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ABSTRACT.   This paper is concerned with finding classes of automorphisms

of an infinitely generated free group F which can be generated by "elementary"

Nielsen transformations.   Two different notions of "elementary" Nielsen trans-

formations are explored.   One leads to a classification of the automorphisms gen-

erated by these transformations.   The other notion leads to the subgroup B of

Aut(F)  consisting of the "bounded length" automorphisms of F.   We prove that

the class of "bounded 3-length" automorphisms  B     and the class of "elemen-

tary simultaneous" Nielsen transformations generate the same subgroup of

Aut(F).   We show that for the class T of automorphisms of "2 occurring genera-

tors", the groups generated by   T O B  and the "elementary simultaneous" Niel-

sen transformations are identical.   These results lead to the conjecture that B

is generated by the "elementary simultaneous Nielsen transformations".

A study is also made of the subgroup S of the "triangular automorphisms"

of F   , the free group on a countably infinite set of free generators.   It is found

that a "triangular automorphism" may be factored into "splitting automorphisms"

of F      which may be viewed as the "elementary" automorphisms of S.

1. Introduction.   The automorphism group, Aut(F), of a free group F of finite

rank has been studied by Jacob Nielsen in his fundamental papers [4], [5] where

he succeeded in obtaining a presentation for Aut(F) by using "elementary"

(Nielsen) automorphisms for F which have simple defining relations.   The part of

his results showing that Aut(F) is generated by these elementary automorphisms

depends on a reduction process applied to a finite set of generators of F where a

length function is minimized (see e.g. Magnus-Karrass-Solitar [3, §3.2], or Hall

[l]).    In his study of primitive elements in a free group, J. H. C. Whitehead (see

[fi]» [9]) introduced a new set of transformations, the so-called "elementary White-

head T-transformations", which properly contain the Nielsen transformations.

When rank(F) is finite, Whitehead's automorphisms generate Aut(F), and it gen-

erally takes fewer T-automorphisms than elementary Nielsen automorphisms to

express  a e Aut(F) as a product of elementary automorphisms (see E. S. Rapa-

port [6]).   Whitehead's results depend on the length of a finite subset of elements
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of F.   When F is a free group of infinite rank, the methods of Nielsen and White-

head do not tend to reduce an infinite system of generators of F in a finite number

of steps (see Example 4.5 and Theorem 4.4 below).   In order to obtain extensions

of Grusko's theorem to infinitely generated groups, D. H. Wagner (see [7]) extend-

ed the Nielsen transformations so as to apply to infinite subsets of a group.   Wag-

ner's ^-transformations become our elementary simultaneous transformations when

applied to a free system X of generators of F, where the generators in  r(X) have

uniformly bounded lengths.   In §4, we study two different notions of elementary

Nielsen transformations and their associated automorphisms which agree with the

usual operations in the finite rank situation.

Although it is false that Aut(F) is generated by the elementary simultaneous

Nielsen automorphisms as defined in v4 when F is a free group of infinite rank,

it has been conjectured (Donald Solitar) that these elementary automorphisms gen-

erate the subgroup B of the bounded automorphisms of F  (see §4).   The conjec-

ture still stands, but it is proved that the class of "bounded 3" automorphisms is

contained in the group generated by these automorphisms.   A reduction process,

independent of the rank of F, is applied to a system of free generators of the re-

quired type in order to produce this result.

In §2, we produce Theorem 2.2 which becomes a useful tool in the study of

the subgroup S of triangular automorphisms of FM? the free group on a countably

infinite set of free generators as defined in §3.   We find that S is generated by

what we call the splitting automorphisms of F^.   A splitting automorphism a may

be viewed as a triangular automorphism defined on  F = Ü.  _ (A ./where {A .) is a6 r 7eZ +      7 7

free group on finitely many generators such that a,restricted to  (A .) is a triangular

automorphism of (A .), for ; £ Z+= positive integers.

In V5 we consider a special class   T C Aut(F) which is of interest in that the

class  TOB  may be generated by the elementary simultaneous Nielsen automor-

phisms.

The author wishes to express his thanks to Professor Donald Solitar who sug-

gested this area of investigation, and to the referee who brought D. H. Wagner's

results to the author's attention.

2.  Restricted automorphisms.   In this section we obtain a general result on

the restriction of an automorphism of F to a subgroup A C F generated by a sub-

set of free generators of F.   We use this result in the remainder of this section to

obtain specific information on special automorphisms of F   , the free group on a

countably infinite set of free generators.

