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LOCAL FINITE COHESION^)
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W. C. CHEWNING, JR.

ABSTRACT.   Local finite cohesion is a new condition which provides a gen-

eral topological setting for some useful theorems.   Moreover, many spaces, such

as the product of any two nondegenerate generalized Peano continua, have the

local finite cohesion  property.  If  X is a locally finitely cohesive, locally com-

pact metric space, then the complement in  X of a totally disconnected set has

connected quasicomponents; connectivity maps from  X into a regular   T   space

are peripherally continuous; and each connectivity retract of  X is locally con-

nected.   Local finite cohesion is weaker than finite coherence [4], although these

conditions are equivalent among planar Peano continua.   Local finite cohesion is

also implied by local cohesiveness [l2j in locally compact   T   spaces, and a con-

verse holds if and only if the space is also rim connected.  Our study answers a

question of Whyburn about local cohesiveness.

1.  Basic properties.

Definition.  A topological space is rim connected at a point p if, for any open

set   U containing  p, there is an open connected set   V containing  p, such that   V

C U and the boundary of V (Ft V) is connected.

Definition.  If X is a connected subset of a topological space, the statement

that  X = A + B  is a representation will mean that  A  and  B  are closed  (in  X) con-

nected sets whose union is  X.

Definition.  A topological space   X  is locally finitely cohesive at a point p

if for any open  neighborhood   U of p, there is a connected open  set  V about p

with   V C U, and an integer ra  such that, for any representation   V =A + B, the set

A n B has no more than  ra  components which do not meet  Fr V.   V is termed a k-

canonical region, where  k  is assumed to-be the least of all integers  ra which meet

the above requirement.  A space which is locally finitely cohesive at each of its

points has local finite cohesion.
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By definition, local finite cohesion implies local connectedness.  However,

even a rim connected Peano continuum may fail to have local finite cohesion.

Example  1.1.  If  W = \(x, y)   £ E2: x > \y\  and  0 < x < l] and the set  D   =

\(x, y) £ E2:(x- 1/n)2 + y2 < 1/8"}, then  W - (J~=1 D„  is a planar rim connected

Peano continuum which fails to have local finite cohesion at the point  (0, 0).

Lemma 1.2.   If U  is a k-canonical region in X,  U is compact and T    and V

is a connected open set with  V C U, then  V is an n-canonical region, « < k.

Proof.   Let  V - E + F be a representation such that  E n F has more than k

components which miss   Fr V.   If a component of   U — V does not meet  Fr V, then

a separation of  U will result between   V and that  component of   U — V.   Therefore,

both  A = E U ¡union of all components of   U — V which meet  E}  and  B - F U

¡union of all components of   U — V which meet  F] are connected sets, and  U =

A + B  is a representation.   The set  A r\ B  contains as components all those com-

ponents of  E n F which miss   Fr V, which by assumption are more numerous than

k, contradicting the fact that  U is a ¿-canonical region.

Definition.   A topological space   X is said to be ¿-cohesive at p  if k = inflzz;

p  is in an «-canonical region! and k < oo.

Lemma 1.3. // X is locally compact, locally connected, T7, and k-cohesive

at p, then for any neighborhood U of p, there is a k-canonical region V about p,

with  V C U  such that  Fr V  has only a finite number of components.

Proof.   It may be assumed that   U itself is a ¿-canonical region, with   U com-

pact, by Lemma 1.2.   Because   U  is semilocally connected at p, there is a neigh-

borhood  W of p,   W C U, and such that   U — W has only a finite number of compo-

nents.   Thus if  V is the component of  W  containing  p,   V is open and   U — V  can

have no more components than   U — W has.

Therefore, suppose that D , D , ■ • • , DN are the components of U — V. Then

D can contain no more than k components of Fr V. Setting A = D u • • - U D \j

V and ß = D it follows that U = A + B is a representation and An B = (Fr V) n

D does not meet Fr U and thus can have no more than k components. Similarly,

the other sets D , • • • , DN each meet Fr V in k or fewer components. But Fr V

CD U • • - U D , so the set Fr V has no more than TV - k components, and by Lem-

ma 1.2, V is a ¿-canonical region.

Definition.   If  X  is locally finitely cohesive and  ze = infi«:/z £ X  implies that

/;  is in an zzz-canonical region, m < «}  and k < oo, then  X is locally ¿-cohesive.

The following theorem  shows that local finite cohesion occurs naturally.

Theorem 1.4.   // X  and  Y are each nondegenerate generalized metric Peano

continua, then  X x Y  is locally 1-cohesive and rim connected.
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Proof.   For any point  (p, q) in  X x y, and any open set  R about (p, q) there

is a product  set   U x V about  (p, q) which is open and connected, and such that

U x V C R,  Ft U and  Fr V are each nonempty, and both   U and V   ate Peano con-

tinua.   Fr(fT x V)  is connected,  since, for  x £  Fr U  and y £ Fr V,  Ft(U x V) =

Ü x Fr V U Fr U x V = \TJ x Fr V U \x\ x V\ U (Ü x {y} u Fr U x V\, and these two

sets are connected and both contain (x, y).

