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INSTABILITY IN  Diffr(T3)  AND THE NONGENERICITY

OF RATIONAL ZETA FUNCTIONS
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CARL P. SIMON

ABSTRACT.   In the search for an easily-classified Baire   set of diffeomor-

phisms, all the studied classes have had the property that all maps close enough

to any diffeomorphism in the class have the same number of periodic points of

each period.  The author constructs an open subset   U of Diff  (T ) with the prop-

erty that if / is in  U there is a  g arbitrarily close to / and an integer n  such

that /"  and  g" have a different number of fixed points.  Then, using the open

set   U, he illustrates that having a rational zeta  function is not a generic prop-

erty for diffeomorphisms and that   Q-conjugacy is an ineffective means for classi-

fying any Bake set of diffeomorphisms.

A.  Introduction and statement of theorems.   Let Diffr(M") be the space of C

diffeomorphisms of a compact  C     »-manifold  M with the  Cr topology, 1 < r < °°.

Central problems in the study of differentiable dynamical systems, as formulated

by Smale ([24], [26]) are

(a) Find a Baire subset  B  of  Diffr(M") with strong stability properties.

(b) Find a practical means of classifying the elements of B.

Let / e Diffr(M).  The nonwandering set of /,  iî(/), is the invariant set \x e

M: fot any neighborhood  U of x there is a positive integer n with f"U D U 4 0\.

f satisfies Axiom A  if the periodic points of / are dense in ß(/) and if Q(/) has

a hyperbolic structure, i.e., there is an invariant splitting of the tangent bundle of

M restricted to ÍX/)

TM I Q(/) = Eu © Fs

with  Tf : Eu —, E" an expansion and  Tf:Es —> Es a contraction.  Hirsch and

Pugh [9] have shown that if / satisfies  Axiom A, then for each  x e Q(/) the stable

manifold of x, Ws(x, f) = \y e M: d(fmx, fmy) —► 0 as  m —» <*,}, is a smooth, injec-

tively immersed open cell through  x and depends smoothly on  x and /.   The un-

stable manifolds of /, Wu(x, f), ate the stable manifolds of /      .  /is  structurally

stable (Q,-stable) if for each g in some neighborhood of / in Diff (M) there is a

homeomorphism h: M —> M (h: ü(/) —> íXg)) with gh = hf on  M (on 0(/)).  A generic

property is a property that holds for a Baire subset of Diffr(M).   For a general
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reference, see Smale's survey article [24] or Nitecki's book [14].

Finally, the reader is referred to [8] and [3l] for the definition and properties

of a /«-foliation J on M. f: M —> M respects the foliation J if the image of a leaf

of J   by / is another leaf of J.  / preserves the foliation J  if f maps each leaf

onto itself.

To put the results of this paper into perspective, we discuss briefly the recent

history of problems (a) and (b).  There have been a number of unsuccessful candi-

dates for  B, beginning with Morse-Smale maps, [20], i.e., diffeomorphisms whose

nonwandering set is hyperbolic and consists of a finite number of points, whose

stable and unstable manifolds intersect only transversally (strong transversality

condition). Such maps were later shown to be structurally stable [15] but by no

means dense in Diff(M) ([22], [24]). Smale showed that structurally stable maps

are not dense in [23], where he conjectured that diffeomorphisms that satisfy Axiom

A and the strong transversality condition might form a Baire subset of Diff (M).

Later, he demonstrated [25] that maps satisfying  Axiom A  and the "no-cycle prop-

erty" were ß-stable.  However, in 1968 Abraham and Smale [2] showed that neither

fl-stable maps nor ones satisfying Axiom A form a Baire subset of Diffr(M") for

r > 1, 72 > 4. Newhouse [13] has the corresponding result for r > 2,  72 = 2.  However,

both Abraham and Smale [26] have emphasized that many more such counterexamples

must be constructed and analyzed for the theory to advance, especially since each

new conjecture for B has arisen from careful analysis of past counterexamples. The

examples we construct in this paper are the first C    counterexamples to the generi-

city of Axiom A and fi-stability on 3-manifolds.  More significantly, all the above

classes of diffeomorphisms conjectured to solve problem (a) have had the following

property: all maps close enough to any diffeomorphism in the class have the same

number of periodic points of each period as the original map.  Theorem 1 below il-

lustrates that this is not a generic property, i.e. there is an open set in Diffr(T  )

with the property that as close as you wish to any map in the set there is another

map with a different number of periodic points of some period.

Theorem 1.   Let  1 < r < °o.  For f £ Diffr(T3) and positive integer n, let N if) =

number of fixed points of f" = f o f o- • -in tim es) ■ • ■ f: T3 —» T3. Then, there exists

an open set  U  in Diffr(T ) such that if fQ £ U and U    is any neighborhood of f.

in U, there are f   £ U- and integer n such that N (/.) 4 N if A and all periodic

points of f.   of period < n are hyperbolic.

The proof of Theorem 1 is contained in §§B—K.  First, let us see what effect

it has on problem (b), the classification problem.  In [24], Smale conjectured that an

effective means of classifying the maps in B  might be the zeta function.  The zeta

function of a diffeomorphism / is

(if) = (fit) = exp ff, --J-)    where /V. = N.(f)
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as in Theorem  1.  Artin and Mazur [3] demonstrated that a dense (not Baire) set of

diffeomorphisms have zeta functions with a positive radius of convergence.  Meyer

[12] and Shub Ü9] showed that if  / satisfies Axiom A,  £,(/) has a positive radius

of convergence.  Williams [28] demonstrated that if A  is a hyperbolic attractor of

/, C(/|A)  is rational.   Bowen and Lanford ([4], [5]) showed the same for A zero-

dimensional and hyperbolic.  Recently, Guckenheimer [7] has shown that if / satis-

fies Axiom A and the no-cycle property, £(/) is rational.  However,   in  order to be

at all effective and practical as a means of classification, £(/) must be rational for

a Baire set of diffeomorphisms. Whether or not £(/) is generally rational was asked

in [24, Problem 4.5], [29]> [27], and [28]. Theorem 2 uses Theorem 1 to answer this ques-

tion.

Theorem 2.   Diffeomorphisms with rational zeta functions do not form a Baire

subset of Diff(T3),   1 < r < <*>.

Proof of Theorem   2.   Since there are only a countable number of rational zeta

functions [5], enumerate them as  Z  , Z  , • • • , Z ., ■ • • .  Say  Z .(t) = exp(1f*'_l N'.t'/i).

Let  U be the open set in Diffr(T ) from Theorem 1.  Let  V. = \f e U\  for some k

in N,   (1) Nk(f) 4 N'k and  (2) fk has only hyperbolic fixed points !.  So, if f £ V.,

£(f) p Z..  By the hyperbolicity in the definition of  V., each  V. is open.  We claim

each  V. is also dense.  Then, we will have  V = C\ V., a Baire subset of  U; and no

diffeomorphism in  V can have a rational zeta function.

Suppose the above claim is false, i.e. that there is an open set  W in  U with

W n V. = 0.  By the Kupka-Smale Theorem [21], there is gj £ W with all periodic

points hyperbolic.  Since gl 4 V.,  Nk(g^) = N'k  for all k.  By Theorem 1, there are

g2 £ W and integer z with N¿(g2) 4 N.igA. = N'. and Fix (g1 ) hyperbolic.  Thus, g2

£ V., contradicting  W D V. = 0.

Finally, Theorem 3 below deals with another aspect of the classification prob-

lem.  It states that fi-conjugacy is not a reasonable equivalence relation to use in

classifying diffeomorphisms.  The same result holds for any equivalence relation

which has all  N (f) constant in each equivalence class.  The proof of Theorem 3

is the same as that of Theorem 2 with  V.  replaced by  \f £ U\ fot some  k in N,  (1)

<\(/) / N^) and (2) fk  has only hyperbolic fixed points!.

Theorem 3.   There do not exist a countable set \h.\ and a Baire subset  B  in
, 1

Diffr(T ) such that each f in B  is ^I-conjúgate to some h..

