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CONSTRUCTIVE PROOF OF HILBERT'S THEOREM

ON ASCENDING CHAINS

BY

A. SEIDENBERG(l)

ABSTRACT.    In a previous note it was shown that if a bound  f(i)  is placed

on the degrees of the elements in some basis of an ideal  A{ in the polynomial

ring  kXXi, • • • , Xn] over an explicitly given field  k,   i = 0, 1, 2, • « •, then a

bound can be (and was) constructed for the length of a strictly ascending chain

Aq ^ A i <•••■.   This result is now obtained using a strictly finitist argument.

A corollary is a finitist version of Hilbert's theorem on ascending chains.

An early high point in the tradition of constructive mathematics often asso-

ciated with the name of Kronecker is the paper [l] of Hermann, which treats the

various ideal-theoretic notions in polynomial rings.   Although the paper contains

errors and obscurities, still it does make considerable contributions to the prob-

lems posed.

According to Hermann, "the assertion that a computation can be carried

through in a finite number of steps shall mean that an upper bound for the number

of operations needed for the computation can be given.   Thus it does not suffice,

for example, to give a procedure for which one can theoretically verify that it

leads to the goal in a finite number of operations, so long as no upper bound for

the number of these operations is known."   This is obscure, really, though the

intention seems clear enough in the situations actually dealt with.

In [4] we posed the following problem:   A bound f ii) is placed on the de-

grees of the elements in some basis of an ideal A . in the polynomial ring

k\X y • • • , X ] over the field k,   z = 0, 1, 2, • • • : place a bound on the length of

a strictly ascending chain A    < A l < ■ ■ ■ .   It will be convenient to regard / as

having been given multi-recursively.   In [4] we give a bound which is multi-re-

cursively defined in terms of the data / and tz.    Our bound, unlike those given by

Hermann, does not appear to be primitive recursive, but that is probably due to

the problem being more complex than any dealt with by Hermann; the essence of

the matter is, we say, that a multi-recursively defined bound on the number of
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steps needed should be given.   We will not recall the definition of multi-recursively

defined (see [2, p. 272 ff.]), but will merely remark that it in no way involves the

notion of existence, either explicitly or tacitly, with the possible exception of the

notion that no matter how far we count, we can count one further.

Remark.   As bounding functions one could use any functions constructed without ref-

erence to existence.   Consider (1) the constant functions, (2) the functions  lnk defined by

lnlAxU ' ' • > xn) = xk, and(3) the successor function S, defined by  S(x) = x + 1.   Starting

from some basic stock of functions, for example, those just mentioned, we construct fur-

ther functions using only two principles:   (a) substitution, and (b) induction.   In particular,

starting from the functions (1), (2), (3), we may construct other functions as follows:

(4) f(n\, • • •, n¿)  and  gl, • • • , gfc having been constructed, we construct /(gi, • • • , gfc);

(5) functions  g(m, n\, r¡2> • • • , Tife) and  hlni, • ■ •, n)¡) having been constructed, we con-

struct f(n, n2, ■•• , nk) by placing /(0, n2, • • • , njfc) = h(ni, • • • , nk) and f(Sn, n2, • • •, rife)

= g(/(n» «2» * • • i "k)i "> n2> " • " , rife).   With this restricted scheme we get the so-called

primitive recursive functions.   More complicated schemes lead to doubly recursive functions,

etc.   Allowing arbitrary (constructed) functions to enter the scheme, we get function-func-

tionals.   All the bounding functions and function-functionals occurring in our proof, of which

there are only a finite number, will be seen to be constructable in the above sense.

For our proof, we need a class of constructable functions which shall include the

functions occurring in the proof:  we take the class of functions occurring in the proof.