The proof will be completed by a' demonstration that  U x V is a 1-canonical re-

gion .  Suppose that  (7 x V = A + B  isa representation and that  A D B  has two or

more components which miss  Ft(U x V).  Then let  U and V be subsets of  U* and

V* respectively, where  U*  and  V* are unicoh.erent Peano continua in the Hilbert

cube. With x £ Fr U and y £ Fr V, let TV = Tl x V U \x\ x V*   U   U* x \y\.  It will

be shown below  that  TV  is unicoherent.

Setting A' = A u {either of US x V*,  U* x \y\ which meets A} and B' = B u

{either of {xi x V*,   U* x \y\  which meets  B}, then   N = A   + B    is a representa-

tion, but A  n B    is not a connected set since A O B has two or more components

which miss  Fr(iT x V) and hence miss both {x| x V*  and   U* x \y\.   The unicoher-

ence  of   TV   will imply that no such A   and B , and therefore no such A  and B,

can exist.

The proof that  TV  is unicoherent uses the exponential representation methods

of [8].   Briefly, a  continuous map f : X —► S    is exponentially representable pro-

vided that /= e'g, where g: X —> R     is continuous.   A Peano continuum is unico-

herent if and only if every continuous map f:X —> S    is exponentially represen-

table.

Let /: TV —► S    be a continuous map.   Then /||x! x V*  and f\U* x \y\ can  be

written as  e        and  e        respectively, and because these restricted domains in-

tersect in a single point,   it may be assumed that g = g . U g,  is a continuous map

into  R  .   Thus  f\\U x \y\ U \x\ x V\ is equal to  elg, and by a theorem  of Whyburn

[8, p. 224], the map g can be extended to  all of  U x V, so that / = elg on  TV is

an exponential representation, and  TV must be unicoherent.

Corollary. Local finite cohesion is a productive property for locally compact

metric spaces.

Example 1.5. Let X be the union of a sequence of successively tangent cir-

cles which converge to a point p. Then X is a Peano continuum, so that X x X

is locally 1-cohesive. However, the fundamental group as well as the first homol-

ogy group  of  X x X is infinitely generated.

Example 1.6.  If  Y = W - (J^j D , the space of Example 1.1, then   V x [0, l]

is locally 1-cohesive.
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A natural question suggested by these  examples is this, "Is every locally

finitely cohesive space locally  1-cohesive?"   A continuum which is ¿-cohesive at

one point, for any positive integer  ¿, can be constructed as follows.

Example 1.7.   Let  |T : « = 1, 2, • • • S  be a sequence of mutually disjoint inde-

composable continua which converge to a point   p.  Then  k distinct points of  T

are selected and each is identified with a distinct point of  T     ,: « = 1, 2, • • • .r n + 1

Care is taken never to choose two points from a single composant of any T . Then

let  X be the union of all these   T    so identified, together with  p.  X is a continuum

which is ¿-cohesive at p.

Of course, the space   X in Example  1.7 is not locally finitely   cohesive at

every point since it is not locally connected.   We proceed to answer the above ques

tion affirmatively for locally compact metric spaces.

Lemma 1.8. Suppose that U is a k-canonical region, U a metric Peano continuum.

Then if there is a k-canonical region V, V C U such that Fr V has only a finite

number of components, there exists a representation U = A + B in which A n B

has k components and misses  Fr U altogether.

Proof.   By assumption there is a representation   V = C + D, and   COD has  k

components which miss   Fr V.  If there are  only  TV  components of  Fr V, then there

are  TV or fewer components of  U — V.  If A = C together with the components of

U — V that meet  C, and B = D together with the components of  U — V that do not

meet  C, then  U = A + B  is the required representation.

Lemma 1.9. 7« Lemma 1.8, for any e > 0, the sets A, B, and A n ß may be

assumed to be the union of a finite number of Peano continua of diameter < e.

Proof.  Let £ be smaller than half the distance between any distinct pair of components

of A D B, and also smaller than half the  distance from  A n B  to  Fr U.   U can be

the union of a finite number of Peano continua each  of diameter  < (.  Ii A* is the

union of all these continua  which meet  A, and  ß* is the union of all  these  con-

tinua which meet  B, then   U = A*+ B*  is the needed representation.

Theorem 1.10    If X  is locally compact, locally finitely cohesive, and metric,

then  X  is locally   1-cohesive.

Proof.  If X is not 1-cohesive at x, there is an integer ¿ > 1 and a ¿-canonical region

LI about x, with U a Peano continuum, and every region V containing x, V C U, is also a

¿-canonical region. Thus the hypothesis of Lemma 1.8 is satisfied. Therefore there is a

representation  U = A + B in which A n B misses Fr U, A n ß has k components, and

the point x is interior to A C\ B. (If x fails to be interior to A n B, there is a region R

about x whose closure does not meet Fr U and either meets exactly one component of
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A n B, or is joined to  A C\ B  by an arc   a in   U which meets  A n ß  in only one

point.  Then A* = A u a u R  and B* = B u a u R meet the claim above.) By

Lemma 1.9, if d is the distance from x to  Fr U, then A, B, and A O B  are each

the union of a finite subcollection of Peano continua   T    each of diameter < fl"/2.
n

The set D = {union of all these  T   which do not contain x\ is closed and con-

tains   Fr (/.   Then if  V is the component of  LI — D  containing  x,   V is a ^-canoni-

cal region, V  meets exactly one component of A O ß  and   V C U.  Also A — V and

B — V have only a finite number of components.   There must be a representation

V = C + D in which  CflD has  k  components which do  not meet  Fr V.