Let us outline the construction used to prove Theorem 1.  In §B, we construct

a hyperbolic  "D-A"  diffeomorphism g of T . fi(g) consists of a fixed point source

6 and a one-dimensional expanding attractor  2.   The one-dimensional ÍW^x, g): x£ S

fill up  T \{6\ and extend to a g-invariant foliation S of T2.  If h: S1 -^ S1 has

1+ 1} as a fixed point source, gx h is a diffeo of T3 respecting the foliation J

whose leaves are a product of S1  and the leaves of S.   In §D, we construct  b: T3
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—> T    which is the identity on  2   = 2 x {+ lj, which preserves  J, and which forces

the two-dimensional local unstable manifolds of points of  2.   to intersect the one-

dimensional stable manifolds from  2.   transversally.  J   is a normally-hyperbolic

foliation (§F) for / = b o ig x h).  So, maps near / will respect foliations j' neat

In  §D, we single out an open subset B,  of 2    and for each x e B    a 2-disk

Fix) in the leaf of 5" through x, so that U ¡Fix): x £ B A is a 3-disk.  Each /|F(x)

contains a Smale "horseshoe" as drawn in Figures 6, 9, and 10, yielding a one-par -

rameter family of horseshoe  maps.  In §§H, I, and J, we show how an arbitrarily small

change in / can radically change the topological type of one of these horseshoes so

that, for some x, /|F(x) will have a different number of periodic points than the

corresponding /' |F'(x').   In §J, we achieve the hyperbolicity of Theorem 1 by using

the Kupka-Smale Theorem.  See also [32].

Theorems 1, 2, 3 hold at least for all manifolds which are the product of T

with any manifold.  The author has benefited from many valuable and encouraging

discussions with R. Clark Robinson, Sheldon Newhouse, and especially from the in-

spiration and counsel of R. F. Williams.

B. Anosov diffeomorphisms and derived-from-Anosov diffeomorphisms.   Let A

be a  2x2 matrix with all integer entries, determinant 1, and no eigenvalues of

norm one.  A    induces a hyperbolic automorphism A  of the 2-torus via the canonical

quotient map n: R   —► T .  A    has eigenvalues X, ll with 0 < |A| < 1 < \p\ and eigen-

spaces   L-, M- respectively.   Let »L  and M be the families of all  lines in   T    paral-

lel to z7(Ln) and 77(AL) respectively. ¿L and JK become the stable and unstable mani-

folds for A  giving us two transversal foliations of the torus.   For example, V/Sid, A)

= ttÍLA where  0 = 77(0, O).

We now construct a C    perturbation of A, using a surgery described by Smale

[24] and Williams [30].

Theorem (Smale-Williams).   Let A: T2 —> T    be a hyperbolic toral automorphism.

Then there exists g: T2 —► T2  such that

(a) g  is smoothly isotopic to A,

(b) nonwandering set 0(g) = \6\ U 2, where 6 = 77(0, O) z's a point source and

2  z's a one-dimensional attractor with hyperbolic structure,

(c) the stable manifolds of g | 2 are the lines of a. except for L- which divided

by 9 now forms two stable manifolds,

(d) g respects the foliation \Vls(x, A): x £ T2\.

g is usually called a D-A map, since it is derived from the Anosov diffeomor-

phism A. In the construction of g, one chooses a small rectangle  Q (in the canoni-

cal coordinates of [24]) about  6.  Then, g = 0 o A  where  0 is a  C°° diffeomorphism

of  T    that is the identity  outside  Q ft A(Q) and on  D., the path component of  M.
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n Q containing 6.  One requires that cf>(C) = C for each path component  C of mem-

bers of i_ in  Q and that, on each  C,  cp is expanding away from D    nC.  The ex-

pansive constant of cp on the path component of LQ O Q containing  9 need be

greater than p.  In effect, one changes A  on Q so that g has 2 saddle-like fixed

points  \x  , x   Î  in  Q  and one point source  6, as in Figure 1; while  A  had only one

fixed point in Q, the saddle point 6.  Williams ([27], [30]) has shown that X, a "gen-

eralized solenoid," is locally the product of a Cantor set and an interval, periodic

points of g are dense in X, W"(2, g) = X, and S = Wu(xn, g).

AL

Figure 1

The leaves of our foliation are now the generalized stable manifolds of points

of 2 with the exception that  Ws(xQ, g) U Ws(x Q, g) u \6\ forms one leaf. Now 2 is

a èizsz'c sei for g, i.e. a closed invariant subset of Q(g) with a hyperbolic structure,

a dense orbit, and a dense subset of periodic points.  So, T   M has an invariant

splitting  E+ (B E     and there are constants  0 < Aj < 1 < p    such that   |FgX| <

Aj|X|  for X £ E~   and  |TgX| > px\X\  for X 6 F+.  By choosing </> so that the rate

of expansion of g = cp o A  on all the above-mentioned intervals   C  is less than  p2

where   1 < p2 < < p  , one makes the rate of expansion normal to the foliation larger

than any rate of expansion on any leaf.

Consider now g     for any integer k > 0.  fi(g  ) = Í2(g).  x    is a fixed point of

gk  and   Ws(x, g) = Ws(x, gk) for all x e 0(g).  gfe respects the above foliation.   In

addition, \T(gk)X\ < \k{\X\  fot X e E~  and  |T(gfe)X| > ^|X|  for X e E+.  If r in

Theorem 1 is finite, choose  k so that p^ > 4r and Xk < %.  If r = °o, make pk. > 16.

g    will be denoted as g in the remainder of this paper.

C. gxh: T   —> T3.  Let  z5: S1 —♦ S1  be a C°° diffeomorphism of the circle with

exactly two (hyperbolic) fixed points: Í + l! a source and (- l! a sink.  Choose h

so that  T+ jMs) = as   where  3 < a < 4 and 6 increases no arc of S1  by a factor

greater than 4.
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g x h is a hyperbolic  C°° diffeomorphism of the 3-torus, T    ~T   x S  .  Since

Mg xh) = Mg) x Mh) [24, §10], Mg x h) = 2 x 1+ l! u id, + 1) u 2 x Í- lî u

id, -1).

For convenience,  we introduce the following notation:  T  = T  x \+ l\, 2 = 2 x

Í+ l!, 0=(0,+ 1), *0= (*0,+ !)» ë + " ig x h)\T\.

Since g respected the foliation \V/Six, A)\ on T  , g x h respects the foliation

<Ws(x, A) x 5  } on  T   x 5 .  We will denote this  C°° foliation with cylindrical

leaves by i" and the leaf of J   containing x £ T    by  F(x).

Note also that, around the fixed point  xQ,  V/Six-, g x tí) is a 1-disk lying in

T    and equal to  Ws(x  , g ).   Vi"(x  , g x tí) is a 2-disk transversal to  Ws(x  , g x tí),

and equal to   Vlu(xQ, g+) x [Sl - \- l}].

D. The bump function b with support near x .   Choose  2-disk B .  in  T    such

that

(1) x    e interior (as 2-disk) of B,.

(2) Ö/Bj.

(3) ßjC Q, where Q is as in §B.

(4) If x e Js, the path component of  Vls(xQ, g x h) ft B     containing x

«"(gx, xQ) < l/3o'(x, xQ).  If y 6 /", the path component of Vlu(xQ, g ) ft Bj  contain-

ing x  , d(gy, x A > 3d(y, xQ).   This is possible because eigenvalues  X and p oí

T   g   are such that   |A| < % and  \p\ > 4.

°  (5) Bj = /5x/" in  T2+.

(6) Let  v0 be the point of  d]s  closest to  6 as in Figure 2.   [^„1 x /" C

W^O, g ), a fixed local unstable manifold of Ö for g ; while g" i\vQ\ x ]u) ft

Wfoid, g+) = 0 for all  77 > 1.

