denote by  77 (5(C)) the topology (referred to as the 77a-topology) on the

Stone space 5(0 of C determined by the (canonical) base for open sets consist-

ing of the family of all subsets of 5(0 of the form I '¿<ra Ve>  where ß < a and

(V,),(„ is a family of elements of C.   It is clear, since this family is closed

under finite intersections, that indeed it constitutes a base for a topology which

is finer (= larger) than the original topology of 5(C).

4.1. Lemma. // a is an infinite regular cardinal, then the Boolean algebra

£(n (5(C)))  is an a-complete field of subsets of 5(C).

Proof.   Let ß < a  and let (X^) -   o be a family of open-and-closed sets in

77a(5(C)).   Then, of course,  X = Ut<oJ(, is open.   To prove that X is closed,

let p 4 X.   For every  <f < ß, let  Te be a neighborhood of p in the 77a-topology,

such that  T £  nX, = 0.   We may assume that  T¿ is a basic 77a=neighborhood,

i.e., the intersection of, say,  y*, yc< a, open-and-closed subsets of 5(C).

Then p £ T - I lA<o Tr,   T n X = 0, and T is the intersection of at most y =

Ir^oy»  open-and-closed subsets of 5(C).   Since  a is regular,  y < a, i.e.,   T

is 7ra-open; hence X e 35(7ra(5(0)).

4.2. Lemma. Let a be an infinite regular cardinal, and let C be an a-ho-

mogeneous-universal Boolean algebra. Then the a-completion Oa' of C z's z'so-

morphic to the a-complete field of subsets of 5(C)  a-generated by  C.

Proof.   Let J(c' be the a-complete field of subsets of subsets of 5(C) a-gen-

erated by C.  By 1.6, we only must show that j'a'  contains (?  as a dense sub-

algebra.   It is clear, by 4.1, that   C C î(a) C ftinpiO)).   We prove that  C is dense

in 55(77a(5(C))).   Indeed, let V £ %(na(S(C))),  V 4 0-   Since V is, in particular,

an open subset in 77a-topology,   V contains a nonempty set   T of the canonical

base for the 77a-topology, say   T = ' '^</ß Vç,  where  ß < a  and  V, £ C,   Vp 4 0

for £ < ß.   Since  T is nonempty, by  1.4(b), there is   W £ C,   W 4 0,  and  W C T.

In particular,   0 4 W C V,   showing that  (? is dense in  $(77a(5(0)),  and hence in

We are now in a position to use 2.1, in conjunction with 4.2, to prove the

"disjoint refinement" lemma for a-completions of a-homogeneous-universal

Boolean algebras.

4.3. Lemma. Ler a be an infinite regular cardinal, let ß < a, let C be an

a-homogeneous-universal Boolean algebra, and let (Vjc<ß be a family of non-
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empty elements of Oa\    Then, there is a family  (W\c)c<a of nonempty elements

of C,   such that Wf C Vg  for tf < ß,  and W ¿  ftW ? = 0   for ff < tf < /3.

Proof.   By 4.2, we identify  O     with the a-complete field of subsets of

5(C)  a-generated by  C.   Since  C  is dense in  C'a',  for every   f < ß, there is

D¿r £ C,   such that  0 ^ D ¿ C V^.    We apply 2.1 to the family  ÍD A)c< ß, to obtain

a family  iW^)^<ß in  C,   such that   0 4 W^ C D^  tot ff </3 and  W^ ft W r=  0

tot tf < zf < /3.   This family satisfies the conditions of the lemma.

We now prove without difficulty results corresponding to 2.2 and Theorem A.

Recall that C(a)*  denotes C<a)\|0!.

4.4. Lemma.   Let  a be an infinite regular cardinal, let ß < a, and let C

be an a-homogeneous-universal algebra.   Let  E C C'a'*   be closed under finite

intersections.   Further, let r/>: ^wiB) —' LA   '     be a monotone mapping, such that

</>(F) O e 4 0  for all F £ 5w(ß),  e £ E.    Then, there is a multiplicative mapping

xfj: Sj,B) — C(a)* such that if/ < <f>, and ifj(F) ft e 4 0 for all   F £ Sjß), e £ E.