Now if  K is a component of A O B  that does not intersect   V, then   K must

lie in Aj n Bj, where  A     is a component of A — V and  B .   is a component of  B

— V.  With no loss of generality  A     can be required to meet  C, and if B .   does not

meet  D, then an arc ß is constructed in   U — K which meets ß    in a single point

and D in a single point.  Such an arc ß exists because the set  V, together with

the union of all   T   which  meet  V, is a Peano continuum  in   U — K, and  B ,  meets
n 1

V in   Fr V.

Thus the sets  E = C u A   u {union of all components of A — V and B — V

which meet  C, except  B A and  F = D UjS üß.U ¡union of all components of A

— V and  B — V which meet  D, except  A A  ate closed and connected, and   U = E

+ F is a representation  such  that  E Ci F misses  Fr U.   The set  E O F  contains

ß U /< U {k components of  C Pi D  that miss  Fr V¡.   7<, as well as each  of the  k —

1  components of E O F that miss  Fr V, adds a component to  E n F, so that E

O F  has a minimum of  k + I  components, which is a contradiction.

Corollary 1.11.   If X is locally compact, metric, and locally finitely cohesive,

then  X  is rim connected except at its local separating points.

Proof.   For any point p £ X which is  not a local separating point, and any

1-canonical region   U  about p,   U — p is connected.   Thus there is  a region V

about p, with   V C U, and   U — V  connected. (See [8, p. 50].)   The representation

U = (U — V) + V has as its intersection  Fr V, which misses  Fr U and therefore is

connected.

2. Relation of local finite cohesion to other conditions.

Definition.   A set  X is m-coherent if X is connected and m  is the least inte-

ger k  such that in each representation  X = A + B, the set A n B has < k + 1  com-

ponents.  If no such m exists, then  X is oo-coherent.

Finite coherence is studied  in [3], [4], and [7].

Theorem 2.1.  If X  is locally connected, connected, and m-coherent, m < °o,

then  X  is locally finitely cohesive.



390 W. C. CHEWNING, JR. [February

Proof.   For p £ X, let  V be a region about p with  Fr V nonempty.   Then   V

is an «-canonical  region, « < m + 1.   This fact is verified  as follows:  first, let   V

= E + F be a representation.  Now the components of  X — V are open, so  each one

must have limit points in  Fr V to avoid being open and closed.   Following the

proof of Lemma 1.2, with  X = U, it is easy to see that  E O F has  < m + 1  compo-

nents that miss   Fr V.

Corollary 2.2.   // X  is locally connected and has a cover of finitely coherent

regions, then X  is locally finitely  cohesive.

We now record the fact that local finite cohesion can be made into the global

condition of finite coherence if X is a planar continuum.

Theorem 2.3.   A Peano continuum  X  in the plane  E     is finitely coherent if

and only if it is locally finitely cohesive.

Proof.   The necessity is a special case of Theorem 2.1; the sufficiency is

argued as follows.   X may be assumed to lie interior to  7  , the unit square in   E  .

If  X has only a finite  number, TV + 1, of complementary domains, then  X  is a re-

tract of/    — P. U P?U... UPL  where each  P    is a simple region chosen  from a

distinct bounded complementary domain of  X  [l, p.  138].   Because the set  I    — P.

U • . . U P     is TV-coherent,  X, as a retract of this set, must be ¿-coherent, k < TV by

[3].
Suppose that  E    — X has infinitely many components   C  , C  ,••• .   The

sequence  \C  ]  is a null collection [8, p.  113] of sets which must cluster at some

p £ X.  We  may assume that there  is a 1-canonical region   V about p, with   V  con-

taining an  infinite subsequence  [Fr C     :k=l,2,--A of the sets  ÍFr C^}, and   V

a Peano continuum.  Whyburn has proved [8, p.  177] that if A  is a nonseparating

Peano continuum in  E  , and   Y is any 2-cell containing  A  in its interior, there is

a monotone retraction  r: Y —> A  which sends   Y — A  onto  Fr A.   This fact will be

used repeatedly to define a monotone retraction  r: I    — IJ^j G      —> V, and  this

retraction will contradict the fact that  V  is 1-canonical.

Set  V   = V  U I 1°°     C    ■ then  V,  1S a nonseparating Peano continuum, so
1 ^^k ~\    nk. ' A      — —      —

there  is a monotone retraction   r y- I   —> Vy   For each k > 1, take   Vfe = VJ - C

Let c: E2 \j co —» S2 be the one-point compactification of E    and let  ffe be a rota-

tion of the sphere  c(E    u co) which makes a uniformly locally connected open 2-

cell  c(P.) C c(C    ) into a neighborhood of  c(co) in  S .   Defining  efe = c"    ° ife o c,

the set  e, (V, ) is a nonseparating Peano continuum in   E   .   There is a monotone

retraction /, : E2 - eSF¡) ~* ehS^k}' since tne set  F    ~~ ek^Fk) ls a close^ 2-cell

containing  efe(Vfe) on its   interior.   Finally, the map  rk = e~    ° 4 ° e¿1 when re-

stricted to  I2 — P, , is a monotone   retraction of that  set onto  I    — C      which
K nk

moves only points of C    , for k > 1.  Once rk  is defined in this way for each posi-
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tive integer k, set  r = Km,    ^ (r,  ° r, __    °- . . o r )    Notice that a point p £ I    is

moved by  r,   only if p £ C     , and even then, the point p  cannot be moved a dis-
tz nfc

tance  larger than  diam C       since   r    maps the points  of  C      — P.   onto  Fr C

(These observations  hold for  k > 1.) Hence the limit which defines  r is uniformly

convergent, as  diam C      —► 0  as  k —> <*>, so  r is continuous.  Moreover, r is mono-

tone  [8, p. 174], so  r is a continuous, monotone retraction of  7    — JL _i F,   onto

V.