(7) For each x £ B H 2, let wLix, g) be the path component of Ws(x, g ) ft

Bj containing x. Choose Bj so that, for x £ Bj D 2, g(W^(x, g)) C W^(gx, g) or

misses  B

Choose interval B    in 51 so that +1 e int B2 C 51 and z e B   =» ¿(iz, + l) >

3^(2, l).  Then, B = BjXB2 is a 3-disk about xQ in  T .

Notation.   The following notation will be helpful:

2 = path component of 2 O B  containing x-, i.e. Ju;

Fix) = path component of Fix) ft B  containing x for x e B;

W* ix, g x tí) = the local stable manifold of x, i.e. path component of V/Six, g x tí)

ft B   containing   x, for x £ 2 ft B;

Viu.ix, g x tí) = the local unstable manifold of x, i.e. path component of

Viuix, g x h) ft B containing x, for x £ 2 ft B;

WL(S)=B1=UWL(x,g)for xeï.

Note that VIs. ix, g x h) is an interval and equals  Fix) ft T  , while  W£(x, g x h)

is a 2-disk. Now, choose 2-disk N.   in  B.   so that
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(a) Nl n£ = 0,

(b) g'"(NA nß, =0 and gn+(N A nNl =0 for all tz > 0,

(c) WL(xQ, g x h) divides  N^  into two 2-disks (as in Figure 2),

(d) if WsL(x, g x b) n N1 = 0, then g+W[(*, gxi)nß1=0.

Figure 2

WSL(x0, gxh)-

Figure 2 A
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In addition, as in Figure 2, about xQ choose 2-disk AL in the interior (as 2-

disk) of Bj so that NQ n N l = 0 but WsL(x, g x h) meets NQ iff it meets Nl fot

x el.

At this point, it will be helpful to name a collection of intervals in S .  First,

write  S    as the union of two intervals, S    and S_, where  S   f~\ S_ = {— 1, + l|.

Then, choose open intervals  AL and A/,  in B. C S    such that

(i) + 1 £N2,

(ii) N3C[B2-N2] nS+,

(iii) h-lN5r\ N3 = 0,

(iv) hN2 D Ny

Also, let N, be an interval in B. such that

(v) N2 C interior (as 1-disk) of iV  ,

(vi) Ñ3 nÑ5=0.

Let  c be the point  dN, H S  .   Finally, let  A/,  be a subinterval of N2  about + 1,

contained in  h~  N,  with length at most 1/3 the length of  N?.

N2   <M

}

>

"N

•■K».

y

^ +

h.

Figure 3

Let D    = (N0 x NA n WuL(xQ, gxh), a 2-disk in  T3.   Finally, choose open

set  N  in   T    such that

(1) A/n (T2x N2) = Nl x N2,

(2) Nn (N0xS1) = N0xA/3,
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(3) N C interior B,

(4) B ft (g x h)~ lN C B j x h~ KB 2 - N 5),

(5) [gfl. x{c|] ftN = 0.
+        1 ""O

So, ¿V O W"(xn, g x h) = D    and N ft T2 = N..  Pictorially, we want N ft F(x) to be

empty or as in Figure 4 for x e 2, where  flj = /V n F(x) n zVj C T2  and  a2 = N ft

Fix) ft D, C W"(x, gx A).

^
N n F(x)

/ÖJ

F(x),    Figure 4

3One now can construct a C diffeomorphism b of T , a "bump function"

whose main purpose is to force Vl"(x-, g x tí) to intersect T transversally. b

need have the following properties:

(a) b = identity outside N,

(b) b(D  ) intersects T   transversally (in N     of course),

(c) b(F(x)) C F(x) for all x £ B, i.e. £>   preserves   the foliation  J ,

(d) b[\x A x N A intersects   W*(xQ, g x tí) in two points,

(e) the largest increase of arc length under  b occurs at \x A x N, where length

¿>[}x0l x /V3]/length of {xQ} x N^ = P,

(f) tot all  x e 2,  F(x) intersects  b(D  ) transversally in  N   x N .
Z r\, L ¿

Pictorially, b sends points from left to right in  N ft F(x) in Figure 4; and for

x = x  , biaA intersects  a    in two points.   Finally, choose  k at the end of ^B so

that  pkx > [4(1 + P)]r and again denote  gk by  g.  N Q, N y and  Bj will still have

the desired properties for our new D-A g.

E. Stable and unstable manifolds for b o ig x h).   Let f = b o ig x h),  f is a  C°°

diffeomorphism of  T  , and / respects the foliation J = {^(x, A) x 5  1  since  b

preserves  J".   To obtain   U, the open set of diffeomorphisms in the statement of our

theorem, we will construct a ball about / in Diffr(T  ).

Since a study of the orbit structure of maps near / is parallel to such a study

of /, we will try to understand the stable and unstable manifolds for / in this sec-

tion.  First, note that since we did not alter   gxh near Mg x h) and periodic

points are dense in  Mg x tí), Mg x h) C Mf) with the same hyperbolicity constants

there for / as for gxh.
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We will make frequent use of the following simple lemma:

Lemma 1.    Let f, f.   be diffeomorphisms of compact manifold M.  Let  1 be a

hyperbolic compact invariant subset in ÍX/) with periodic points of 2 dense in  S.

Lez" N be a subset of M 3 f.= /  outside N and N n 2 = 0.

(a) For x el, let  W^U, /)  be a subset of Ws(x, /).   // fW^ix, f) O N = 0

for all n > 0, then x e Slif J and W^(x, /) C Ws(x, fA.

(b) If fx = b of where supp bCN and fW^ix, f) n N = 0 for all n > 1, then

x e ü(fA and W^(x, /) C Ws(x, fA.

(c) Let  W£c(x, /) be a subset of Wu(x, /).  // f"lC^U, /) ON = 0 for all

n > 0, r/jen x e iX/j) a«¿ W^ix, f) C W"(x, /j).

(d) // /   = b o f where supp b C N and /""^(x, f) n N = 0 for all n > I,

then x e ü(fA and blW^ix, /)] C Wu(x, f A.

Proof of Lemma 1.   Let x e 2. As in [9] and [21], Ws(x, ¡) = \y e M:

ddnx, fny)-+ 0 as n ^ + oo¡.

Let y e W^x, /). x, y 4 N => fx = ^x and /y = fxy.  In fact, /"x, fny 4 N for

all n > 0 =*f[x = fnx and f\y =/"y for all n > 0.  So,

d(f1y, f[x) = d(f"y, fnx) - 0    as«--.

x is nonwandering for /.  since S n N = 0 and periodic points are dense in X.

y e WL/X' V' proving (a)-

If /, = b o / and y e ^^.(x, /)(possibly in A/), /y 4 N by hypothesis and there-

fore / y = è o fy = /y.  Then, argue as in the proof of part (a) to obtain (b).  (c) fol-

lows, since  Wu(x, f) = Ws(x, f ~ A.

(d) / - ^(x, /) is a subset of Wu(f ~ lx, f) and / ~"[f " ^(x, /)] n N =

/-(n+1V^c(x, /) nN = 0 fot n> 0 by hypothesis.   By  (c), f~ ^^(x, f) C

W"(f - lx, fA = Wu(f - lx, /j); therefore,

/l/-lHToc(*' 0 C /l^/i'*. /l} = W"^' /l>-

But, f.of~=bofof~    = b.  This proves Lemma 1.

Let / = b o (g x h) be as defined above.  As above, for x £ 1, let  WL(x, /),

the local stable manifold for x, be the path component of Ws(x, f) n B that con-

tains x; and let  W"(x, /), the local unstable manifold for x, be the path component

of Wu(x, f) O B that contains x.

