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LOCAL FINITE COHESION(!)
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W. C. CHEWNING, JR.

ABSTRACT. Local finite cohesion is a new condition which provides a gen-
eral topological setting for some useful theorems. Moreover, many spaces, such
as the product of any two nondegenerate generalized Peano continua, have the
local finite cohesion property. If X is a locally finitely cohesive, locally com-
pact metric space, then the complement in X of a totally disconnected set has
connected quasicomponents; connectivity maps from X into a regular Tl space
are peripherally continuous; and each connectivity retract of X is locally con-
nected. Local finite cohesion is weaker than finite coherence [4], although these
conditions are equivalent among planar Peano continua. Local finite cohesion is
also implied by local cohesiveness [12] in locally compact T2 spaces, and a con-
verse holds if and only if the space is also rim connected. Our study answers a

question of Whyburn about local cohesiveness.

1. Basic properties.

Definition. A topological space is rim connected at a point p if, for any open
set U containing p, there is an open connected set V containing p, such that V
C U and the boundary of V (Fr V) is connected.

Definition. If X is a connected subset of a topological space, the statement
that X = A + B is a representation will mean that A and B are closed (in X) con-
nected sets whose union is X.

Definition. A topological space X is locally finitely cohesive at a point p
if for any open neighborhood U of p, there is a connected open set V about p
with V C U, and an integer 7 such that, for any representation V = A + B, the set
A N B has no more than n components which do not meet Fr V. V is termed a k-
canonical region, where k is assumed to-be the least of all integers » which meet
the above requirement. A space which is locally finitely cohesive at each of its

points has local finite cohesion.

Presented to the Society, April 18, 1970; received by the editors April 8, 1970 and, in
revised form, February 16, 1972.

AMS (MOS) subject classifications (1969). Primary 5455; Secondary 5566.

Key words and phrases. Local finite cohesion, finite coherence, local cohesiveness,
rim connected, representation, k-canonical region, totally disconnected, quasicomponents,
connectivity function, peripherally continuous, connectivity retract.

(1) This paper is part of a Ph.D. thesis submitted to the University of Virginia, The
author gratefully acknowledges the suggestions and encouragement provided generously by
Professor J. L. Cornette of lowa State University, who directed that thesis.

Copyright © 1973, American Mathematical Society

385



386 W. C. CHEWNING, JR. [February

By definition, local finite cohesion implies local connectedness. However,
even a rim connected Peano continuum may fail to have local finite cohesion.

Example L.1. If W=1{(x, y) € E2: x> |y| and 0 < x < 1} and the set D =
{(x,y) € E2: (x = 1/n)? + y2 < 1/8"}, then W - U;_, D, is a planar rim connected

Peano continuum which fails to have local finite cohesion at the point (0, 0).

Lemma 1.2. If U is a k-canonical region in X, U is compact and T,, and V

is a connected open set with V C U, then V is an n-canonical region, n <k.
Proof. Let V = E + F be a representation such that E N F has more than &
components which miss Fr V. If a component of U — V does not meet Fr V, then
a separation of U will result between V and that component of U — V. Therefore,
both A = E U {union of all components of U — V which meet E} and B = F U
{union of all components of U — V which meet F} are connected sets, and U =
A + B is a representation. The set A N B contains as components all those com-
ponents of E N F which miss Fr V, which by assumption are more numerous than
k, contradicting the fact that U is a k-canonical region.
Definition. A topological space X is said to be k-cohesive at p if k= infin:

p is in an n-canonical region} and k& < oo,

Lemma 1.3. If X is locally compact, locally connected, T,, and k-cobesive
at p, then for any neighborbood U of p, there is a k-canonical region V about p,
with V C U such that Fr V has only a finite number of components.

Proof. It may be assumed that U itself is a k-canonical region, with U com-
pact, by Lemma 1.2. Because U is semilocally connected at p, there is a neigh-
borhood W of p, W C U, and such that U — W has only a finite number of compo-
nents. Thus if V is the component of W containing p, V is open and U-V can
have no more components than U — W has.

Therefore, suppose that D, D,,---,Dy are the components of U ~ V. Then
Dl can contain no more than k components of Fr V. Setting A =D, u---UDy U
Vand B=D,,

Dl does not meet Fr U and thus can have no more than & components. Similarly,

it follows that U = A + B is a representation and AN B = (Fr V) N

the other sets D,,-.-,Dy each meet Fr V in k or fewer components. But Fr V
CD,U.--UD,, sothe set Fr V has no more than N -k components, and by Lem-
ma 1.2, V is a k-canonical region.

Definition. If X is locally finitely cohesive and k = infin: p € X implies that
p is in an m-canonical region, m < n} and k < oo, then X is locally k-cohesive.

The following theorem shows that local finite cohesion occurs naturally.