Proof.   It will be sufficient to make the following remarks.   We have avail-

able the "disjoint refinement" Lemma 4.3; the standard proof of Keisler (Lem-

ma 4C in  [Kj])  employs a corresponding "disjoint refinement" lemma, and the

definition of if/ is given, using only unions of families of cardinalities less than

a (cf. parts (a) and (b) of the proof of Lemma 2, 2 above);   since, by 4.2, we have

identified  C' ' with the a-complete field of subsets of 5(C)   a-generated by

C,  the standard proof can be carried intact to the present situation.

Theorem C.   Let  a = a^> co  and let  S    be the CL-homogeneous-universal

Boolean algebra of cardinality  a.    There is a countably incomplete, a-good ultra-

filter on  o'*\

Proof.   By 1.5,   |o^ | = a.    Hence, there are at most a^= a monotone maps

from 5 Jk/3) into  5^',  as ß varies over all cardinals less than  a.   The proof of

Theorem 4.4 in  V^-A  can be repeated here, with no changes.

For future use, we outline the proof of the following analogue of Lemma 4B

in  [K4].

4.5. Lemma.   Let  a be an infinite regular cardinal, and let C be an a-homo-

geneous-universal Boolean algebra.   Let  E C C'a'     be such that

\E\ < a,  and

E  is closed under finite intersection.

Then, there is  D C C(a) *,  such that

\D\ <a,

D  is closed under finite intersection, and

D  contains a sequence (Y )     ,„ such that II     ,   Y   =0.
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Proof.   Let  |E| = ß < a  and let IE A)e< „ be a well-ordering of E.   By 4.3,

there is a family  (KA -< „ C C ,   such that

Kp C£f for <f< jß, and

K, r\Kl= 0 for rf < ( < ß.

Thus  K ,  is a nonempty open-and-closed subset of  5(C),  and there is no difficulty

in finding elements  X^ n,  <f </3,  n<co, of  Oa)   ,  such that

Kc = XCnD...DX¿     3..., and
^ s ,0 Ç,n

(\n<cüXp n=0   for  rf </3.

Let  yTu^Xfjn  for tz<W.   Then,   Y„ e^'   for 77 < co  and  f\<&)Yn=0.

Further, the family  E u(Y )  <£J  has the finite intersection property.   Let D be

the smallest family of subsets of 5(0  containing  E,   (Y\)n<ù}, and closed under

finite intersection.

The result of this section can be related to those of §2 in the following way:

Assume that  a = o^> co  and let  o   be the a-homogeneous-universal Boolean al-

gebra of cardinality   a.   We may regard  o    as a field of subsets of an appropriate

subspace of 5(5 );  nevertheless, no matter how this subspace is chosen, it is not

possible to find a countably incomplete ultrafilter on  5a (regarded as a field of sets

of the subspace), since the intersection of less than  a (and, in particular, of

countably many) elements of e>a contains a nonzero element of 5a (by  1.4(b)).

This can be rectified by the addition to  5a of the supremum of just one sequence

ÍV, ). <co of elements of oa,  where for simplicity we may assume that  V, 4 0 for

k < cj  and  V    n Vk = 0   for tz < k < co.   By Lemma 4, 2, it is clear that the small-

est subalgebra C   of the completion of 5a containing  ö    and the supremum of the

family ÍVl}l<oj is a field of subsets of 5(5o),  such that the supremum of ÍV ¡Au<cú

in  C is equal to the set-theoretic union   U^<a) Vfe.   But it is clear that  V,,  k <co,

is homeomorphic to S(5a) (cf. Theorem 1.7 in [Ni]).   Thus (   is isomorphic to the

product  a    x A ,   where  J   is the Boolean algebra of open-and-closed subsets of