Lemma 2.   For x £ X,

(a) WL(x, /) = WL(x, g x h),

(b) W*(2,/)=WL(S,gxÄ) = B1,

(c) WuL(x, f) = WL(x0, /) = b[WuL(x0, g x h)].
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Proof of Lemma 2.   We will use Lemma 1, with 2 = solenoid in  T   and N as

constructed in §D.   N ft 2 = 0  and / = g x h outside  N.  By (b) in definition of N l

in §D, (g x h)-nN ft B j = 0 for all n > 0. Since B, = W[(2, g x tí), N ft (g x h)nV/s¿x, gxh) =

0 for 77 > 1.  (a) and (b) follow now from Lemma 1 and the definition of ViL.  For

(c), recall that 2 C Vlu(xQ, g x h) and so VI"L(x, g x h) = W£(xQ, g x h) tot all x e

2.  W£(x0, g x h) meets  /V only in  T2 x Ny  Since h^N^ n N3 = 0 tot all « > 1

and WuL(xQ, g x tí) is invariant under ig x h)~l, ig x h)-"VluL(xQ, g x h) ft N = 0

for 72 > 1.  By (d) of Lemma 1 and the definition of VIL, b[VluL(xQ, g x tí)] = W£(xQ, /).

The local stable and unstable manifolds for / around xQ are pictured in Figure

5.

Figure 5

It will be helpful to have some notation for the three-dimensional local un-

stable manifold of 6.  Considering 6 first as a source for g   : T   —> T , let

VI"  (6, g) be a 2-disk in its unstable manifold, with    \vA x J" in its interior, as

in Figure 2.  W" (d, g ) can be constructed so that

(1) interior N l ft interior W^(0, g  ) = 0,

(2) boundary N { ft boundary W^iO, g  ) / 0,

(3) g^W^iO, g+) C W^iO, g) and is disjoint from  Bj  for all  n > 0,

(4) g reduces lengths on stable manifolds outside  W" (d, g ) by at least one-

third,  (g does so near 2 and away from Q.)

Define  Vl^iO, g x h) = V/»Jd, g+)xN2 in  T2 x 51.  Since N ft (T2 x NJ = Aij

x N2, we can define  W"oc(<9, /) = V/^Jid, g x h) by Lemma 1 and property (3) above.

Since / respects foliation J ,  x e T3 is periodic under /  only if leaf F(x) is

periodic under /.  Since the leaves for  F are products of the stable manifolds of 2

and 5  ,  x must lie on   F(y) where  y is a periodic point on  2.   Consequently, a

good way to study Q(/) is by examining /"  restricted to a leaf of period  tt.
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Lemma 3.   /|íX/|F(x  ))  is conjugate to the shift automorphism on the bisequence

space of 3  symbols, i.e.   3   .

Since Lemma 3 is superfluous to the proof of Theorem 1, we merely sketch  its

I, a closed rectangle  R in F(x ) such

that /: R —> F(x A looks like the standard geometric realization  of the shift on 3 ,

as in [22].  See Figure 6.

7

F(xQ),    Figure 6

To show the conjugacy to the shift,  one easily applies the methods of [l8].   Finally,

by using the properties of the subsets constructed in §D, one shows that

fl(/|F(x0))CR.

Let   z be a periodic point in In«    of least period k.  Suppose flz eSn«

only for  i = 0, , 1    if  i < k.  Then, an analysis like that of Lemma 3 will show

that /   |0(/   \F(z)) is conjugate to the shift map acting on a quotient space of (3s) .

F. Normally-hyperbolic foliations.

Definition.   Let / be a diffeomorphism of compact  C°°-manifold  M" that respects

a foliation  J   on  M.  We call / r-normally-hyperbolic (with respect to 3") if  3   a con-

tinuous splitting  TM = E +(B E_ (B T? invariant under Tf such that the following

conditions hold: for some Riemannian metric on  M 3   constants A, p with 0 < À <

1 < p such that if 0 4 X £ TM,

\TfX\ <A|X|    if X £ E_,

\TfX\ >p\X\    if X £ E+,

A|X| <|T/¿X| <p\X\    fot i =0,1,..., r,    ifXeT?.

Intuitively, this condition means that the contracting (expanding) effect of / normal

to the leaves of the foliation is at least r times greater than the ccntracting (expand-

ing) effect of / on the leaves.
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Definition. For foliation A on M, let Q(5) be the quotient space obtained by

identifying leaves of 3" to points. If / respects J", /: Q(J) —» ßU") is well defined.

If g respects foliation § on M, (A, f) is conjugate to (y, g) if there is homeomor-

phism   h: Q(A) —> Q(y) such that the following diagram commutes:

Q{$)   -1-,   Qtf)

h h

2(g) -!-► ß(g)

Theorem (Hirsch-Pugh-Shub [lO]).   Let  1 < r < °° azza7 M 2>e a compact C°°-man-

ifold.  Let f be a  CT diffeomorphism of M that is r normally-hyperbolic with respect

to some foliation  J  where the leaves of A  are  C-manifolds.   Then, there exists an

open set  U in   DitfT (M) about f such that if g £ U, then g respects a foliation y

whose leaves are  C-manifolds.  (A, f) is conjugate to (y, g).

Remark 1.   As constructed in §B, the D-A map g  is  r normally-hyperbolic with

respect to the foliation  A = \Ws(x, A): x £ T  \.   In fact, one can construct an invari-

ant foliation  y, everywhere transverse to A and containing the path components of

2 as leaves, g is expanding on leaves of y, but contracting on leaves of A except

near  6 where by proper choice of <f> the expansion can be made arbitrarily slow com-

pared to the expansion along leaves of y.   Take  E  (x) to be the tangent space to

the leaf of y through x and E~(x) to be empty,  [y is tangent to a "Denjoy vector

field" on  T2.]

Remark 2.  g x h: T   —> T    is r normally-hyperbolic with respect to J" =

¡W^x, A) x S  ¡.  To see this, one constructs a one-dimensional invariant foliation

y     on   T  , expanding under  / and everywhere normal to  J, by putting the foliation

§ of Remark 1 on each T   x \s\ tot all s £ S1.

Remark 3.   f = b a (g x h) is r normally-hyperbolic with respect to J = \VJs(x, A)

X 5  ¡.   It is not as simple a task to construct the invariant subbundle  E    for b o

ig x tí) as it was for g and g x h.  However, b takes each leaf of J  into itself and

expands lengths by a factor < P  (as defined in §D) while expansion normal to leaves

under b o (g x h) remains greater than [4ÍP + l)Y.  The stability of foliation A fol-

lows then from  the methods of §2 of an expanded version of [lO] where Hirsch,

Pugh, and Shub characterize normal hyperbolicity by comparing the spectrum of /

restricted to TJ    (where f $(v) = Tfovof*    for sections  v of TM) to the spectrum

of /# restricted to the formal normal bundle of TA.   Furthermore, in [6, esp. §Vl],

Fenichel  proves a similar perturbation theorem  using only the asymptotic behavior

of sucha map / without assuming any invariant splitting of  TM.
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G.   The open set  U in Theorem 1.

1. If the  r in Theorem 1 is finite, the last section indicated how g  can be

chosen so that / = b o (g x h) is r normally-hyperbolic with respect to  J.  If r = oo,

choose g so that / is at least 2 normally-hyperbolic.  Then, let  U in each case be

as in the conclusion of the Hirsch-Pugh-Shub Theorem.

2. Part of the fl-stability theorem [25] states that if A is a hyperbolic basic

set (as defined in §B) for /, then each g  close enough to / has an invariant basic set

A   that is near to and conjugate to A. So, we can choose  Í7 so that for /' £ U, there

is a one-dimensional set 1' with /|S conjugate to f'\l'.   For all /' £ U, let x

denote the fixed point corresponding to the fixed point x    for /.  Let  F'(x) = F'(x)

(~\ B fot x e 1' n B where  F' £ j', the foliation of /'.  For f'C close to /,   F'(x)
'V.

is  Cr close to  F(x), where again for notation's sake, we are assuming the conjugacy

between f\l and / \1   is the identity.

Let  WsL'u(x, /') for x e X' be the path component of Ws,u(x, /') O B containing

x.   By the Hirsch-Pugh Stable Manifold Theorem [9], for f'C neat f,  WsL(x, /') is

C neat Ws(x, f) and  W\\(x, /') is  C near WuL(x, f).