Theorem 1.4. If X and Y are each nondegencrate gencralized metric Peano

continua, then X x Y is locally 1-cobesive and rim connected.
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Proof. For any point (p, q) in X x Y, and any open set R about (p, ¢) there
is a product set U x V about (p, ) which is open and connected, and such that
UxVCR, Fr U and Fr V are each nonempty, and both U and V are Peano con-
tinua. Fr(U x V) is connected, since, for x € Fr U and y € Fr V, Fr(Ux V) =
UxFrVUFrUxV=1{UxFrVulx}x Vi ufUxiy}luFrUx V}, and these two
sets are connected and both contain (x, y).

The proof will be completed by a"demonstration that U x V is a 1-canonical re-
gion. Suppose that UxV =A+B is a representation and that A N B has two or
more components which miss Fr(U x V). Then let U and V be subsets of U* and
V* respectively, where U* and V* are unicoherent Peano continua in the Hilbert
cube. With x e Fr U and y € FrV, let N=UxV Ulx}x V¥ U U* x{y}. It will
be shown below that N is unicoherent.

Setting A’ = A U {either of {x} x V¥, U* x {y} which meets A} and B'=Bu
{either of {x} x V*, U* x {y} which meets B}, then N =A'+ B’ is a representa-
tion, but A'N B’ is not a connected set since A N B has two or more components
which miss Fr(U x V) and hence miss both {x} x V* and U* x {y}. The unicoher-
ence of N will imply that no such A’ and B', and therefore no such A and B,
can exist.

The proof that N is unicoherent uses the exponential representation methods
of [8]. Briefly, a continuous map [: X — stis exponentially representable pro-
vided that f = et & where g: X — R! is continuous. A Peano continuum is unico-

herent if and only if every continuous map f: X — stis exponentially represen-

table.
Let [: N — st be a continuous map. Then fl{x} x V* and f|U* x {y} can be
written as e °! and e °? respectively, and because these restricted domains in-

tersect in a single point, it may be assumed that g =g, U g, is a continuous map
into R!. Thus f1U x fy} U fxd x V} is equal to '€, and by a theorem of Whyburn
[8, p. 224], the map g can be extended to all of UxV,sothat f=e'® on N is

an exponential representation, and N must be unicoherent.

Corollary. Local finite cobesion is a productive property for locally compact

metric spaces.

Example 1.5. Let X be the union of a sequence of successively tangent cir-
cles which converge to a point p. Then X is a Peano continuum, so that X x X
is locally l-cohesive. However, the fundamental group as well as the first homol-
ogy group of X x X is infinitely generated.

Example 1.6. 1f Y =W —J”_; D , the space of Example 1.1, then Y x [o, 1]

is locally l-cohesive.
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A natural question suggested by these examples is this, *‘Is every locally
finitely cohesive space locally l-cohesive?”” A continuum which is k-cohesive at
one point, for any positive integer &, can be constructed as follows.

Example 1.7. Let {Tn: n=1,2,---} be a sequence of mutually disjoint inde-
composable continua which converge to a point p. Then & distinct points of T,
are selected and each is identified with a distinct point of Tn+ gr=1 2.
Care is taken never to choose two points from a single composant of any T . Then
let X be the union of all these T so identified, together with p. X is a continuum
which is k-cohesive at p.

Of course, the space X in Example 1.7 is not locally finitely cohesive at
every point since it is not locally connected. We proceed to answer the above ques-

tion affirmatively for locally compact metric spaces.

Lemma 1.8. Suppose that U is a k-canonical region, U a metric Peano continuum.
Then if there is a k-canonical region V, V C U such that Fr V has only a finite
number of components, there exists a representation U = A + B in which An B

has k components and misses Fr U altogether.

Proof. By assumption there is a representation V = C + D, and C N D has k
components which miss Fr V. If there are only N components of Fr V, then there
are N or fewer components of U - V. If A=C together with the components of
U — V that meet C, and B = D together with the components of U - V that do not

meet C, then U = A + B is the required representation.

Lemma 1.9. In Lemma 1.8, for any ¢ > 0, the sets A, B, and A N B may be

assumed to be the union of a finite number of Peano continua of diameter < ¢.

Proof. Let ¢ be smaller than half the distance between any distinct pair of components
of AN B, and also smaller than half the distance from AN B to Fr U. U can be
the union of a finite number of Peano continua each of diameter <e¢. If A* is the
union of all these continua which meet A, and B* is the union of all these con-

tinua which meet B, then U = A*+ B* is the needed representation.

Theorem 1.10 If X is locally compact, locally finitely cobesive, and metric,

then X is locally 1-cobesive.