•^"a)\ ^k<ùj ^k'   Since SlûJ\fJk<ùj Vfe  is a compact space, there is a natural one-

to-one correspondence between the countably incomplete ultrafilters of C (regarded,

in the above sense, as a field of subsets of  5(5p)),  and the countably incomplete

ultrafilters on  S   ,   (The same remarks are valid for any  8,  such that co < 8 < a,

in place of co.) Thus the simplest completion of  Sa,  which is necessary to produce

a countably incomplete ultrafilter, leads to the results of §2, and more generally

of Part I.   On the other hand, the a-completion of §a is the largest completion that

does not increase the cardinality of Sa,  and which still is representable as an a-

complete field of subsets of S(5 )•

These remarks give some informal insight in the relation of the results of §2,

of §4 (of the present paper), and of Keisler's original results in [KJ:   The methods

of §2 utilize essentially all the properties of the homogeneous-universal Boolean
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algebtas (i.e., both  1.4(b) and 1.4(c); cf. Theorem 1.7 in  [Nj]  to the effect that

these properties are characteristic of öa), which is natural since the fields of

sets  aa, oj < 8 < a,  depart very slightly from   &a, i.e., essentially just by the

addition of a supremum for a "small" infinite family.   The fields of sets er"'

of §4, on the other hand, must be regarded as an intermediate case between

"homogeneity-universality" and "discreteness".   There is a close enough re-

lation between  S    in  cr"'  and the representability of cr"'  as the a-complete

field of subsets of S(öa),  a-generated by   va to   allow the derivation of the

"disjoint refinement" lemma for er     from the corresponding property of «n;   but,

everything else is dealt with in a discrete manner, i.e., in Keisler's original

manner.

We note that between these two "extreme" cases there is a spectrum of

similar results that can be established (notably, for the /3-complétions  «a   ,

új < ß < a).   For these cases, it is the lemma corresponding to 2.2, or 4.4, that

will be the only nontrivial part of the proof.   We will not go into any details.

An analysis of the foregoing arguments provides an extension (of the results

of §4 only) in a different direction:   Pierce, in [P],  studied the notion of an a-

atomic Boolean algebra, which is a generalization of the notion of an atomic

Boolean algebra.   Let us genetalize further Pierce's concept as follows:   Let a be

an infinite cardinal.    A Boolean algebra C  is called weakly a-atomic if C   con-

tains a dense set  D  which is weakly a-compact in the following sense:   (a) 0

£ D,  (b)   D is closed under finite intetsection, and (c) if E CD    (= D\j0|) is

such that  |E| < a  and  F  is closed under finite intersection, then there is d £ D ,

such that d C e tot all  e £ E.    By 1.4(a) and (b), an a-homogeneous-universal

Boolean algebra C   is atomless and weakly a-atomic, with  D = C.   A class of ex-

amples of atomless, a  -atomic Boolean algebras is given in §2 of [P].

Let C be an atomless, weakly a-atomic Boolean algebra.   Then the funda-

mental  "disjoint refinement" lemma can be established by an imitation of the

proof of 2.1.   Also, assuming that  a  is regular, the analogues of all the results

of §4, up to here, are established in identical fashion.   Thus we obtain the fol-

lowing strengthening of Theorem C.

Theorem C .   Let  a = a^>eú and let C  be an atomless, weakly a-atomic

Boolean algebra of cardinality  a.   There is a countably incomplete,   a-good

ultrafilter on the a-completion C (cl' (regarded as the a-complete field of subsets

of 5(C) a-generated by C).

5.   Adequate ultrafilters on completions of special Boolean algebras.   Recall

that according to 1. 1(d),  a = 2^ if and only if either  a = a^or  a is a strong

limit cardinal.   We have already dealt with the case  a = a^   We now consider the
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case that  a  is a strong limit cardinal.   In contrast to the relation of §3 to § 2,

which has been one of generalization, the methods of §4 apply only to cardinals

a of the form a = a^ and the methods of V5 only to strong limit cardinals.   Lem-

mas 5.1 and 5.2 below are the (incomplete) analogues of 3.1 and 3.2, respectively.