3. WL(x     /) intersects  WsL(x     f) transversally in two points in  N. x NT

Choose  U so that this is true for all /   £ U.  In particular, we can demand that, for

/' £ U, /'|iX/ IF (xQ)) is conjugate to the standard 3-shift since this open condition

([18], [22]) is true for   /.

4. If /' is CT neat f = b o (g x h), /' = b' o (g x h) where b' is C near b.

Choose U so that, for /' £ U, T x \+ l\ intersects WL(x , f') transversally in

Nl x N2.

5. Let  N4 C N2 C S1  be as in §D.  Using [9], choose   U so that, for all /' £ U,

WsL(x, /') C Bj x N4  for all  x in interior  1'.

6. By (b) of §D, /(A/j) n/Vj = 0.  Choose   U so that this holds for all  /'  in  U.

I. WL(x , f) is transverse to the boundary of B. Choose U so that this is

true for all /' £ U.  In particular, 2'  will be an interval for all /'.

8. Choose U so that W"L(x n, /') n (N 1 x N A C [interior of AL] x N2 fot all

/' £ U.

9. Using stable manifold theory again, choose  Í7 so that ¡'~  WL(x_, /') n ^ =

0 for all /' £ U.

10. Using (4) in construction of N, choose  U so that B n f'~  A/CBjX

h-\B2-NA.

II. Since b = identity on gB. x c (cf. (5) in construction of N) and c 4 AL,

b[gB   x \c\] n T2 x A/   = 0.  Choose   1/ so that for b'  as in (4) above, b'[gB ^ x \c\]

nT2 x AL = 0, i.e. /'[B, x ¿_1c] nT2xN,= 0.

12.  B  is the union of 2-disks  F(x) for x £ ?..  For f' £ U,  demand that either

F(x) is a 2-disk whose "interior" lies in B or f'(F(x)) n B = 0.
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13. Consider  ^(0, /) described in §D.  Choose  U so that for f £ U,

Vl^id, f) C W"(0, /'), and /_1WJM0, /) lies in the interior of W^id, /) and in the

complement of B.

14. Since  h(N2) 3 B2, one can choose  U so that f'iT2 x N A D T2 x B 2 and

/'[C(T2xB2)] C CiT2 x B2).

15. Let dN2 = {ay a2\C 51 with a1 £ S+. In [T2 x N 2] - f~lN, f increases

distances normal to T2 x \a , a2\ by a factor greater than 3 by construction of h.

Choose  U so that this holds for all f £ V.

16. For x e T2 x jßj, a2!, let K(x) be distance measured along F(x) from x

to T2 x !«j} if x e T2 x \a2\ orto T2 x \a\. if x £ T2 x{«j}. For / = & o (g x A),

K(x) = length of N , fot all x £ T2 x dNv Choose U so that for all f' £ U and all

x as above, K(x) < 3 x length of N   = K.

17. If /'  is  C neat b o ig x tí), f' = b o k, where k is  C near ig x b).  gx h

satisfies Axiom A and strong transversality condition.  Therefore, by [17], it is

structurally stable.  Choose   U 3 if /' £ U, /' = b o k where  k is topologically con-

jugate to g x h.

H.  Perturbing maps in   U.

Notation.   If /, is in  ii, let 3\ be the foliation on  T3 as in (1) in §G; let  2

or  2(/) denote the important solenoid as in (2) in §G; let 2   be the path compo-

nent of 2  ft B  containing xQ;  2¿ is an interval by (7) in vG.  Let W^(x, /(),

VI" ix, f) and Fix) be as defined in (2) of §G.  In this section, we want to prove

Lemma 4.   Given f   £ U, there is a point z £ 2(/Q) and a one-parameter family

of maps in  U,  \f\,  0 < t < 1, such that the following hold;

(1) l(ft) = 2(/0) for all t £ [0, 1].

(2) VlsL(z, f A and VI"L(z, fQ) have linking number 0 z'72 NjX N2; z'rz fact, they

intersect but Vi*   lies on one side of W£.

(3) VlsL(z, f ) and ViuL(z, ¡A have linking number at least 2  in Nl x NY

Figures 7 and 8 describe the difference between (2) and (3).

Figure?.   F.(z) Figure 8.   Fj(z)
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Let /0 be an arbitrary map in Diff(T3).  Let AQ = ix £ SQ: WsL(x, f0) n

WL(xQ, fA 4 0 in N. x N 2\.  A    is a nonempty proper closed subset of  S.  by (3)

and (8) of §G, since  WL(20) is a two-dimensional topological disk, a result of the

stable manifold theorem.  Ordering the points in the interval Sn naturally, there is

a unique  z in  A    such that if z' > z in  SQ, then  z' 4 A      So,

WuL(z, fA n WsLiz,fJ¿0   in A/t x N2

WL(z', /0) n W* (z, /0) =0     in Nj x AL   for z > z.

Recall that since z, z' £ÏQC WuL(x Q, fQ), WL(xQ, fQ) = W£(*, fQ) = WuL(z', fQ).

Since the zero linking number is a closed condition, W" (x_, /.) and Ws(z, f )

have linking number zero in AL x N . However, they do intersect there, as in

Figure 7.

We now construct our one-parameter family of maps.  Let y £ WsAz, f A O

WL(x„, fA n AL x AL, as in Figure 7.  Choose y to be the furthest such point on

WsL(z, fQ) from z.   T WsL(z, fQ) C T WL(x0, /).  Choose nonzero vector  X(y) normal

to  T WL(x     /.), tangent to F Az), and pointing in the S_-direction, i.e. away from

W, (x_, /.).  Extend X(y) to a C°° constant vector field on  T . Now select an open

set  V in N l x N2 around y with fQ(V) n V = 0 and with ^L(xQ, f) dividing  V

into two parts.  Let k: T   —> R be a  C°° Urysohn function that is  1 near y but 0

outside  V; and consider vector field  Y(x) = k(x)X(x)   foi x e T3 with flow a

Defining ft = at ° /0> let í t > 0 be such that, for all t e [0, f j], /  is in the open set

U  in Diff(T3).   By Lemma   l,\ = 1Q,   WsL(x, f() = WsL(x, fQ) fot all  x 6 SQ, and

*T^0' ^ = V0-1WHX0> Q = tt^L^0' /0)-

All one need show now is that, for i" > 0,  WL(z, /) and WL(x0, /) have linking

number greater than zero in AL x N2.  W" (x  , f A divides  V into two parts, with

W, (z, f A n V lying in the lower (S_ ) part. Since  W^(z, f A is tangent to

W" (x  , fA at   y and   a   pushes  W^(x  , j A in the normal direction, there  is  t

with  0 < t2 < t     so that, for  t 6 (0, (21, some of  WsL(z, fQ) lies above  a^^Xg, fQ)

O y and some  lies below.  Thus, the linking number of  WsL(z, fA and  cxW^(x, f )

is greater than  0  in   V for  í e (0, /  ].  Now reparameterize   [O, /J to  [O, l].  Since

WsL(z, fQ) = WsL(z, f) and afWL(xQ, /Q) = WL(xQ, /t), the proof of Lemma 4 is com-

plete.

If r < oo  in the statement of Theorem 1, the   F _(x) are CT manifolds by (1) in

§G and X can be chosen everywhere tangent to F    (e.g., using foliation charts of

[8]).  In this case, F = FQ and one merely pulls  WL(xQ, f A n F Az) down along

F.(z) to proceed from the situation of Figure 7 to that of Figure 8.

Lemma 5.   // /. e U, /n does not satisfy Smale's Axiom A, i.e. f    has a non-

hyperbolic nonwandering point.
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Proof.   The point   y of Lemma 4 is nonhyperbolic yet nonwandering.

y £ MfA: y £ Vis(z, ¡A ft Vlu(xQ, fQ).  But  Vlu(z, (A and V/s(xQ, fA intersect

transversally since   V/U(z, fA = Wu(xQ, fA and xQ £ Wu(xQ, fA fh Ws(xQ, fQ).   By

"Cloud Lemma," [24, (7.2)] or [2], y £ MfQ).

y not hyperbolic:  y £ V/S(z, f A and y £ Viu(x-, fA.  It y were hyperbolic,

Vlsiy, fQ) = Vlsiz, fA,  Vi"iy, fA = W"(x0, /0) and y £ Vi"(y, f) m Visiy, fA.  But

Vlsiz, f A and  W"(x  , fQ) do not meet transversally at y.    Q.E.D.