There is obviously  a representation  /    — Ul"  , F, = A + B  with  ß C V  such

that  An B  is not connected.   Thus   V = r(A) + r(ß) is a representation and  r(A)

C\r(B) is not connected,  as   r is closed and monotone.   But  r(A) Cr(B) fails to

meet  Fr V, contradicting the fact that   V  is  1-canonical.

Delinition.   A space  X is locally cohesive at  p if for each neighborhood  U

of p, there  is a region   V C U, p £  V with  Fr V connected, and for each repre-

sentation  V = A + ß  such that  Fr V  is interior to  A, and  p is interior to  ß, the

set  A n B  is connected.   Such a   V  is a canonical region   for p.  If  X is locally co-

hesive at each of its points, then  X  is locally cohesive.

Results involving local cohesiveness  are found in  [9] and [12].

Theorem 2.4.   If X  is locally cohesive, normal, and T    then  X is locally k-

cohesive, k < 2.

Proof.  A canonical region  W about p £ X is also a ¿-canonical region for k

< 2.   If  W = A + B  is a representation such that  A fl B  has components   C     C

and  C,  that  do  not meet  Fr W, then  p  can be assumed not to  lie in  C    or  C

and p  can be assumed to lie in  B.   There is a region  F  about p with  F C W and

Kn C   =0=RnC      Also in  X there is a connected open  set  y about Fr W

whose closure misses   CuCUCUF.   Then if Z  is the union of the compo-

nents of  y — Fr W which meet  W, the set Z U Fr W is connected, because each

component of   y — Fr W meets  the connected set  Fr W.

For each point  x e W, there  is a region  L     whose closure  meets at most one

of the sets   C     C     C     Z \j Fr W.   A finite chain joining  x to  Z u Fr W will be

a collection L v ■ • • , LN with L 1 n (Z u Fr W) / 0,  Lfe n L^   j / 0 and x £ LN>

If  1/     denotes the union of all points  x in   W that  can be joined to  Z U Fr W

by a finite chain, then   U     is clearly open.  However, U    is also closed;   for  if y

is a limit point of  17  , there is a region L    about y whose closure meets at most

one of the sets  Cj, C     C      In addition, L    must meet some point x £  U , and

there is a chain  L ,, • • • , L.,  joining x to  Z u Fr W.  The chain  L.,. •., L   , L

then  joins  y to  Z u Fr If, so  y e   (/  .   Because   W is connected and  U    is open

and closed, U   = W and there is a chain  L from Z u Fr W to A  in which the clo-'      X

sure of only one link meets  A.  We identify  L with the union of its links.



392 W. C. CHEWNING, JR. [February

Now define  E = A u L U Z u Fr W and  F = ß U R.  Then  E and  F are con-

nected, p is interior to   E, Fr W is interior to   E, and   W = E + F is a representa-

tion.  Since   W is a canonical region for p, the set  E c\ F must be connected.   It

is easy to  see that  C     and   C2  lie in different components of  E O F, however.

We note that the  proof still works if  X  is locally cohesive, locally compact,

and  T .

Theorem 2.5.   If X is locally compact, rim connected, metric, and locally

finitely cohesive, then X  is locally cohesive.

Proof.   For p £ X, let  U be a 1-canonical region  about p with  Fr (/ con-

nected and   U compact.   Then   U is a canonical region for p; otherwise there is a

representation   U = A ■+ ß  with  Fr U interior to  A,  p interior to  B, and  A O ß =

C y D, a separation.   Since  ß  is compact, there is a subcontinuum   K of B  that is

irreducible from  C to  D.  Then the set   K - K — K O (C U D) is connected and

misses  A, so  it is contained in a component  M  of (IT — A).   /M  is open and  evi-

dently   Fr M C A n ß      C u D, and because  K ' C M, and  /< '   meets both  C and  D,

the set  Fr M  is separated.   One notices that  Fr M  is in   (T  because   Fr U is in-

terior to  A.   Finally, U = M f ii — M  is a representation, and the  intersection of

these  sets, which equals   Fr M, lies in   U and is separated,  which is a contradic-

tion.

Corollary 2.6.   // X is locally compact, T7, metric, and rim connected, then X is

locally cohesive  if and only  if X  is locally finitely cohesive.

Corollary 2.7.   If X is locally compact, metric, and locally finitely cohesive, then

X is locally cohesive except at its local separating points.

Corollary 2.8.   If X is finitely coherent, locally connected, metric, and locally com-

pact, then  X  is locally cohesive except at its local separating points.

Corollary 2.9.   // X  and Y are each nondegenerate generalized metric Peano con-

tinua, then  X x y  is locally cohesive.

A question  raised by Whyburn in [9] is whether each  locally cohesive space

necessarily has a cover of unicoherent regions.   A negative answer is now easily

obtained, even  for Peano continua,   by Example 1.5 or 1.6, together with Corol-

lary 2.9.