(This is like taking c = f/3 in some proofs in analysis.)   This class allows us to make

the main point.   In applications, a larger class may enter, and the point will be made again

in the same way.   The point of this round about way of putting things is that in this way

we avoid defining constructable function.   Anyway, it would be hopeless to construct all

functions which may reasonably be regarded as constructable, as if one could list all con-

structable functions of one variable, 'f\, fj, • • • , the function rz l-> /„(n) + 1, which would

be constructable, would not be on the list.
From this point of view, the bounding functions are seen not to be of the essence of

the matter:  they serve as a safeguard (just as   computing a bound on the cardinal number

of the sets occurring in a classical set-theoretic argument serves as a safeguard).   The

essential point is that the existence of sets is always assured by a construction, and not,

for example, by an axiom.

In [5] we considered the problem of constructing the integral closure of a

finite integral domain k\x., • • •, xn];  assume for the moment that k  is the ration-

al number field.   We first showed how to decide whether k[x] = k[xx, ■ • ■ , x ] is

integrally closed;  and, if not, how to construct an element in Ux,, •••, x) inte-

gral over k[x] but not in it.   Since the integral closure of k[x] is a finite k[x]-

module and k[x] is Noetherian, the construction can be repeated at most a finite

number of times and so would terminate in the integral closure of k[x].   Have we,

then, given a construction for the integral closure?   As we said in [51, "if one

takes the view, as Hermann did, that a construction is not well-founded unless

an a priori bound has been put on the number of steps, then the argument • • •  is

not complete, though it will become so in a moment.   However, we cannot see

that this view is justified, unless one also takes a thorough-going finitist view

not only of the constructions but also of the underlying theory [though the problem

of placing such a bound retains its interest even from a classical point of view]."
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In the present note we are going to take precisely this thorough-going finitist view.

All of the construction problems here considered have positive outcomes.   In

the case of a positive resolution of a construction problem, the question of what

a construction is is not, as has been said, urgent.   Yes, provided we agree on the

underlying theory.   But here the underlying theory is an issue.

What is a construction?   Since our main contributions here are some finesses

in the theory of polynomial ideals, we enter reluctantly into this question.   But

it is a question which does have to be faced somewhat.

Following Hermann, we say that an ideal in the polynomial ring k[X., •••, X ]

is given if a finite basis f ,,•••, f    of the ideal is given (and correspondingly,

to construct an ideal is to construct for it a finite basis).   If we ask how a finite

basis gives an ideal, the answer surely is that we can present to ourselves the

elements of the ideal under the form g1/1 + • • • + g J -, where the gi ate poly-

nomials.   Then we must be able to present to ourselves s-tuples of elements in

k[X] = k[X y • • • , X ], the elements in k[X], too, of course, and eventually the

elements of the field k.   The field k  is given.   If we ask how it is given, an an-

swer may be that it is given by symbols which are presented to us multi-recursively,

say by the integers in the range of a monotonically increasing multi-recursively

defined function / having the natural numbers 0, 1, 2, • > •    as domain.   We also

want to be able to carry out the field operations.   We recall that according to van

der Waerden [6, p. 134],  "We say that a field is explicitly given if its elements

are uniquely represented by distinguishable symbols with which addition, sub-

traction, multiplication, and division can be performed in a finite number of steps."

This is not good enough for us, for we must say what is meant by "can be per-

formed...".   We mean, then, that the sum f(i) +/(/), for example, is a multi-re-

cursively defined function of i, j.   And similarly for subtraction, multiplication,

and division a/b  fot b / 0.   (One can find the zero element.)   This definition is

like, but not the same as, one given in [0].

The object of our somewhat recondite definition of explicitly given field is

to prevent what we consider nonconstructive notions from entering already into

the base of our considerations.   In effect, however, it merely says that the field

operations are to be regarded as negligible as far as construction is concerned.

An ideal could be thought of as given by a list: this would be a minimal

definition—we require more.