1.  Construction of special 2-disks in the  F(x)'s.   In this section, / will denote

an arbitrary element of   U, not necessarily  b o ig x h) as in previous sections.   For

each f £ U and periodic point x in 2(/) ft  [N Q x N2], we construct a "rectangular"

2-disk  R(x) C F(x), which will have roughly the same purpose as the  R in Figure 6.

If x e 2(/) ft [N - x N A and x' is the corresponding point in 2(/'), R(x, /) will be

C° close to  R(x', f).

Lemma 6.   Let f £ U and let s be a path in Fix, f) ft T   x N    for x £ 2 O

[N0 x N2l  Suppose s ft 2 = 0.  // f's C T2 x N2 for 0 < / < k, then f's ft N = 0

for  l<j<k.   If also fms ft W^(x Q, /) = 0, fns ft U^(x Q, /) = 0 /or a// tz > ttz.

Proof.   Last sentence follows from f~1WLixQ, ^ C ^l/xo' ^'  ^e geometric

reason for fs ft N = 0 is that / sends points in  T   x N2 closer to  W"(xQ, /) and

away from  N.  To send s back to  N,  f would have to map some of s  out of  T   x

N2.  Suppose fs ft N ̂  0.  Since s C B, s ft [f " !/V ft B] / 0.   By (10) of §G,  s

contains a path from 2 to B. x h~  (ß 2 - N A and so must intersect Bj x \h~  c\

where  c is in Figure 3.  So, fs ft f[B    x h~~ :c] / 0.  By (11) of §G, fs has a point

outside  T   x N2.  This contradicts the hypothesis and shows fs ft N = 0.

For /' = 2, argue as for /' = 1 if fs C B.  Otherwise, / 2s ft B = 0  by (12) in §G;

and  NCS.  Let  i be the first integer > 2 with /'sfl B/0 but /i_1s nS =0.  If

f's met  N, it would have to do so in N; x N2 since  NftT2xN=Nx N      Then,

/'s would join  /Vj x N2 to 2 by a curve in  Fif's) ft T2 x Nr  In 'Pif's) ft T2 x N  ,

WuLixQ,f)  separates  2 from  N l x N r  But f'sfl WuLixQ,f)=0  since  WL(xn,/)

lies in  B  and is invariant under f~   .  So, /!s  must leave  F(f's) and intersect

W^(0, /).  But then, so /_!>^c(0, /) ^ 0.  Since s lies in B, this contradicts (13)

of §G.   So, j 's ft N = 0.   An inductive argument then finishes the proof of this lemma.

Now let a be a periodic point for /, say of (least) period ttz, in  2(/) O N0 x

N2 with W£(g, /) ft N, x /V2/ 0.  We are going to construct rectangle  R(q) in  F(q).

Let Sj be a closed interval in  VI* iq, f) with endpoints  a and t^    that is maximal

in that s   C s ' C VIs. (q, f) and s l/s^   implies ds l ft N = 0. So w j is the point on

d[N ft Fiq)] ft VlsL(q) furthest from a.  Let s2 be the path along  d[N ft F(a)] from  w    to

uz2 where w2 £ T2 x [a^ (cf. (15) of §G).  Let s? be the path in  T2 x \ax\ ft F(q)

from  zzz2  to  wy a point on f~lVI^(q, f) ft F(q).  Let  s4 be the path in  /"^^W»/)
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f^F(q) from w 3 to q.  s1us2LJS3Us4 encloses a rectangle RQ(q) C F(q).   [R in

Figure 6 is  RQ(xQ).]

Let  RA.q) be the component of fRQ f) T   x N    containing fs      [in Figure 6,

Rj(x0) is   R O /R.] Define inductively  R .(q) = component of fR._^q) n T2 x  N

containing /'s      By Lemma 6, R .(17) n N = 0  fot   I < j < m; and so  R .(17) = compo-

nent of fJR0(q) f) T2 x N2 containing f'sy  Finally, recalling fmq = q, define

Rm(q) = f(Rm_l(q))C F(<?) and denote f~mRm(q) = / ~{m- X)Rm_ Aq) as   R(q) or

R((7, /).  See Figure 9.

Note that for  0 < i < m each RAl) is a "rectangle" with one side, viz. f2s

lying in f'WsL(q, /); and each f~lR{(q) is a rectangle in R0(q) with s    as one of

its sides.  For notation's sake, label the sides of R (q) as  s.,, s.,, s.,, s.    and
z z 1'     z 2'     z 3      z4

the sides of R(q) as Sj, s^, s3', S4 where s.. and s.' correspond to s. in RAq),

7 = 1, 2, 3, 4. For each z < m and each R.(q), call the maximum distance measured

along F(flq) from x in s¿1 = /'Sj to s.^ C T2 x \a J the iez'gèi of R.(<?). For each

i < m and each f~1Ri(q), call the maximum distance measured along F (q) from x

in Sj to the opposite side of f'RAl), viz. f~%s.y the height of f~zR.(q). By (16)

of §G, the height of each R¿(z7) < K. By (15) of §G, height of /~'R¿(<?) < K-/3' for

0 < i < m and so height of R(q) < K/3m~l.

We now describe   the sides of R   (q).  s f* l,z"
IjCT   x \a A and

G imply that s^ 3 lies above  T   x B2, i.e. above  F(<7), as in Figure 9.

Since s   _        is the path component of

Figure 9.   R   (gXshaded area) in  F(z7).

Wu(fm~lq) n Fty™-1?) n T2 x AL  containing fm~xq (by induction), sm4  is that

part of  Wu(q, f) n F^) between  9 and  Smy   s^jCs^ W*^, /) by construction

and since  / preserves orientation.   By the second part of Lemma 6, s     ,   and  s
m, 1 m,2
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are disjoint from  WL(*0, /) as in Figure 9.   Putting all this together, one obtains

Lemma 7.   Let  q be a periodic point for f £ U, of (least) period m, in 2(/)

ft [N- x NA such that  VIs. (q, f) meets  P, the boundary of N, x N,  nearest 0.

Then, there is a "rectangle"  R(q) in F(q) ft T   x N    with boundary   s '  u s ' U

s, u s,   where
3 4

s'   is the arc of wL(q, f) from q  to  P,

s'2 C P ft'F(q),

s'A C V/uLiq, f) rt'Piq), and

s     joins s     to s     and is opposite s   .

Height of R(q) < K/3m_1.   Let  Rjiq) = fmR(q) with sides s^. = fms! ,  i =

l,---,4.

s    , C s ' ;   s    ,   lies above  Fiq)  in Fiq);
ml l'     m) ' '

Sm,A C WU(l> 0 ° F(^   and Í°ÍnS   Sml   t?   SmV

s lies strictly between  VI" (q, f) ft Fiq) and VI" ix  , /) ft Fiq), as in

Figure 9.

R iq) varies continuously with f £ U.  If f   is a one-parameter family of maps

in  U which agree outside  N and respect the same foliation, then one  R(q) works

for all the ft's.

Now  R(q) contains at least one point period < ttz, viz. q.  In   Lemma 8, one

constructs another 2-disk R  (q) about R(q) in  F(q) such that / has no points of

period < m in  R  (q) — R(q).   For Lemma 9, one thickens   R  (q) to a 3-disk  V(q)

such that / has no points of period < ttz in  V(q)\R(q).

Lemma 8.   Let  q, m, f be as in Lemma 7 with R(q) C F(q) as constructed in

Lemma 7.   Then, there is another 2-disk  R  (q) C F(q) such that

(i) R  (q) contains  R(q) in its interior as a 2-disk, and

(ii) / has no points of period < m  in  R  iq)\R(q).