Proof. If X is not l-cohesive at x, there is an integer &> 1 and a k-canonical region
U about x, with U a Peano continuum, and every region V containing x, VCU,isalsoa
k-canonical region. Thus the hypothesis of Lemma 1.8 is satisfied. Therefore there is a
representation U=A+ B in which AN B misses Fr U, AN B has k& components, and
the point % is interior to AN B. (If x fails to be interior to A N B, there is a region R

about x whose closure does not meet Fr U and either meets exactly one component of
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A N B, oris joined to AN B by an arc & in U which meets A N B in only one
point. Then A* =AU a U R and B* = BU a U R meet the claim above.) By
Lemma 1.9, if d is the distance from x to Fr U, then A, B, and A N B are each
the union of a finite subcollection of Peano continua T each of diameter < d/2.
The set D = {union of all these T which do not contain x} is closed and con-
tains Fr U. Then if V is the component of U — D containing x, V is a k-canoni-
cal region, V meets exactly one component of AN B and VCU. Also A -V and
B — V have only a finite number of components. There must be a representation
V =C+ D in which C N D has k& components which do not meet Fr V.
Now if K is a component of A N B that does not intersect V, then K must
lie in A1 N B 1

— V. With no loss of generality A, can be required to meet C, and if B, does not

where A is a component of A —V and B, is a component of B

meet D, then an arc 8 is constructed in U — K which meets B, in a single point
and D in a single point. Such an arc 8 exists because the set V, together with
the union of all Tn which meet V, is a Peano continuum in U — K, and B, meets
V in Fr V.

Thus the sets E=CuUA U {union of all components of A —V and B — V
which meet C, except Bl‘ and F =D uB UB, U lunion of all components of A
— V and B — V which meet D, except Al} are closed and connected, and U = E
+ F is a representation such that E N F misses Fr U. The set E N F contains
BuUKuU {k components of C N D that miss Fr V1. K, as well as each of the £ —
1 components of E N F that miss Fr V, adds a component to E N F, so that E

N F has a minimum of k£ + 1 components, which is a contradiction.

Corollary 1.11. If X is locally compact, metric, and locally finitely cobesive,

then X is rim connected except at its local separating points.

Proof. For any point p € X which is not a local separating point, and any
1-canonical region U about p, U — p is connected. Thus there is aregionV
about p, with V CU,and U -V connected. (See [8, p. 50].) The representation
U=(U—-V)+V has as its intersection Fr V, which misses Fr U and therefore is

connected.

2. Relation of local finite cohesion to other conditions.

Definition. A set X is m-coherent if X is connected and m is the least inte-
ger k such that in each representation X = A + B, the set AN B has <k+1 com-
ponents. If no such m exists, then X is co-coherent.

Finite coherence is studied in [3], [4], and [7].

Theorem 2.1. If X is locally connected, connected, and m-coherent, m < o,

then X is locally finitely cobesive.
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Proof. For p € X, let V be a region about p with Fr V nonempty. Then V
is an n-canonical region, n < m + 1. This fact is verified as follows: first, let %
= E + F be a representation. Now the components of X — V are open, so each one
must have limit points in Fr V to avoid being open and closed. Following the
proof of Lemma 1.2, with X = U, it is easy to see that EN F has <m + 1 compo-

nents that miss Fr V.

Corollary 2.2. If X is locally connected and has a cover of finitely coberent

regions, then X is locally finitely cobesive.

We now record the fact that local finite cohesion can be made into the global

condition of finite coherence if X is a planar continuum.

Theorem 2.3. A Peano continuum X in the plane E? is [initely coberent if

and only if it is locally finitely cobesive.

Proof. The necessity is a special case of Theorem 2.1; the sufficiency is
argued as follows. X may be assumed to lie interior to I2, the unit square in EZ
If X has only a finite number, N + 1, of complementary domains, then X is a re-
tract of 12 — P ,UP,U- - U B, where each P, is a simple region chosen from a
distinct bounded complementary domain of X [1 p. 138]. Because the set I — P,

-V Py is N-coherent, X, as a retract of this set, must be k-coherent, K <N by
[3].

Suppose that E? — X has infinitely many components C,»Cys-v-. The
sequence {Cni is a null collection [8, p. 113] of sets which must cluster at some
p € X. We may assume that there is a l-canonical region V about p, with V con-
taining an infinite subsequence {Fr C_ :k=1,2,---} of the sets {Fr C_}, and 1%
a Peano continuum. Whyburn has proved [8, p. 177] that if A is a nonseparating
Peano continuum in Ez, and Y is any 2-cell containing A in its interior, there is
a monotone retraction r: Y — A which sends Y — A onto Fr A. This fact will be
used repeatedly to define a monotone retraction 7 ? - U::I an — V, and this

retraction will contradict the fact that V is l-canonical.
V -V 0 is a nonseparating Peano continuum, so
Set Vi=V ulJ,_, C ngs then Vl p g