Let 21 be a given ideal.   We may define the complement as made up of the

elements not in 21; but we do not regard a definition as a guarantee for exis-

tence.   We regard the complement as existing if we can give a list of the ele-

ments not in 21.   As we shall see, it is possible to decide for any given poly-
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nomial g whether g is in  21.    This yields the existence of the complement of 21.

Thus comp(2I), the complement, is a list constructed according to certain instruc-

tions.   When we say g  is in  comp (21), we understand that we also have instruc-

tions for locating g in comp (21).   This can easily be arranged and will be under-

stood.

Our proof of a constructive version of Hilbert's theorem on ascending chains

of ideals now comes to going over our paper [4] with the new point of view in mind.

There is only one difficulty, Lemma 4, which says that if A = (/j, • • • , fs)  is a

given ideal in  k[X., • • ■ , X ] and if at least one of the f. is regular in  X., • • • ,

X    (i.e., contains a term   c X eg ''   with c. € k - 0),  then one can construct an
n in i

Xp and the ideal A : Xp such that A : Xp = A : X^ + ; and one can do this in a
n n n n       '

number of steps depending only on n, s, and d - maxideg /.}. Actually, a some-

what weaker assertion, in which one introduces n indeterminates u.. and works

with the "transformed" variables X'. = u..X. + ••• + !/. X    and the extended ideal
Z ¿IX Xtt      TÏ

kiu)[X]A over the field kiu) m ki. • •, a.., .. • ), is sufficient.

In [4], we merely said this was known from [l].   This, from our present point

of view, cannot now be said to be the case; and, indeed, it is the crux of the matter.

L   The constructive proof.   Given ideals 21, 8 in k[X., • • • , X ] via bases

/,, • • • , f    and g., • • • , g ,  we shall want to construct 21 n 8 and 21: 8.   Given

an element b in k[X., • • • , X ], we shall want to be able to decide whether b

is in 21 = (/j, • • • , fs), and if it is, to find bJt - ••, hs in k[X] = ze[Xj, • • • , Xj

such that  b = h. f. + ••• + h   f .   These things are known from [l], and since the

proofs occur at an early stage, we may safely refer to [l] for the technical details.

Here  k is, of course, explicitly given, and the constructions are to be done in a

number of steps recursively defined in terms of tz,   the number of polynomials giv-

en, and their degrees.   Here by a step we mean a field operation in  k; if instead

we wish step to mean an operation with the natural numbers, then the number of

steps will depend recursively on the coefficients of the given polynomials.

Let tz > 2  and place R - k[Xv ■ • •, X], S = MXj)[X2, • • • , Xj, Rn =

&[X., ••• , X     A, S   m k{xA[X2, ••', X _.].   Consider a free R-module with

Z ,,•••, Z    as free generators.   Let  /. = /., Z . + ••• + f-Z,   i = 1, • • • , t,  with
Í S *-^ Z ill loo

the /-. in k[X., • • • , X ], and consider the R-module m generated by /,,•••, L.

We are interested in computing S ' m O ~LRZ.,   Let the matrix  ||/-.||  be of rank p.

We say that the basis /.,•••,/   is regular with respect to Xj, • • •, X    if at least

one of the p-rowed subdeterminants is regular in  Xj, - • • , X^;  and that ttz  is reg-

ular with respect to X. , ■ • ■ , X    if ttz  has a basis  /j, • • • , l( of the kind mentioned.

Let  N > 0  be an integer and consider the  R^-module n generated by  /j, • • • ,

lt>   X«lV'~>X»lt>   •••'  Xnll>-~>X«lt'   Pla«   ti*.imZiXin-   Then  n  ÍSCOn-
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tained in the free R^-module generated by the CI+sy-  / = 0, • • • , /V + a,  where

a > maxideg f..\.   In [3, p. 381] we proved the following:

Lemma.   // ttz is regular with respect to Xy • • • , Xn in > 2), then

S.mftjrR.Z. = m + R.   Un ft £ R^J ,

where we suppose /,,••», l( to be a given regular basis,  N = qt,  and g= s +

siN + q).