Viewed as a generalization of local  cohesiveness,   local finite cohesion re-

laxes the requirement of rim connectedness, and otherwise the conditions are
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equivalent (for locally compact, T_  spaces).   In the process of studying local

finite cohesion,  new information about local cohesiveness was gained.  An example

of a space which  is locally 1-cohesive,  but neither finitely coherent nor locally

cohesive, follows.

Example 2.10.   Let   T = M _, T    be the union of a sequence of punctured hol-

low cones of unit altitude which are mutually  disjoint save at a common vertex

point p.   The base of  T    has diameter   1/2"  and from   T    a simple region of diam-

eter   1/4", which  is at a distance   1/2"  from p, is removed.   (Thus none of the

sets   T    are unicoherent.)  T is locally 1-cohesive.   At points other than p,   T is

a 2-manifold  so there is  nothing to prove.   For any  e > 0, there is a region   V  con-

taining p  of diameter < t   such that   V is homeomorphic to  the union of a finite

number of 2-cells together with an  infinite number of punctured 2-cells,  with a

sequence of points,   exactly one from each cell, identified to p.  If  C    is a 2-cell

(possibly punctured) in   V, then  for any representation   C    = E i  F,  F O F  is

either  connected or each  component  of  F D F meets   Fr C  .  This is proved by

considering the  monotone quotient  map of  C    whose only nondegenerate point

inverse is  Fr C .
n

Thus in a representation   V = A + B,  if  B meets only one cell  C  , there is
r J n'

nothing to prove.   If, however, B  meets more than  one cone, ß  must contain  p.

Therefore, p £ A C\ B, and as is  easily  verified, A    -. A rï C    and  ß    - B n C
' r ' n n n n

ate connected for  all  n.   Either each component of A    OB     meets  Fr V or else
r n n

A    n 73     is connected and contains  p.  Hence the union of all components of  A

n ß  that miss   Fr V is connected, and   V is a 1-canonical region.

Question 2.11.   Is there a  compact metric  space   X which  is  locally finitely

cohesive,   and yet  fails to  be either finitely coherent or locally cohesive?

3. Applications of local linitc cohesion.

Quas¿component theorems.  A new theorem establishing an equivalence of

components with quasicomponents is obtained with a sharpened form of Lemma 2.3

of [8, p. 90].

Lemma 3.1.   Let  X  be a locally connected metric space, and II a \-canonical

region in  X with   U  compact.  If p and q are distinct points of U which are

separated in  U by a totally disconnected subset  D  of U, then p and q are sep-

arated in  II  by a single point  of D.

Proof.   If  U — D = M + N, a separation with  p £ M, q £ N, and   V is the com-

ponent  of  U — Il n M  containing  q, then   V  is nonempty because   q is not a  limit

point of  M, and   V is open.  Now let   K be the component of   U — V containing p,

and set  L = V u {union of components  of  II — V  other than  K\.  If  C is a compo-

nent of  U — V, then  C must meet   V or else   (/  could be separated between   C

and   V [8, p.  15].   Thus each component  of  U — V meets   V, so that L is connected.
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The set   K H L  separates  p and  q in   U and is a subset  of  (V O K) O Fr U.

If this were  not true,  there would be a point  x £ K,  x neither in   V  nor in  Fr U,

such that  x  is a limit point of a sequence of components of  U — V.  Since each

such  component meets  Fr V, no neighborhood of x which does not meet  Fr U U V

could be connected,   contradicting the local connectedness of  U.

Now TCnvCXOFrV since K O V = 0, and Fr V C D u Fr U, so that KflLC

(V H K) U Fr U C D (J Fr 77.  Because  77 is 1-canonical, and U = K + L is a representation,

K C\L can contain at most one point of D.  This follows from the observation that since

K n L is compact, each point of D in K O L  isa component of K C\ L which misses

Fr 77.   Since  p and  q are separated in   U by a point of D  together with  some sub-

set of  Fr U, then  p  and  q ate separated in   U by a single point of D.

Lemma 3.2.   Le/  X  be a connected, locally compact metric space with local

finite cohesion, and suppose that \W  : n = 1, 2, • • • }  is a collection of mutually

disjoint open connected sets in  X with (J   _, Fr W   = D, a totally disconnected

set.   If L   is the limit set of some convergent subsequence of the \W  ], then L   is

a single point.

Proof.   If  L  is not degenerate,   let  p  and  s  be distinct points  of  L, and

select a subsequence of the   W  , say   W     , W     , • • • , such that   W       contains a

point  p,   which is a distance less than   l/¿  from p, and a point  s     which is a dis-

tance less than   l/¿  from  s.   Since  X is a generalized Peano continuum, each  W

is arcwise connected,   so there is in particular an arc p, s,   in  W       with endpoints

p,   and s,.  (It  is clear that the accumulation points of (J,    , Plsl  are  contained

in  L.) Now  let   U be a 1-canonical region about p with   U compact and  s 4 U.