there is a monotone retraction 7, N N V For each &> 1, take V = V - C

Let c: E2U @ — S? be the one-point compactification of E? and let t, bea rota-
tion of the sphere c(E? U w) which makes a uniformly locally connected open 2-
cell C(P ) C C(C ) into a neighborhood of clw) in S2. Defining e, = c~lo t, ¢,
the set ek(Vk) is a nonseparating Peano continuum in EZ. There is a monotone
retraction f,: E° —e (P ) —e (V ), since the set E? — ¢ (Pk) is a closed 2-cell
containing e (V ) on its interior. Finally, the map 7, = e, “lo /k °e,, when re-
stricted to I P is a monotone retraction of that set onto 12 an which

moves only points of an, for £ > 1. Once " is defined in this way for each posi-



1973] LOCAL FINITE COHESION 391

tive integer k, set r=1lim, (rk Or, 400 rl). Notice that a point p € 1% is
moved by 7, only if p € an, and even then, the point p cannot be moved a dis-

tance larger than diam C,,, since r, maps the points of C - P, onto Fr C_ .
np k np

ng»
(These observations hold for k > 1.) Hence the limit which defines r is uniformly
convergent, as diam an — 0 as k — o0, so 7 is continuous. Moreover, r is mono-
tone [8, p. 174], so r is a continuous, monotone retraction of ? - U:zl P, onto
V.

There is obviously a representation 1% - U:ﬂ P, =A+ B with BCV such
that A N B is not connected. Thus V = r(A) + #(B) is a representation and (A)

N 7(B) is not connected, as r is closed and monotone. But r(A) N r(B) fails to
meet Fr V, contradicting the fact that V is l-canonical.

Definition. A space X is locally cohesive at p if for each neighborhood U
of p, there is a region V C U, p € V with Fr V connected, and for each repre-
sentation V = A + B such that Fr V is interior to A, and p is interior to B, the
set AN B is connected. Such a V is a canonical region for p. If X is locally co-
hesive at each of its points, then X is locally cohesive.

Results involving local cohesiveness are found in [9] and [12].

Theorem 2.4. If X is locally cobesive, normal, and T, then X is locally k-

cohesive, k < 2.

Proof. A canonical region W about p € X is also a k-canonical region for &
<2. If W=A+ B is a representation such that A N B has components C,, C,,
and C3 that do not meet Fr W, then p can be assumed not to lie in C, or C,,
and p can be assumed to lie in B. There is a region R about p with R CW and
Rn C,=98= Rn c, Also in X there is a connected open set Y about Fr W
whose closure misses C, U C, U ¢,V R. Then if Z is the union of the compo-
nents of Y — Fr W which meet W, the set Z U Fr W is connected, because each
component of Y — Fr W meets the connected set Fr W.

For each point x € W, there is a region L whose closure meets at most one
of the sets C,, C,, C;, Z U Fr W. A finite chain joining x to Z U Fr W will be
a collection L ,-++,Ly with L, N (ZUFtW#@, L, NL, #@ and x €L,

If U_ denotes the union of all points x in W that can be joined to Z UFr W
by a finite chain, then U_ is clearly open. However, U_ is also closed; for if y
is a limit point of U_, there is a region Ly about y whose closure meets at most
one of the sets Cl’ C2, C3. In addition, Ly must meet some point x € U , and
there is a chain L,--+,L, joining x to Z U Fr W. The chain L ,..., Lys Ly
then joins y to Z U Fr W, so y € U . Because W is connected and U_ is open
and closed, U_= W and there is a chain L from Z U Fr W to A in which the clo-
sure of only one link meets A. We identifv L with the union of its links.
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Now define E=AULU ZUFrW and F=B UR. Then E and F are con-
nected, p is interior to F, Fr W is interior to E, and W-E+Fisa representa-
tion. Since W is a canonical region for p, the set E N F must be connected. It
is easy to see that C, and C, lie in different components of E N F, however.

We note that the proof still works if X is locally cohesive, locally compact,
and T,

Theorem 2.5. If X is locally compact, rim connected, metric, and locally

finitely cobesive, then X is locally cobesive.

Proof. For p € X, let U be a l-canonical region about p with Fr U con-
nected and U compact. Then U is a canonical region for p; otherwise there is a
representation U = A + B with Fr U interior to A, p interior to B, and AN B =
C + D, a separation. Since B is compact, there is a subcontinuum K of B that is
irreducible from C to D. Then the set K'= K — K N (Cu D) is connected and
misses A, so it is contained in a component M of (U — A). M is open and evi-
dently Fr MCA N B ~ CuU D, and because K'CM, and K’ meets both C and D,
the set Fr M is separated. One notices that Fr M is in U because Fr U is in-
terior to A. Finally, U=M+ U=M is a representation, and the intersection of
these sets, which equals Fr M, lies in U and is separated, which is a contradic-

tion.

Corollary 2.6. If X is locally compact, T,, metric, and rim connected, then X is

locally cohesive if and only if X is locally finitely cobesive.