This was written from a simple classical point of view (we may also remark

that in [3] the base field k had been extended by an indeterminate r to a base

field kir), but this played no role in the lemma).   From a constructivist point of

view, we can say that the left-hand side can be constructed if Sn ' n ft X P„C,-

can; otherwise, we have gotten nowhere.   Now to construct $n ' 7Z ft 2 R £¡ we

would need a regularity condition on n,  and in fact on a chain of similar modules.

Assume for a moment that k is infinite.   Then by a homogeneous nonsingular lin-

ear transformation on X., • - • , Xn we can go over to variables Xl , •• • , X'   such

that TTZ is regular with respect to  XJ , • • • , X'n ;  then by a homogeneous nonsingu-

lar linear transformation of XJ , • • •, X'n _j  we go over to variables XJ', • • • ,

Xn _ j, Xn   such that 72 is regular with respect to Xj', - • - , X"        and ttz is still

regular with respect to  Xj, - • • , X"n _y X'n%   And so on with further transforma-

tions, to get the other regularity conditions.   Thus for some change of the vari-

ables, we could construct S • m ft 2 RZ..
1

Dropping the assumption on k,  we proceed as follows.   We adjoin 722 inde-

terminates u{. to k to get kiu) = &(•••, u{., • • • ), let X.' = «;1Xj + • • ■ + u. X ,

and place Ru = kiu)[X ¡ , ■ ■ • , X'J, Su - k(u, X[)[X'2, ---.xf], R» =

*(a)[Xj'f •••>*¿_1], S|¡-AU X[)[X'2, ...,X¿_jJ.   One checks that ttz is regu-

lar with respect to  Xy • • -, X'.   To get the regularity condition for tz  (now an

P"-module), we could introduce further indeterminates and another linear transfor-

mation, probably without creating any difficulty, but we may as well note, at least

for notational simplicity, that tz already is regular with respect to X.', • • • , X '    ..

Let A = diu, Xj, • • • , Xn _ j) be one of the determinants whose regularity is in

question.   Let iz„,  i, j = 1, • • • , n - 1, be in - l)2   further indeterminates and place

x;'=t7.1X1'+... + t7.B_3X^_1,  z = l, ...,72-1,  X'n.X'n.   Let «Va«-«

V„.«-l * °'   Vln-Vn-X,n = °>\n =  1-    Let   V »  Kh   U-  l"„|.   V = ¡«Z..fl
= VU.   Clearly A = diw, Xj', • • <, X^ _ j), for the same d.   (The substitution X —♦

X'   leads from   ttz   to  A = diu, X'x, • • • , X'n _^);  the substitution X —» X"   corresp-

spondingly leads from ttz to  A ' = diw, X|', •. • , X*   ,).   On the other hand, the

substitution X —» X"   can be effected in two steps,  X —* X'   and X ' —» X",  the
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second of which is a transformation from  ^i',-"'^n_i  to  ^i^'"'^n~v   so

A does not change, i.e., A ' = A.)   If GÍX, V, W) = G(X, V, VU) = 0, then

G(X, V,  VV~lU) = GiX, V, U) = 0.   Hence the substitution u.. —» w.. yields an

isomorphism kiU, V)/kiX) -» k(W. X)/k(X).  A = d(w; X'[,.-. , X¿_ A is obviously

regular in  X ", • • • , X "_ ,.   Hence by isomorphism d(u, Xj, • ■ ■ , X^_ j) is also

regular in X,, •••,X     j.   Q-E.D.

Similarly, the other regularity conditions obtain without further transformations.

Hence we have:

Lemma 1.   The module Su ■ m n Sf R"Z. can be constructed.
1 z

Corollary.   Let X! = u.,X, + ••• +u. X ,  with the u..n    indeterminates, and
1 i i 1    1 tn    n i]

let 21 be a given ideal in k[X., • • • , X ].   Then one can construct

kiu, x[)[x'2, ..-,x^Mnk(u)[xl, ...,Xn].