For each  arc  p  s  , let   K    be the component of p  s   C\ U which contains  p  .
_ f«   «' n r r n   n r n

Notice that  K    must meet  Fr U, or else the compact set p s    could be separated

between   K    and   fr  s   C\ (X — U) [8, p.  16].  (Since  p  s    meets  Fr U for almost
" c n   n   ^_1 '      ' r r n   n

all  «, we assume that   ft  s    meets  Fr (i for every  «.)
' fn   n '

Now  if  R  is a region about  p,   R C U, then   Fr R  meets almost all the  sets

K  , and the sequence of sets  {K   D Fr R] must have a cluster point   q £  U H L.

Thus there are distinct points  p and  q in   (7 O L, and about p  and  q, disjoint

regions  0    and  0    may be taken in   U.

Some member  K     of the sequence  \K  ] must meet both   0    and 0 .  It follows
m ^ n p q

that  K     is in a different quasicomponent of X - D from  L, since  /<    lies in one

of the sets W   , and W    is open and closed in  X - D.  Thus if   x £ K    O U,  then  %

and p are separated in   (T by  77 Cl D, since x and p are separated in  X by D.

An  application of Lemma 3.1 to   U indicates that a single point d £  U C\ D  sepa-

rates  x from p  in   U.  The regions   0     and  0    are disjoint, so that  d has to miss

one of them, say  0   .   Then  x and  c/ are in the same component of  U —\d]  be-

cause   K    U 0     is connected.   Also  ô  and   o  are in the same  quasicomponent of
m q r
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U  — \d\ since otherwise   U — \d\ would be the union of two disjoint proper open

subsets, each of which would meet almost all of the connected sets  {7<   !.  We con-

clude that  x and  p  ate not separated in   U — \d\, and hence   L  must be degenerate.

Lemma 3.3.   Let  X  be a connected, locally compact metric space with local

finite cohesion, and let  D  be a totally disconnected subset of X.   Then if C  is

any quasicomponent  of X — D  and p £ C, and R  is a neighborhood of p, there

exists a neighborhood V of p,  (R n C) C V C R, and Fr V n (X - D) C C O Fr R.

Proof.   Let  B  be the collection of quasicomponents   Q of  X — D different

from  C which meet   Fr R.   For each such  Q, there is a pair of mutually separated

sets  M    and'TV  , whose union is  X — D, containing C and Q respectively.  If G

= all points nearer to TV    than to M  , then  G    is open in X,  G    contains Q, and

Fr G    CD.   There is a countable refinement  G,, G.,---   of the  G    whose union is

a cover for  E = \J\Q: Q £ B\.  Next set   U y = C,,   U 2 = G 2 - G v-■ ■ ,   Un = Gn~

(G . U G, U • • • U G      ,) and so on.  Note  that  Fr U    C Fr G , u ■ • • U Fr G   CD.
12 n - 1 n 1 n

The union of all the   U    covers   E  and is open.   Let  W,, W., • • •   be the com-
n r I        2

ponents of  U = [J     , U    which meet  Fr R.   Each   W,   is open, since  X  is locally

connected.   Because the   U    ate disjoint, for each  k there is an  ra  such that   W, C
n ' k

U    so Fr W, C D.  With  W = M,° . W  , it will follow that  Fr W n (X - D) C (X -n k wn -In' \ /      \

D) O Fr R. For, if p e Fr W, then either p £ D or p is a limit point of a conver-

gent subsequence {W ! of W. We claim that the sets \W : k = 1, 2, • • • } form a

null sequence.   If not, let   y be a neighborhood about  p whose closure is compact,

such that for infinitely many  k, W      meets both   Y and  X — Y.   A subsequence

ii."* -
S,, S,, • • ■   of the  i W        which meet both   Y and  X — Y may be chosen  so that  S

I       2 «£ y n

contains a point  p    whose distance from p  is  < l/ra, and  5    contains a point  17

£ S    n Fr y (S    O Fr y / 0, because  5    is connected and meets both   y  and  X —
n n n ^.^

y). Let the arc  p  q    be taken  in  S  ; then  p £ lim inf     „pq    and   K =
_* n ín n r n-.°° c n 1n

lim inf p  q    is compact, so   K is a nondeeenerate continuum.  Now  if  K — p

were totally disconnected, it would  be O-dimensional,   since  K — p is locally com-

pact.   But  K is connected,   so  K — p  is not totally disconnected,  and hence   K —

p  is not a subset of  D, so there is a point  9 £ (K — p) C\ (X — D).  Since the set

K is a subset of  L = lim,    „ W     ,  p  and  fl are in  L, which  contradicts Lemma
k-*°°     n}¿   r

3.2.  We conclude that {W     !  is a null sequence of sets, and since each one meets

Fr R, it follows that p = L = lim,    „ W      C Fr ii.

Thus  Fr W n (X - D) C (X - D) n Fr R n Fr W, and this  set is actually C n

Fr F, as  (X - D) Pi Fr R n (X - C) C F C W. Now let  V - R - R n W.  Then R  n

C C V C R, and  Fr V D (X - D) C C D Fr R  since  Fr V C Fr R U Fr If, and (X -

D) O Fr R = (C O Fr R) U (E n Fr R) while  F n Fr R C W.

Theorem 3.4.   If X  is a locally finitely cohesive, locally compact  metric

space, and D  is any totally disconnected subset of X, then the quasicomponents

of X — D are connected.
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Proof.   If   V  is any component  of X, then we  shall apply Lemma 3.3 to the

sets   y  and   YOD.  Suppose that  C is a quasicomponent of   Y — Y n D, and  C =

A + B  is a separation of C, where  A = C <~l U,   U is open in   Y, and Fr U D B = 0.