Corollary 2.7. If X is locally compact, metric, and locally finitely cobesive, then
X is locally cobesive except at its local separating points.

Corollary 2.8. If X is finitely coberent, locally connected, metric, and locally com-

pact, then X is locally cobesive except at its local scparating points.

Corollary 2.9. If X and Y are each nondegenerate generalized metric Peano con-

tinua, then X x Y is locally cobesive.

A question raised by Whyburn in [9] is whether each locally cohesive space
necessarily has a cover of unicoherent regions. A negative answer is now easily
obtained, even for Peano continua, by Example 1.5 or 1.6, together with Corol-
lary 2.9.

Viewed as a generalization of local cohesiveness, local finite cohesion re-

laxes the requirement of rim connectedness, and otherwise the conditions are
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equivalent (for locally compact, T, spaces). In the process of studying local
finite cohesion, new information about local cohesiveness was gained. An example
of a space which is locally 1-cohesive, but neither finitely coherent nor locally
cohesive, follows.

Example 2.10. Let T = U:;l T, be the union of a sequence of punctured hol-
low cones of unit altitude which are mutually disjoint save at a common vertex
point p. The base of T has diameter 1/2" and from T, a simple region of diam-
eter 1/4" which is at a distance 1/2" from p, is removed. (Thus none of the
sets T are unicoherent.) T is locally 1-cohesive. At points other than p, T is
a 2-manifold so there is nothing to prove. For any ¢ > 0, there is a region V con-
taining p of diameter < ¢ such that Vis homeomorphic to the union of a finite
number of 2-cells together with an infinite number of punctured 2-cells, with a
sequence of points, exactly one from each cell, identified to p. If C_ is a 2-cell
(possibly punctured) in V, then for any representation Cn -E+F, ENF is
either connected or each component of E N F meets Fr C . This is proved by
considering the monotone quotient map of C  whose only nondegenerate point
inverse is Fr C .

Thus in a representation V = A + B, if B meets only one cell C, there is
nothing to prove. If, however, B meets more than one cone, B must contain p.
Therefore, p € AN B, and as is easily verified, An =AnN Cn and B,~Bn Cn
are connected for all n. Either each component of An N B, meets FrV orelse
A N B_ is connected and contains p. Hence the union of all components of A
N B that miss Fr V is connected, and V is a l-canonical region.

Question 2.11. Is there a compact metric space X which is locally finitely

cohesive, and yet fails to be either finitely coherent or locally cohesive?

3. Applications of local finite cohesion.
Quasicomponent theorems. A new theorem establishing an equivalence of
components with quasicomponents is obtained with a sharpened form of Lemma 2.3

of [8, p. 90].

Lemma 3.1. Let X be a locally connected metric space, and U a l-canonical
region in X with U compact. If p and q are distinct points of U which are
separated in U by a totally disconnected subset D of U, then p and q are sep-
arated in U by a single point of D.

Proof. If U —-D=M +N, a separation with p € M, g € N, and V is the com-
ponent of U — UN M containing ¢, then V is nonempty because ¢ is not a limit
point of M, and V is open. Now let K be the component of U — V containing p,
and set L = V U {union of components of U — V other than K}. If C is a compo-
nent of U — V, then C must meet V or else U could be separated between C

and V [8, p- 15]. Thus each component of U — V meets V, so that L is connected.
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The set KN L separates p and ¢ in U and is a subset of (V N K) N Fr U.
If this were not true, there would be a point x € K, x neither in V nor in Fr U,
such that x is a limit point of a sequence of components of U — V. Since each
such component meets Fr V, no neighborhood of x which does not meet Fr U U V
could be connected, contradicting the local connectedness of U.

Now KNV CKNFrV since KNV =g, and Fr VCD UFr U, sothat KNLC
(VA K) UFr UCDU Fr U. Because U is l-canonical, and U=K + L is a representation,
K NL can contain at most one point of D. This follows from the observation that since
K NL is compact, each point of D in K NL is a component of K N L which misses
Fr U. Since p and g are separated in U by a point of D together with some sub-
set of Fr U, then p and g are separated in U by a single point of D.

Lemma 3.2. Let X be a connected, locally compact metric space with local
finite cobesion, and suppose that {Wn: n=1,2,-.-} is a collection of mutually
disjoint open connected sets in X with |J L Ft W =D, a totally disconnected

n= n
set. If L is the limit set of some convergent subsequence of the {an, then L is

a single point.