This is just the case  s = 1   of the lemma.

Lemma 2.    Let the notation be as in Lemma 1, corollary.    Then

8 = kiu, x;)[x2' ,...,x;in M«)[xx, ■• •, Xj

¿as z2 basis (which we can construct) in k[X,, • • • , X ].

Proof,   We have a basis of S in  k(u)[X., • • •, X ] and may suppose it to be

in k[u, X,, • • • , X ].  Let g(u, X) be one of the basis elements and consider one of the u..

We have an E(u, X) in k[u, X'A such that Eg is in k[u, X]2I.  Then also (dE/du.)g +

Edg/du.. and E dg/du.. ate in ze[z/, X]2i.   Hence dg/du.. is in 8.   If k is of character-

istic zero, we see in this way that the coefficients of g  written as a polynomial

in  u .. ate in  8.   In characteristic p > 0,  we see likewise that if g is written as

a linear combination of  1,  zz.., •••, up.~    with coefficients involving u.. only to

powers divisible by p,  then these coefficients are in 8.   So we may assume g

involves zz.. only to powers divisible by p.   Now we have E^g is in  21 for suit-

able  E.   Place v = u. ..   Then  E^dg/dv is in ÎI.   Hence we may suppose g in-

volves  zz.. only to powers divisible by  p  ;   etc., so we may suppose  g devoid

of u ■.; and similarly for all the u ...   The lemma is proved.

Remark.   If we had the primary decomposition theorem, Lemma 2 would be immediate,

as  8 is nothing but the extension to k(u)\_X\, ••• , X„]  of the intersection of the primary

components of positive dimension in a normal decomposition of 8,

Quite generally, if R and S ate rings with R C S and 21 is an ideal with  521 O R =

21 we can often without confusion denote the ideal 521  by 21.  In particular, if R =

Te[Xj, • • • , X ] and we extend the base field k by some indeterminates u to get 5 =

k(u)[X., ■ • ■ , X ], we will do this.   Then if 21 is an ideal in S which has a basis in R,

we can denote the contraction R n 21 also by 21.  In particular, if S is the ideal of

Lemma 2, we also use 8 to denote S n k[Xj, • • • , X^].  In the case R = &[X., ..., X ], S =
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kiu)[Xy ■ ■ ■ , X ], where u is an indeterminate, if 21, 8 are arbitrary R-ideals, then

5(21 O 8) = 5?I ft SB and   SU ■ SB = 5(21: B), so no confusion will arise by denoting

these ideals by 21 O 8 and 21 : 8.

Unloading some superfluous «.. in Lemma 2, we get

Corollary.   A(sn, •• •, «ta. X()[XX, • • •, Xj 21 ft kiu n, •••»«1„XX]-

kiuir, •• • , zzln)[X]B.

Let the notation be as in the preceding corollary.   We can find an E j in

k[uu, ...,uln, X[] such that EjBC?I,  so 8 C ?I : E,  (in kiun, ■ • • , uln)[X]).

Now also ÎI:Ej C 8,  since if g £ A(au, • •• , "j„)[X]  and gEl € 21,  then obvious-

ly g is in  8.   So  21: E. = 8.   Note also that 8:Ej = 8,  since if gEj € 8,  then

gEj € 21 and g € 8.   Now we say (21, E j) ft 8 = 21.   In fact, the right-hand side is

obviously in the left; conversely, let g € (21, Ej) ft 8.   Then g = £Ej + a,  with

¿>, a £ kiuyy ••• ,zzln)[X] and a € 21.   Since gffi, gEj 6Ï,  whence ¿E* € 2L

From this ¿>E. e B  and è e 8.   Hence hE, € 21 and g e 21, so equality is proved.