5.1.   Lemma.   Let ß be an infinite cardinal and set  a= (2")  .   We are given

the following diagram

e„-> c

p(.ß+) •3). .z2(a)

where

Cn is a ß -homogeneous-universal Boolean algebra of cardinality 2 ,

C is an a-homogeneous-universal Boolean algebra of cardinality 22 ,

Cn    * C   is a Boolean algebra embedding (considered as an inclusion), and

C'a' is the induced embedding (also considered as an inclusion),

íDj  z's a ß -complete Boolean algebra of cardinality  2ß,  such that C|^ + C

2), C C(a),   and

(3(/3) +

E .   is a subfamily of X. ,   closed under finite intersection.

Then there is a Boolean algebra A. (considered as a field of subsets of

SiO), such that

SjC^cC^,   and

|£P2| = 2ß,  and

there is an ultrafilter p2  on A2,   such that

ExCpv
p2  is countably incomplete, and

p2 is  iß , F. })-good.

Proof.   Note that  \EA < 2  ,   and hence that the set of (monotone) mappings

from Sjß) to  £j has cardinality  |Fj \s"(ß)\ < i2ß)P= 2ß.   Let jr/S   : 77 < 2ß\ be

a well-ordering of all these monotone mappings (with possible repetitions).   We

proceed by transfinite induction on   2^, using 4.4 at every stage (with  a = (2") )•

First, using 4.5, we adjoin to  Fj  a countable family (V )        çC(a)*,  such

that Fj u(y )  <w has the finite intersection property, and D        Y   = 0.   Let

DQ be the smallest family containing Fj u ^r)n<01 and closed under finite inter-

section.
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For 0 < £< 2ß, C a limit ordinal, set D»= UT)<» D   .

We define D     x  for r/ < 2/3.   Consider 0^: 5^/3) — Ej.   We apply 4.4 to find

a multiplicative mapping 0   : S Jß) —' Oa)   , such that

"At, <07j'   and

077(F) rw^ 0

for F eSjß), d £D   .   Let  D._   j  be the smallest subfamily of Oa',  containing

D,, U Î07)(F) n d: F £ Sjß), d £ DJ,

and closed under finite intersection.   Inductively, it is easy to prove that \D   | <

2^ for all 77 < 2  ,  and that D     consists of elements of &a' .   Let E   = LL  2ß^v'

Thus   (EJ < 2^.   Let J), be a Boolean subalgebra of O   ,   containing  E2   and

J),,  and of cardinality   2  .   Let p2  be an ultrafilter on  J)2, containing  E2.   Clearly,

p2  is (/3 , Ej)-good.

5.2. Lemma.   Let the assumptions of this lemma be identical with those of

5.1.   Then, there is a Boolean algebra 3) (considered as a field of subsets of

5(C)), such that

3)1c33cOa),

\% = 2ß;

Tj is ß  -complete, and

there is an ultrafilter p on J),   szzc¿ that

EjCp,

p  z's countably incomplete, and

p  is ß -good.

Proof.   We proceed by transfinite induction on ß ,  using 5.1 at every stage.

We start with 3)j, E x.

Let   1 < zf < ß  .   Assume inductively, that for all  £,  I < £ < ç, we have defined

Boolean subalgebras  J)»  of L.       and ultrafilters  p» on  i)».   We define Xj¿, pe'-

If ff is a limit ordinal, set ±> c = ijr<c X) »  and p¿r =  ^r<¿ Pr

Let  rf = C+ 1.   We use 5.1 with -D », p » (in place of Dj, pj).   The lemma gives

X) r, p r satisfying the conclusion of 5.1, in the present context.   It is easy to prove

inductively that  |3)J < 2^ for f < ß .   Let 33 = U p< o+ 3JA  and p = Uir</3+ p *.