Proof. If L is not degenerate, let p and s be distinct points of L, and
select a subsequence of the W _, say Wnl, an,- «+, such that Wnk contains a
point p, which is a distance less than 1/k from p, and a point s, which is a dis-
tance less than 1/k from s. Since X is a generalized Peano continuum, each W
is arcwise connected, so there is in particular an arc ;;\k in W Mo with endpoints
p, and s,. (It is clear that the accumulation points of Uk lpk, , are contained
in L.) Now let U be a 1-canonical region about p with U compact and s ¢ U.
For each arc p s, let K be the component of p s NU whrch contains p_.
Notice that K must meet Fr U, or else the compact set p 25, could be separated
between K and p s, N (X -U) [8, p. 16). (Since p s, meets Fr U for almost
all n, we assume that [)/n-s\n meets Fr U for every n)

Now if R is a region about p, R C U, then Fr R meets almost all the sets
K,

Thus there are distinct points p and ¢ in U N L, and about p and ¢, disjoint

and the sequence of sets {Kn N Fr R} must have a cluster point g € U N L.

regions O, and O may be taken in U.

Some member K of the sequence {K } must meet both O and O It follows
that K isina different quasicomponent of X - D from L, smce K, lxes in one
of the sets W ,and W, rs open and closed in X — D. Thus if x € K N U, then x
and p are separated m U by UND, since x and p are separated in X by D.
An application of Lemma 3.1 to U indicates that a single point d € UN D sepa-
rates x from p in U. The regions OP and Oq are disjoint, so that d has to miss
one of them, say Oq. Then x and g are in the same component of U —{d} be-

cause K U Oq is connected. Also p and g are in the same quasicomponent of
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U — {d} since otherwise U — {d} would be the union of two disjoint proper open
subsets, each of which would meet almost all of the connected sets {K;}. We con-
clude that x and p are not separated in U — {d}, and hence L must be degenerate.

Lemma 3.3. Let X be a connected, locally compact metric space with local
finite cobesion, and let D be a totally disconnected subset of X. Then if C is
any quasicomponent of X — D and p € C, and R is a neighborbood of p, there
exists a neighborhood V of p, (R NC)CV CR,and Fr V N(X —D)C C NFrR.

Proof. Let B be the collection of quasicomponents Q of X — D different
from C which meet Fr R. For each such Q, there is a pair of mutually separated
sets Mq and'Nq, whose union is X — D, containing C and Q respectively. If Gq
= all points nearer to Nq than to Mq, then Gq is open in X, Gq contains Q, and
Fr Gq CD. There is a countable refinement G, G,,--- of the Gq whose union is
a cover for E = J10: Q € B}. Nextset U, =G, Uy=G, =G ,---, U =G_~—
(61 v 52 U---Uan_l) and so on. Note that Fr U CFrG, u---UFr G CD.

The union of all the U covers E and is open. Let Wi, Wy be the com-
ponents of U = U::zl U, which meet Fr R. Each W, is open, since X is locally
connected. Because the U are disjoint, for each & there is an n such that W, C
U, so Fr W, CD. With W=J”_| W, it will follow that Fr W N (X — D) C (X —
D) N Fr R. For, if p € Fr W, then either p € D or p is a limit point of a conver-
gent subsequence {W"k} of W. We claim that the sets {Wnk: k=12-..} form a
null sequence. If not, let Y be a neighborhood about p whose closure is compact,
such that for infinitely many &, W meets both Y and X — Y. A subsequence
S5 Sye++ of the {Wnk} which meet both Y and X — Y may be chosen so that S,
contains a point p ~whose distance from p is < 1/n, and Sn contains a point ¢
€S NFrY (S NFrY#@, because S is connected and meets both Y and X —
Y). Let the arc p/-n?” be taken in § ; then p €liminf _ [J/n-;n and K =
lim inf = p 9, is compact, so K is a nondegenerate continuum. Now if K — p
were totally disconnected, it would be 0-dimensional, since K — p is locally com-
pact. But K is connected, so K — p is not totally disconnected, and hence K —
p is not a subset of D, so there is a point g € (K — p) N (X — D). Since the set
K is a subset of L = limla__oo Wnk, p and g are in L, which contradicts Lemma
3.2. We conclude that {Wnk} is a null sequence of sets, and since each one meets
Fr R, it follows that p = L =lim, W"k CFr R.

Thus Fr Wn (X = D) C(X = D) N Fr R NFr W, and this set is actually C N
FrR,as (X—=D)NFrRN(X —-C)CECW. Nowlet V=R —RNW. Then R N
CCVCR,and FrVN (X - D)CC NFr R since Fr VCFrRU Fr W, and (X —
D) N Fr R=(C N Fr R) U(E N FrR) while ENFrRCW.