R  (q) varies continuously for f in  U.  If f  near f respects the same foliation and

equals f off N, then  R#(a, /) = Rn(q, /').

Proof. The proof is simple but a little tedious. So, we will sketch it geomet-

rically, using Figure 9. Let s s , Si,, s be the edges of R(q) as in Lemma 7.

There are no points of period < ttz in F(q) below W (a, /). To see this, write /

as b o k where k is topologically conjugate to g x h as in (17) of §G. k has two

invariant tori, T (k) and T (k), with 2(/) and the VIs (x, f) contained in T2(k)

by Lemma 1. k and b send all points "below" T (k) toward T_(k). Thus, there

are no nonwandering points "below"  T (k), and hence below  VIs. (q,f) for f-bok.
+ r^j        L.

There are no nonwandering points to the right of s     in  F(q) since by its con-

struction in  ^E and by (13) of  §G such points are in the three-dimensional

^bc    ' f^'  There are no points of period < ttz to the left of s '   in  F(q).  One way
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to see this is to extead  RQ(q) to a rectangle  RAq) with boundary s,, s  , s     s

where

s. Cs. C Wf (q, f),     s2 = s2,     s.Cs, CT   x Í« j î,    ¿4 C left boundary of  F(zj).

Define  R(q) inductively as above and let R(q) = f~mR   (<?), an extension of R(<?)

to the left.   If x e R(q)\R(q),   f'(x) e (T2 x N A\n fot  i = 0, • • • , ttz - 1, and so

/ l(x) = kl(x) where k is conjugate to g x h.  x cannot have period < ttz for /  since
a.

q   is the only point of period < ttz for k in  F(q).

Finally, we need to see that we can extend R(q) beyond s'    fms.' n T   xB

= 0 by Lemma 7 and, by (14) and (17) of §G, 0(/) n C(T2 xS;)C T2U).  So /ws'

n íi(/) =0  and there is a 2-disk  V3 about fms '   but missing closed set ÍX/).

f~mV    is disjoint from  0 (/)   and extends   R(<? ) above  s      This finishes our sketch

of the construction of   R  (q ).

We want to thicken R (<7) to a 3-disk  V(z7) such that all points of period < ttz

in   V(q) actually lie in   R(q).

Lemma 9.   Let q, ttz, /   be as in Lemma 7.  Let R(q ) and R  (q) be as con-

structed in Lemmas 7 and 8.  Then, there is a 3-disk  V(q,) in  T3   such that R(q)

C R*(q) C V(q).   If  x £ V(q) with f'x = x and 0 < j < m, then x £ R(q).   V(q) n

F(<7) = R  (q) and V(q) varies continuously with f £ U.

Proof.   We first show that points of period  ; not on   R  (q ) do not accumulate

on  R  (q).  Suppose the contrary, i.e. suppose there exists  a sequence of points

ix  !  suchthat
n

(i) xn 4 R"(q) tot all  TZ,

(ii)  fix   = x    for all  tz, with  0 < j < m, and

(iii) the sequence   \x  \ accumulates on  R  (q).

By compactness and since   Fix(/') is a closed set,   there is a point x   £ R  (q) 9

x    —» x", where  \x \  is now a subsequence of the original sequence and /'(x ) = x.

Therefore, / = ttz.  Otherwise, f'F(q)= F(q) and fjWs(q, f ).   But Ws(q , f) O

f'(wS(q, /)) = 0 for 0 </<TTZ.

Choose chart R3  about  F(q) where  R2 x io! contains  F(l ) and R2 x \t\ C

leaf of foliation.   Let  77 : R    —» 0_ x R    be the projection on the third factor.  Using

[l0], we can  choose our chart  so that for   /   near   /:

(i) new chart  R    x R    is close to the original one,

(ii)  R2 x \t\ C leaf of foliation for /',

(iii) R2xlO|3F(?,/'),

(iv) 77,  for f  is  C -close to 77,  for /.

Now, 773o(/m-id): R3-.R!  with  773o(/m -id)x =0. (?773 O (/m - ¡d)/<3x A,X_) 4

0 since /  is expanding in the x   direction, i.e. normal to the foliation.  By the im-

plicit function theorem, [77   o(/m - id)]-  (0_) forms a two-dimensional submanifold
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through x in our chart. fmRn(q) C F(q). So, y £ Rniq) implies y e R2 x SoS and fmy £ R2

x\Q\. fmy-y eR2x,0¡ or tt^ o (fm - id)y = 0. Therefore, Ks(a) C [77 ? o (/' - id)]" '(0).

Since fmx   = x    for all  n, all  x    e [tt, o (fm - id)]_1(0).   But by the submanifold
n u

property, the x    cannot accumulate to R (a) without being on  R (a).  So, points

of period / not on  R>>(q) do not accumulate on  R  (q) and, consequently, there is

an open neighborhood  V(q) about  R  (q) as in the conclusion of this lemma.   As  /

varies, 77,  and fm vary smoothly; so  [77   oifm - id)]-1(0) and  V(q) vary continu-

ously with f £ U.

J. Comparison of /    and / .   As in the statement of Theorem 1, let fQ be an

arbitrary map in  U and  U-  an arbitrary neighborhood of /. in  U.  For convenience,

we can without loss of generality consider  U as our  U    since every open subset

of U    has the properties in  §G.  Let us now use the 2-disk  R(q)   constructed ino
§1  to study the one-parameter family of maps  \f | discussed in §H.   Recall  that

for all / £ U,  2(/) is locally the product of a Cantor set and an interval ([27],

[30]).  For z £ 2(/),  VlsLiz, f) ft 2(/) is a Cantor set and so points of W*(z, /) ft

2(/)  accumulate  on  z.

Let / and z be as in Lemma 4. Choose z > z in 2(/.) [= 2(/„)], using the

order in §H, such that WsLiz', /}) and VI"Liz', /}) [= Vi"L(xQ, /j)] have nonzero link-

ing number in iVjX N By choice of z in 2(/ ), wLiz', f A and WL(z',fA do not

intersect in N x N . Using the stable manifold theorem [9], the openness of non-

zero linking number and of nonempty intersection, and 2(/Q) = 2(/ ), one can choose

a  neighborhood  H oí z'  in  2(/Q)  such that, for all y £ H,

(a) Vl^y, fAft Vl^(y, f A intersect in  N .x N.  with nonzero linking number,

(b) VlsL(y, fQ) ft VI"L(x0, f) [and consequently  WsL(y, ¡A ft VI"L(y, fA] is empty

in N j x Nr

Let  H    be a compact nbd of  z   satisfying (a) and (b) and homeomorphic to  the

product of a Cantor set and  an interval.  Since  H    is closed, there is an  e > 0 such

that for y £ H    the distance (measured along  F(y)) between  VI" (y, f A and Ws (y, / )

in  N    x N2 is at least e, using (b).

Since periodic  points are dense in  2(/) and there are finitely  many points of

each period [27], there are periodic points in  H    of arbitrarily high period.  Choose

a £ H j  of (least) period  ttz  where  K/3m < e.  Construct  R(q, f ) and  R(q, ¡A as in

Lemma 7.  So  f™ R(q, f A = Rjq, f()  lies in  Fiq) and is bounded by   W[(o, / ),

Wliq, ft) ft Fiq), and  WuLixQ, f() ft *Fiq) as in Figure 9.  Also, in N, x N2, ftR(q)

lies below  VI"L(q, f) ft F(q) and above   W£(xQ, f() ft l^iq).  In the  C case, r < <»,

^^9' /0^ = R^9' f\l by Lemma 4 and the last sentence of Lemma 7.

However, the height of R(q) < K/3m < <r, while the distance between W" ix , f )

and V/sL(q, fQ) is at least e in F(a) n N x N2. So we have exactly the situation of

Figure 9 with R(q) and f™iR(q)) not intersecting in zV j x N . On the other hand,

since  W£(a, /;) has nonzero  linking number with  ViLiq, /,) in  zV    x N     Figure  10
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would more accurately describe the situation for  R(q, f.).