By Lemma 3-3 there is a neighborhood M of A such that A = f/CiCCMC7T and Fr M

O (y - y n D) C C n Fr IT - 0.  Therefore   Y-YC)D = Mn(Y-YnD) + (Y-

M) D (y - y n D)  is a separation of   y - Y t~\ D between  A   and  B, so that  C  is

not a quasicomponent of   Y, and hence  C  is not a quasicomponent of  X, since   Y

is open in X.

Corollary 3.5.   If a metric space  X  is either (a) a generalized Peano continuum

which is finitely coherent, or (b) locally cohesive and locally compact; and D  is

a totally disconnected subset of X, then the quasicomponents of X — D are con-

nected.

Proof.   All such spaces are   locally finitely cohesive.

Example 3.6.   Let  Xj = \(x, y): y = sin (l/x) for 0 < x < l], XJ = \(0, y): - 1

< y < 1}  and  X    = \J™ = J E     where   E^ = \(x, y): 0 < x < l/n and  y = ¿/2",  k = ±

1, ±k,...,±(2" - l)i.  Then  X = Xj u X2 U X3  is the  sin (l/x) continuum "made

locally connected"; it is a Peano continuum to which Theorem 2.4 does not apply.

If  K is a component  of  X     then   K is an interval    ^i  [0, 1/«]. Let the set   K n

X    = \a  , a  , • • • } be ordered in the natural  order of  K from   1/«  to  0.   Let  D„ =

\b., b  , ■ • • ] be a subset of K, so chosen that b, > a, > b,    .  for every ¿.  Then

D = [J\DK: K is component of  X,S U i(0, 0)}  is a totally disconnected subset of

X, and X — D has the quasicomponent X    — !(0, 0)}, which is not connected.

Thus a cohesion condition of some sort is  needed to prove Theorem 3.4.

Theorem 3.7.   If X  is a finitely coherent generalized metric  Peano continuum

and S  is a semiclosed [8, p.  131] subset of X, then the quasicomponents of X —

S are connected.

Proof.   The quotient map  F: X —> M  whose only nondegenerate point inverses

are the components   of  S  is a closed, monotone map.   M  is a finitely coherent gen-

eralized Peano continuum and  F(S) is a totally disconnected subset of M.   By

Corollary 3.6, the quasicomponents of  M — F(S) ate connected.   Because   F|X — S

is a homeomorphism, the quasicomponents of  X — S must be  connected.

4. Connectivity functions.

Definition.   A function /: X —► Y is a connectivity function provided that for

each connected set  C in  X, the set \(x, f(x)): x £ C\ is connected in  X x Y.

Connectivity functions are a generalization of continuous functions and are

discussed generally in [6].

Lemma 4.1.   If f : X —► y  zs a connectivity function, so also is its graph

function g: X —> X x y, and conversely.
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Proof.   If / is a connectivity function, then so is  g because the projection

map px: X x X x Y —> X x Y maps the graph of g  topologically onto the graph of

/•

Conversely, if g is a connectivity, then / = px ° g is also, as the composi-

tion of a connectivity map followed by a continuous map is itself a connectivity

map.

Lemma 4.2.   If X  is a metric Peano continuum and f is a connectivity function

from  X  into a regular, T.   space   Y, then for any closed set  C   in   Y, the set

f "  (C) is semiclosed in  X.

Proof.  This is proved in [2].

Lemma 4.3.  If f: X —> Y is a connectivity map and M C X is a Peano con-

tinuum with  U C M,   U open, and V open  in   Y, the set g~   (Ft(U x V))  is semi-

closed in M.

Proof.  This proposition follows from Lemmas 4.1 and 4.2.

Definition.  A function  F: X —» Y is peripherally continuous if at each point

p £ X, and for each neighborhood  U of p, and for each neighborhood  V of F(x)

in   Y, there is a neighborhood  W C U containing  p  such that  F (Fr W) C V.

The property of peripheral continuity  has been  closely related to that  of con-

nectivity in [9] and [12].   The next theorem extends results of [5], [9], and [12] to

a  larger class of domain  spaces.

Theorem 4.4. If X is locally compact, metric, and has local finite cohesion,

then any connectivity map f : X —► Y is peripherally continuous when Y is regular

and T .

Proof.   For any point p in  X, and any  e > 0, there is a region   U about p of

diameter < e such that  U is a Peano continuum.  Let R  be a 1-canonical region

about p with  R C U, and with the added property that  Fr R  has only a finite num-

ber of components, B ,, ß ,, • • • , BN-   Then if  V  is a neighborhood of f(p) in   Y, an

open set  W x V,   can be chosen in  X x Y to contain (p, f(p)) with W C R and V. C V.

The  set  D = g~   {Fr(W x V.)S  is a semiclosed subset of  W C U because  g,

the graph function  of /, is a connectivity  function,   Fr(W x V.) is closed in  X x

Y, and Lemma 4.3 applies.  (D is a subset of W because  Fr(W x V.) = Fr W x ]¿.