Theorem 3.4. If X is a locally finitely cobesive, locally compact metric
space, and D is any totally disconnected subset of X, then the quasicomponents

of X — D are connected.
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Proof. If Y is any component of X, then we shall apply Lemma 3.3 to the
sets Y and Y N D. Suppose that C is a quasicomponent of Y — Y ND, and C =
A + B is a separation of C, where A =CN U, U is open in Y,and Ft UN B=§&,
By Lemma 3.3 there is a neighborhood M of A suchthat A=UNCCMCU and Fr M
N(Y-YAD)CCNFrU-=g Therefore Y - Y ND=MN(Y -YND)+ (Y-
M)N (Y — YN D) is a separation of Y — Y N D between A and B, so that C is
not a quasicomponent of Y, and hence C is not a quasicomponent of X, since Y

is open in X.

Corollary 3.5. If a metric space X is either (a) a generalized Peano continuum
which is finitely coberent, or (b) locally cobesive and locally compact; and D is
a totally disconnected subset of X, then the quasicomponents of X — D are con-

nected.

Proof. All such spaces are locally finitely cohesive.

Example 3.6. Let X, =1(x, y): y = sin(1/x) for 0 <x <1}, X, =10, y): = 1
<y<land X = U, E_, where E = {(x,y):0<x<1/n and y=k/2" k=1
1, £3,..,%2(2" = 1)}. Then X = Xl U] X2 (0] X3 is the sin(1/x) continuum ‘‘made
locally connected’’; it is a Peano continuum to which Theorem 2.4 does not apply.
If K is a component of X, then K is an interval & [0, 1/n]. Let the set K N
X,=ta;, a,,--1 be ordered in the natural order of K from 1/n to 0. Let Dy =
{6, by,-- -} be a subset of K, so chosen that b, >a, > bk+1 for every k. Then
D = J{Dy: K is component of X,} UL (0, 0)} is a totally disconnected subset of
X, and X — D has the quasicomponent X, — {(0, 0)}, which is not connected.

Thus a cohesion condition of some sort is needed to prove Theorem 3.4.

Theorem 3.7. If X is a finitely coberent generalized metric Peano continuum
and S is a semiclosed [8, p. 131] subset of X, then the quasicomponents of X —

S are connected.

Proof. The quotient map F: X — M whose only nondegenerate point inverses
are the components of S is a closed, monotone map. M is a finitely coherent gen-
eralized Peano continuum and F(S) is a totally disconnected subset of M. By
Corollary 3.6, the quasicomponents of M — F(S) are connected. Because FIX S

is a homeomorphism, the quasicomponents of X — $ must be connected.

4. Connectivity functions.

Definition. A function f: X — Y is a connectivity function provided that for
each connected set C in X, the set {(x, f(x)): x € C} is connected in X x Y.

Connectivity functions are a generalization of continuous functions and are

discussed generally in [6].

Lemma 4.1. If [: X — Y is a connectivity function, so also is its graph

function g: X — X x Y, and conversely.
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Proof. If [ is a connectivity function, then so is g because the projection
map py: X x X x Y — X x Y maps the graph of g topologically onto the graph of
f.

Conversely, if g is a connectivity, then [ =p, ©g is also, as the composi-
tion of a connectivity map followed by a continuous map is itself a connectivity

map.

Lemma 4.2. If X is a metric Peano continuum and [ is a connectivity function
from X into a regular, T, space Y, then for any closed set C in Y, the set
/"I(C) is semiclosed in X.

Proof. This is proved in [2].

Lemma 4.3. If [: X — Y is a connectivity map and M C X is a Peano con-
tinuum with U CM, U open, and V open in Y, the set g'l(Fr(U x V)) is semi-

closed in M.

Proof. This proposition follows from Lemmas 4.1 and 4.2.

Definition. A function F: X — Y is peripherally continuous if at each point
p € X, and for each neighborhood U of p, and for each neighborhood V of F(x)
in Y, there is a neighborhood W C U containing p such that F(Fr W) C V.

The property of peripheral continuity has been closely related to that of con-
nectivity in [9] and [12]. The next theorem extends results of [5], [9], and [12] to

a larger class of domain spaces.

Theorem 4.4. If X is locally compact, metric, and has local finite cobesion,
then any connectivity map f: X — Y is peripherally continuous when Y is regular

and Tl.

Proof. For any point p in X, and any € > 0, there is a region U about p of
diameter < ¢ such that U is a Peano continuum. Let R be a l-canonical region
about p with R C U, and with the added property that Fr R has only a finite num-
ber of components, B, B,,-++,By. Then if V is a neighborhood of f(p) in Y, an
open set W x V, can be chosen in X x Y to contain (p, f(p)) with WCR and \_/l cv.