[December

Figure 10.   F(q, fA

Lemma 10.   q is the only point of period < m for f    in  R(q, fA.  However,

f™R(q, f A n R(q, f A has at least three components each of which contains a fixed

point of f™.

Proof.   Since  q has least period  ttz,  f'F(q, f ) D F(q, / ) =0  for 0 < i < m  and

so there are no points of period  < ttz  in  R(q, f ).  Let  x e R(q, f ) with f™x = x.

Since  R n f™R n N   x N2 = 0,  x e N.  By construction of R, fJQx 4 N fot j < m.

Using (17) of §G, f. = bok0 where  kQ is conjugate g x h and support  b C N.  So

f'Qx = k'Qx for  / = 0,  1, ■ • -, ttz  and x e Fix (k™ ) n F(q, fQ).  Therefore,   x = q and  q

is the only point of period  m  in   R(q, /.).

The situation is different for /..  Let s ', s'    s'    s'   be the sides of R(q, /.)

as in Lemma 7.  As in Figure 10, f?s'   and f?s'   cut across  R(<7) in N   x N     dip

below  R(q), and then cross it again.  More precisely, there exist closed subintervals

/j, ¡2 of f™s\   and closed subintervals  /2, I2 of f"^s'2   such that

(a) there is x    between  /,  and L on f?s'   lying below  R(q),

(b) there is  x2 between  11  and  /2 on  f?s'   lying below  R(9),

(c) each V. has one endpoint on s     and the other on s      e.g., the points \a,

b, c, d\ in Figure 10 where ad   is  I2 and  be   is  ¡2.

Choose  ¡2 and /L so that the subinterval  ab   of s '   and the subinterval cd

of s     have minimal  length.  Similarly, choose  /.   and  /..  Let  M.CR O f™R  be

the 2-disk bounded by l\ and I2 and let M2 (= abed in Figure 10) C R n /^R be
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the 2-disk bounded by  !..  and  12.

Claim, f™ has a fixed point in M.  and another one in zVL. We will work on

M ; the proof for AL   is isomorphic,  modulo a change in orientation.

To facilitate the analysis of  M ., one introduces a coordinate system on  F(q)

H T    x N 7 with  Ws(q, f A the x-axis, q the origin and the positive direction toward

N   x AL, i.e. to the right in  Figure 10.  Let s     be the y-axis with positive direction

toward s  , i.e. "up" in Figure  10.  Now f~mad C s2  and thus lies to the right of

M    and f ~m b c C s '   and lies to the left of M r  f"[mab   lies in  R(q) below  s'^

and f~mcd   lies in  R(q) above  s

Williams has shown me the following simple technique for exhibiting a fixed

point for f~m\M    given the above situation.  The set  E   - \z e M2: f~^mz and z

have the same y-coordinate]  separates  AL  into two disjoint open sets, \z: f~m

increases y-coordinate of z\ containing cd  and \z:f~m decreases y-coordinate

of z\  containing  a b . Similarly,   E    =\z £ AL: f~mz and  z have the same x-coor-

dinatei  separates AL into two disjoint open sets, one containing be   and the other

containing  ad.  Since  M    is closed, E    C\ E   4 0 by point-set topology arguments.

But E    r\ E   - \z e AL: f™z = z\, proving this lemma.

Summarizing, we have a one-parameter family of diffeomorphisms in   U:

f™\R(q, f): R(q, f ) —> Rm(q, f ).   R(q, f ) varies continuously with  t  and in the

C case, r < oo, do not vary at all.  /"  has exactly one fixed point in R(q, L), while

f? has at least three fixed points in  R(q, f.).  The set of / in   U that have  q as

the only fixed point of fm in R(q, f) is open.  So, there is a T with 0 < T < 1

such that ffi has more than one fixed point in   R(q, fA) but f" has   q as its only

fixed point in  R(<7, / ) for all  t with 0 < t < T.

K. Three perturbations of /   in   U.   In this section  (J will mean (J m3¿. First,

one makes hyperbolic  all periodic  points of /_. of period  < m  not in the orbit of

R(a, f-j-)-  From Lemma 9, there is a 3-disk  V such that R C interior  V and all

points of  V of period < ttz are actually in  R.  Choose   V  small enough  so that   V,

fTV>--' >/t~   V are mutually  disjoint.   By Peixoto's proof of the Kupka-Smale

Theorem [16], one can choose / _ so that

(i) TT=_fT in y = ij/Tv'

(2) if   / Z.z = z,  0 < tí < ttz, and z i Y, then z is a hyperbolic fixed point of

(3)_TT £ u.

Since /_ = /_ in  Y, /_ has at least  3ttz points of period m in U /x^-  Now,

perturbing f T in   y to make all points in   V of period  m hyperbolic, one obtains,

via [l6] again, gj. where

(1) gT = / j outside   Y,

(2) gT £U,

(3) gT has at least  3"2 points of period  ttz in   U / LR  and all  points  of



240 C. P. SIMON [December

period  < ztz  are hyperbolic.

We now want to perturb fT in another way to  gT £ U where

(i) g -r - f t outside   Y,

(ii) gT = fT    on  R  tot some  T^ < TQ,

(iii) gA. has exactly  ttz points of period  < m in   Y, all of which are hyperbolic.

Then, we will have  gT and  gA. in  U  such that

(a) gT and gT have all points of period  < ztz hyperbolic,

One of \gT, g T\ must satisfy the conclusion  of Theorem 1, i.e.  N   if A /= N   igj.)

So, we need only construct g T as above.  Let  Y. = [J fJTV.,  i - 0, 1, 2, 3

where  V. D V 3 V. 3 V2 3 V,  ate all closed 3-disks with the properties that all

points of  V.  of period  < m fot fT lie in  R, int V, D R, and   V. 3 int V.    .  tot each

Let  <tj: T3 —> R be  Cr with the property that  0 = 0 outside   V but  <f> = 1  in-

side   Yj  and consider the one-parameter family of maps of  T , k   - (l — 4>)ft + «/V,-

k    is   Cr for all  t.  kT = f j.   since  fT = /_  where  cf> / 0, i.e. in   Y.   k   = /— outside

Y for all z" since <jj = 0 there.
'v.

Let R    be the 2-disk  Riq, f ) in  Fiq, f ).  R    varies continuously with t.  So,

there is an open interval (t., t A about  T such that  R   C V    for t £ (t., t A.  Choose

V.  and (t., tA so that all points of period < ztz for /   in  V.  lie on  R    when t £

(t     tA.  Since  (J l\V-y ^ U'nt fr^v one can cnoose an open interval  (t , z" )

about T so that   {J f1tV2 C U int /"TVj = Y    for / e (/, / ).  Choose an open in-

terval  (t     tA about  T so that  k   £ U for  t £ (t     t.).   Choose an open  interval

(t     t  ) about   T  so that for such   t, k    has no points of period < ttz in \J f'Tiv\v A.

This is possible since  ky. = fT has no such periodic points.   Finally, choose an

open interval  (t     tlQ) about  T so that   \Jf'TV, C UM^2 for  ' 6 ^9' 'l0^

Now choose   t < T with  / £ II ?_ (z"2._ ., t- .).  Claim  k    is our desired g~_.

k   £ U and  k   = / „  outside   Y.

So  it suffices to show that  k    has only  ztz points of period  < ttz in   Y.   Let x

\C£ Y with  fcjx = x for some  i < ttz.   Y = [(J/V^ ^ [U/'t-ÍAv,)].   x e IJ / r

since / e (i7, i8).  x e (J*,^ since l € (V 'lO^  Also' kt = A in   U /{V2 =

(J /€7(V2 C Yj   since  t £ (f     ¿4).  So  x e \Jf'V2  and /jx = x  for some   z,   1 < z < ttz.

Because  z" £ (t y t A,  x £ (J/'R .  Since  t <T,  q is the only point of period < ttz

for /   in   R(.   Therefore, x = f~'q for some  j < ztz.  So, k    can be the  g~T needed to

finish the proof of this theorem.
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