UlfxFr V,, and for x to be in  D, the point (x, f(x)) must be in  Fr(W x VA;

hence x is in W.) The decomposition of  U into the components of D, the compo-

nents B ^, • • • , BN of Fr R, and individual points of  U — (D U Fr R) is upper

semicontinuous and the associated quotient  map  q: U —» M  is closed and mono-

tone.   The set  q(R) is a ¿-coherent Peano continuum, k < TV.   To see  that  q(R) is

¿-coherent  in  M, let  q(R) = A + B be a representation, and note  that at most  TV

components of A Pi B  meet the finite set  o(Fr R). Therefore, in the representation
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R = q~  (A) + q"  (B), because   R  is 1-canonical, q~l(A) n q~l(B) can have at

most one component that misses  Fr R, so  it has at most TV + 1  components since

q is closed and monotone.   Therefore  A D B  can have at most  TV + 1  components.

For the remainder of the proof, let  q(R) = R',  q(p) = ft', and  q(B,) = b,,   1 <

k < TV.  If the totally disconnected set  q(D) fails to separate   ft'  from some   b,   in

R , then the quasicomponent  Q    of  R   — q(D) containing p    and  b,   is connected

by Corollary 3.5.   Thus  Q = q~  (Q ) is a connected subset of  X, so the graph  set

G = {(x,f(x)): x £ Q] has to be connected in  X x Y, which is  impossible  since  G

meets  W x Y^   in  (p, f(p)) and the complement of W x V.  in \(y, f(y)): y £ B,],

while  G misses the set Fr (W x V.).

Hence, for each  of  b., ■ • • ,bN, the set  q(D) separates  p' from  b,   in   R'.

Thus a maximum of N    points of q(D) is needed to separate p    from \b., • • • , bN],

as  q(R) = R    is ¿-coherent, ¿ < TV.  (See [3].) If F denotes a finite  subset of q(D)

such that R' — F is separated between p    and q(Ft R), then  let Z' be the com-

ponent of  R¡ — F containing  p1.  The set  Z = q~  (Z1) is a region  in  R  about  p,

and  Fr Z C q~l(F) C D.   Therefore  /(Fr Z) C V   C V, and  Z  is the required neigh-

borhood.

These results do not seem  likely to extend to the  nonlocally  connected case,

regardless of the cohesion present.   Indeed,   a hereditarily unicoherent (chainable)

continuum affords a counterexample.

Example 4.5.   Let

Í 2 2
Ln = ¿(sin (1/y), y): ;-— < y <

(2« + l)rr  - (2« - l)4
and let  X = U~=1 Ln-  ^eF^ f : X ̂  X by

f(x, y) = (x + (x - l)(x + l)/4, 0)    if (x, y) ELn  for n  odd,

= (x, 0)    if y = 0  or if  (x, y) £ L     for «  even.

It is not hard to  show that  / is a connectivity function, but the peripheral con-

tinuity of / fails  on the set \(x, 0): - 1 < x < l}.

Definition.   A connectivity function r: X —» X which is the identity function

on  r(X) is a connectivity retraction, and r(X) is a connectivity retract of  X.

Theorem 4.6.  If X is locally compact, connected, metric and has local finite

cohesion, and r: X —> X  is a connectivity retraction, then r(X) is locally compact,

locally connected, and connected.

Proof.   That  r(X) has the required properties follows from results of [6],

except for local  connectedness.   If,  at some point p, the space  r(X) fails to be

locally connected, then there  is a neighborhood   U of p in  X  such that   U n z-(X)
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contains an infinite sequence  (C : ra = 1, 2, • • • ) of disjoint components which

cluster at p, and each of which intersects  (X — U) n r(X).  Let 8 be the distance

from  p to (X - 17) n r(X).

Let   V be a   1-canonical region  about p of diameter < 8/2, such that   V  is

compact and  Fr V has only a finite  number of components.   By peripheral conti-

nuity, there  is a region   Q about p,   Q C V and  r(Fr Q) C U n r(X).  We select a

region  Q    about  p  in  U with  Fr Q   C Fr Q and such that  Fr Q    has only a finite

number  of components.   If  (E  : fl £ A)  are the components of  V — Q, then only a

finite number of them meet  Fr V, since it has only a finite number of components.

Set  Q' = Q u {union of all E    which do not meet  Fr V\;  Q1  is open, connected,

and Fr Q   can have only a finite number of components.  This last assertion is

argued in the same manner as Lemma 1.3.

Next,  it must be proved that  Fr Q   C Fr Q.  Since  Q    is open, if Fr Q' <t Fr Q,

there must be a point p, not in  Q   or Fr Q, which is a limit point of (E  : ra = 1,

2, - • • ), a sequence of components of   V — Q which are in   Q .   The fact that  p  is

a positive distance from  Q  and a limit point of a sequence of  E   's whose bounda-

ries are in   Q implies that the space  X  is not locally connected at p.   Thus   Fr Q

C Fr Q.

Finally, because  Fr Q    has only a finite number  of components and must meet

almost all of the components   C., C2, C  , • • •   of  U n r(X), then some component

K of  Fr Q    meets distinct  components   C     and   C .  Thus the set r(K) is connected,

lies in   U n r(X), and meets both   C     and  C  , because  r is the identity on  r(X).

However, no connected subset of  U n r(X) can meet the  disjoint   components  C

and  C .
n

Corollary 4.7.   If a metric space  X  is a generalized Peano continuum which is

either k-coherent, k < <*>, or locally cohesive, then any connectivity retract  of X

is a generalized Peano continuum.
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