The set D = g'l{Fr(W x V1)§ is a semiclosed subset of W C U because g,
the graph function of [, is a connectivity function, Fr (W x Vl) is closed in X x
Y, and Lemma 4.3 applies. (D is a subset of W because Fr(W x V)=Fr W x Y,
UW x Fr V,, and for % to be in D, the point (x, {(x)) must be in Fr(W x V));
hence x is in W.) The decomposition of U into the components of D, the compo-
nents B ,--+, B, of Fr R, and individual points of U — (D U Fr R) is upper
semicontinuous and the associated quotient map ¢: U — M is closed and mono-
tone. The set g(R) is a k-coherent Peano continuum, k£ < N. To see that q(ﬁ) is
k-coherent in M, let g(R) = A + B be a representation, and note that at most N

components of A N B meet the finite set g(Fr R). Therefore, in the representation
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R = g~ YA) + 4~ (B), because R is 1-canonical, ¢~ 4) n ¢~ XB) can have at
most one component that misses Fr R, so it has at most N + 1 components since
g is closed and monotone. Therefore AN B can have at most N + 1 components.

For the remainder of the proof, let ¢(R) = R', g(p) = p’, and ¢(B,) = b,, 1<
k < N. If the totally disconnected set g(D) fails to separate p' from some bk in
R’, then the quasicomponent Q' of R' — g(D) containing p' and bk is connected
by Corollary 3.5. Thus Q = ¢~ 1(0’) is a connected subset of X, so the graph set
G = {(x,/(x): x € O} has to be connected in X x Y, which is impossible since G
meets Wx Y, in (p, [(p)) and the complement of W x V, in {(y, [(y): y € B, },
while G misses the set Fr(W x V).

Hence, for each of b, ,b,, the set ¢(D) separates p' from b, in R'.
Thus a maximum of N2 points of g(D) is needed to separate p' from {bl, ceeyb i,
as q(R) =R’ is k-coherent, k < N. (See [3].) If F denotes a finite subset of g(D)
such that R' — F is separated between p' and ¢(Fr R), then let Z' be the com-
ponent of R’ — F containing p'. The set Z = g HZ") is a region in R about p,
and Fr Z C g~ Y(F) C D. Therefore [(Fr Z)C \_/1 CV,and Z is the required neigh-
borhood.

These results do not seem likely to extend to the nonlocally connected case,
regardless of the cohesion present. Indeed, a hereditarily unicoherent (chainable)
continuum affords a counterexample.

Example 4.5. Let

. 2 _z
L,=in(1/y), y): (27 + Dn sY s (2n — Da %

and let X = U:,°=1 L. Define f: X — X by

[y y) = + (x — 1)x + 1)/4,0) if (x,y) €L, for n odd,
=(x,0) if y=0 orif (x,y) €L for n even.

It is not hard to show that [ is a connectivity function, but the peripheral con-
tinuity of [ fails on the set {(x, 0): — 1 <x<1}.
Definition. A connectivity function r: X — X which is the identity function

on n(X) is a connectivity retraction, and 7(X) is a connectivity retract of X.

Theorem 4.6. If X is locally compact, connected, metric and has local finite
cobesion, and r: X — X is a connectivity retraction, then 1(X) is locally compact,

locally connected, and connected.

Proof. That 7(X) has the required properties follows from results of (6],
except for local connectedness. If, at some point p, the space r(X) fails to be

locally connected, then there is a neighbothood U of p in X such that U nr(X)
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contains an infinite sequence (Cn: n=1,2,---) of disjoint components which
cluster at p, and each of which intersects (X — U) Nn#{X). Let & be the distance
from p to (X — U) N r(X).

Let V be a l-canonical region about p of diameter < §/2, such that V is
compact and Fr V has only a finite number of components. By peripheral conti-
nuity, there is a region Q about p, O CV and f(Fr Q) CUn (X). We select a
region Q' about p in U with Fr Q' C Fr Q and such that Fr Q' has only a finite
number of components. If (Ea: a € A) are the components of V — Q, then only a
finite number of them meet Fr V, since it has only a finite number of components.
Set Q' = Q U {union of all E_, which do not meet Fr V}; Q' is open, connected,
and Fr Q' can have only a finite number of components. This last assertion is
argued in the same manner as Lemma 1.3.

Next, it must be proved that Fr Q' C Fr Q. Since Q' is open, if Fr Q' ¢ Fr Q,
there must be a point p, not in Q' or Fr Q, which is a limit point of (En: n=1,
2,.++), a sequence of components of V — Q which are in Q'. The fact that p is
a positive distance from O and a limit point of a sequence of E's whose bounda-
ries are in O implies that the space X is not locally connected at p. Thus Fr Q'
C Fr Q.

Finally, because Fr Q' has only a finite number of components and must meet
almost all of the components C, C,, C}’ -+« of Un #X), then some component
K of Fr Q' meets distinct components Cm and C . Thus the set 7(K) is connected,
lies in U N 7(X), and meets both Cm and Cn, because 7 is the identity on 7(X).
However, no connected subset of U N 7(X) can meet the disjoint components C,,
and C .

Corollary 4.7. If a metric space X is a generalized Peano continuum which is
either k-coberent, k < oo, or locally cohesive, then any connectivity retract of X

is a generalized Peano continuum.
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