The conclusions of the present lemma are clearly satisfied.

Incidentally, we have proved the following general embedding property.

5.3. Corollary.   Let & be a Boolean algebra (regarded as a field of sets) such

that |C| < 2 , and let E C C_  ,  such that E  is closed under finite intersection.

Then, there is a field of sets  X),   such that

Cc3),

|3)| = 2^,
3) z's ß -complete, and
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there is an ultrafilter p on A),  such that

ECp,

p is countably incomplete, and

p  is  ß -good.

Proof.   By 1.2, we may embed  C into a  ß -homogeneous-universal Boolean

algebra C,  of cardinality  2 ,  and, again by 1.2, we may embed C.   into a (2"; -

homogeneous-universal Boolean algebra C2 of cardinality  22   ,  the conclusion

follows from an application of 5.2.

The following uniqueness property of certain completions of the special

Boolean algebras can be proved without difficulty, by employing induction on all

ß's  smaller than  a.

5.4. Lemma. Let a be an uncountable strong limit cardinal and let aa be

the special Boolean algebra of cardinality a. Let ICo, ß's < a\ and\£ß, ß < a\

be two specializing chains for pa, such that |C A = |2)J = 2P for ß < a. Then

there is an isomorphism

<f>:    U C</> a    U 3)</>
ß<a     P ß<a     P

such that f/S | oa is the identity on §a.

c[a]
In view of this lemma, we denote by  cr     the unique up to isomorphism union

8<a *-B    >  where jC^: ß < a\ is a specializing chain of oa,  such that  |C J =

2ß fot ß<a.   Clearly, by 1.5,   |S^| = a.

We are now in position to prove the main result of this section.

Theorem D.    Let  a  be an uncountable strong limit cardinal, let va denote

the unique special Boolean algebra of cardinality a,   and let ICo, ß < a\ be a

specializing chain for e>a,  such that  |C A = 2P for ß < a.   Then there is a chain

\A)ß, ß < a\ of subfields of sets of W^,  such that

1^1 = 2^
2)ß is a ß -complete field of sets,

e^+>CÍD0Ce<</>+> for ß<a,   and

there is an adequate ultrafilter p on Q„  ,   Le., an ultrafilter that satisfies the

following conditions:

po= p Ci A)n is countably incomplete, and

pß is ß -good for ß < a.

Proof.   We employ transfinite induction on all cardinals less than   a,   using

5.2 at every stage.   Let  ß < a.   Assume inductively that for every cardinal  y,

y < ß, we have defined fields of subsets of v„*, Ajw,  and ultrafilters pw on 2)   ,
a. y y j

such that



366 S. NEGREPONTIS [December

|3>y| - 2\+
X)     is a y -complete field of sets,

P(r+)rJ)    ríT)((2'>')+)
y y      2>

53y C3)s for y<8<ß,

Pr = psn3)r for y<8<ß,

py  is countably incomplete, and

py is y -good.

We now define X) ß, pß as follows:   Let &ß = Uy<ßX)y  and zj'g = U7<q py.

Clearly,   |ëg| = 2^ and ¿^ C C((/p)+).   Let 3)^ be the   /3+-complete subfield of

^2/32/3)+)*  /3+-z?enerated by ^/3 u^+>> and let  Fß=qß. We employ 5.2 with i)ß,

E a,  in place of -Dj, Ej respectively, to obtain a subfield 3) o of C o       >  such

that

<f1   c3)   rC(2/3)+)

1^1 - ^
Do is /3 -complete, and

an ultrafilter pß on -Do,  such that

EßCpß,

pa is countably incomplete, and

pß is  ß -good.

This completes the inductive definition of X)ß, pß fot ß < a.   Clearly,   Uo<a X)ß

= 5LaJ.   Let  p = U/3<a po.   It is easy to verify that  p is an adequate ultrafilter on

Sta].
a
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