Now extend the base field with the further indeterminates zv,,, •• •, u.    and
¿l ¿n

repeat the argument.   Then (21, Ey E2) n 8j = (21, Ej); here E2 = E2iX'2) and

8, : E, = 8..   The equality (21, E A ft 8 = 21 continues to hold in the extended

ring, so (21, E.   EA ft 8. O 8 = 21.   Repeating the argument several times we get

(21, Ey E2, . ••, En) ft %n_l ft ••• ft  »« 21;  here we are in the ring

kiu)[Xy..,Xn];  Xj-a.jXj + .-. + a.^;  E . = E .(Xf);  and 8f_ x : E . = 8¿_ r

We noted that B : E, = B, but the same proof shows that B : F j = 8 for any

F, 4 0 in kiu. y • • • , Mj  )[Xj].   Similarly  8j : F, = 8,   for any  F. ^ 0 in

kiu.yU2y---,u  yU   A\X'2].   Now also, however,  8:F, = B.   In fact, let hF2

€ B.   Consider the automorphism of kiu.., K««» • •• » u   ., u  A/k obtained by inter-

changing zz¿jf ui2,   i = 1,...,72.   Then h goes over into h     and F. into  F'-,

while  B,   since it is an extended ideal, remains invariant.   Then  h' F'  € B.

Since X'2   goes over into  Xj, F2 = F2(Xj).   Now one finds, for example,

idk   /du2AF 2    £ B, and arguing as before we get h'   € 8.   Applying the automor-

phism again,  h € B.   Similarly we get

(8B_! n ■•• nB): F = Bn_1n... nB

for any F in Mzz)[X¿]-0.

Remark.   If we had the normal decomposition theorem, etc., at our disposal, we could

note that the ©¿ have no O-dimensional components.   This would make the argument a

little more transparent.

In particular, we have the above equality for F = X   .   Hence to find a p

such that 21: X1? = 2I:X'''+    comes to finding a p such that

(2I,E1,...,En):X^=(2I,E1,...,En):X
ip+l
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Now, however, k(u)[X]/(U, Ej, • • • , En) is obviously a finite Te(«)[X]-module of

length at most 2 deg E.. Hence 2 deg E; gives us a desired p. Thus we have

proved

Theorem 1.   Let U be a given ideal in the polynomial ring k[X., • ■• , X ]

and let X.   = w.,X, + •••+«. X ,   where the u.. are indeterminates.   Then one
i zl    1 in   n z;

Ciro compute a  p such that 21 : X ' ^ = 21 : X *'0+1.r r T2 TZ

In Lemma 4 of [4], given an ideal 21 in k[X^, •• • , Xj¡  we sought a  p such

that A : Xp = A : X^+ .   However, as far as the application is concerned, we could

just as well have extended the base field and worked with the transformed variables

Xi  ~ uilX\ + ' * *  + ui„X„>   l' = L • • • , n.   With this remark, the proof is complete.

In [4], we gave two solutions of the problem posed, the second of which was

a free treatment of a solution communicated by the referee.   It will be well to com-

pare these two solutions.   First, the second solution first gets the existence of

the bound, then proceeds to its construction, whereas our view is that existence

can only be guaranteed via a construction.   Second, the second solution uses hil-

bert's ascending chain theorem (and Zorn's lemma), thus typically nonconstructive

arguments, whereas ours on the contrary (with the present supplements) yields a

constructive version of Hubert's theorem.   Third, we actually have formulae for

computing the bound, whereas the second solution proposes to get a bound by a

probing process.   Finally, from our present point of view, one, however, which was

already roughly indicated in [4], the second solution begs the question.

In spite of these defects, the referee's solution has a very appealing element,

namely, it gives the existence of the desired bound with an immediacy which the

first solution cannot match.   On the other hand, the construction assertion is some-

what less than appealing:  it uses a notion of construction  which was devised for

negative purposes, but which is, as we see it, incorrect or incomplete for positive

ones.
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