2.1. Lemma.   Let  F=C*D = C'*D where C'cC,   Then C ' = C.

Proof.  Consider the endomorphism <f>: F —> F given by the trivial map on D,

<j>: D —> 1, and the identity map on C,  <f>: C —» C.   Then  çS:f/=C*D—>C is
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onto, while (f>: H - C   * D —> C   is also onto.   Thus C = range <f> = C .

2.2. Theorem.   Let F be the free group freely generated by the set X and let

F - A * B be a free factorization such that X C A US.

Suppose  ae Aut(F) is such that  a\.   is an endomorphism of A.   Then a\.  e

Aut(A) if either rank A or rank B is finite.

Proof.   If rank B is finite, we let A    C X O A  be the finite set of generators

in X n A which occur in the freely reduced elements in the set  a(X n B).   Using

elementary inclusion arguments we can show

(i) F is generated by the set (X D A) U a(X O B),

(ii)  let G  = (Av a(X O B)), then G = (A p X O ß),

(iii) the set A    U a(X H B) freely generates the subgroup G,

(iv) F is freely generated by  (X n A) U a(X Pi B),

(v) A = a(A).

We show that (v) follows from (iv). By (iv) we have F = A*B = A* a(B) =

a(A) * a(B), and using Lemma 2.1 it follows that A = a(A). Thus a\A e Aut(A)

if rank B is finite.

Next, suppose rank A is finite.   By a result of D. H. Wagner [7, Theorem 4.3,

p. 374] applied  to automorphisms of a free group, there exists a set Y freely gen-

erating F satisfying the conditions  X Ci a~l(A U B) C Y and a(Y) C A u B  (Wag-

ner's result is true independent of the ranks of A and B).   Putting  Y   = \y e V|

a(y) e A! and  Y2 =  Y - Yp    we see that X n A C Y^ a(Yy) C A and a(Y^ C B.

Since the set  a(Y ) Ua(Y2) freely generates F, it follows that  a(Y.) and a(Y.)

freely generate A and B respectively.   Also, since rank A is finite, a(Y ) (and

thus Y ) has the same number of generators as X O A.   We conclude that X C\ A = Y

and hence A = (a(Y ))= (a(X n A))= a(A), so that  a|^  is an automorphism of A.

The finiteness restriction cannot be deleted as the following example shows.

Consider the free group  F^ = (a     a    • • ■ ) * (b v b 2, . • • ) on the free generators

ja     a     • • • , ¿>     b-, • • • }  and define an automorphism a by the map of the genera-

tors given by

aj -^ aj + l      ior 7= 1, 2, ••■ ,

a:      &!-«,,

¿>¿ -» èfe_j    for k= 2, 3, ••• .

Clearly  a(A) C A = (flj, «2, • • • ) and ax ^ a(A).

2.3. Corollary.   Let  a: F^ —> F^  ¿e aw automorphism of FM, r¿e /ree group

on a countably infinite set of free generators \x     x ., xa, ■ > 1 ¡, skcä ¿¿ai  a(x  ) e

(Xj, x2,.,,, *n)/or « = 1, 2,....   Then  a(*n) = A^S^ i^iere A^, Br e^,

*2'"" > *«-!>> /"or n= 2, 3,«", anrf A1 = B1= 1, f„= ±L
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The proof follows by induction on n, appealing to Theorem 2.2 and properties

of a Nielsen reduced set. Note that the converse of Corollary 2.3 is true and since

the proof is trivial, it is omitted.

2.4. Theorem.   Let  a e Aut(F) be such that a(x ) e (x , x      ,,.».) = G ,

for n = 1   2, 3, • " .   Then al-,    is an automorphism of G ; also a(x ) = A   xtnB
un •      fl n n    n       n

where AB    e G     ,, and e   = ±1, for n = 1, 2, 3, • • • .

Proof.   To show that a\G    is a restricted automorphism, one need only appeal

to Theorem 2.2.   We show that a(x ) = A   x nB  .

Note that (a(x  ), x      ,, x ••< ) = G .   This follows from the inclusions

'a(xn), aUB+1), aUn+2), ...)Ç (a(*n),*s+i,*B+2, • ■ •)

and the fact that G   = (a(x  ), a(x       ),.,.), since a|r    is an automorphism.
7/ Tí 71 y   1 \J » i *

Now, let  \d(x  ), x . .. , x   \ be a finite subset of these generators such that

x    e (a(x^), x      ., • «• ¿ x   ) (m > n).   [Clearly, a(%  ) must appear in such a subset

of generators.]

By applying elementary Nielsen transformations, we may convert {a(x  ),

x      ,,•'<,*   ! to j W . x      .,•'•■, x   !  so that neither the initial nor terminal ele-
n+ 1 m n'     n+ V '     m

ment of  W ' is a symbol in  jx • », , x   \ U {x~   ,,..», x      }.   Then JW ', %      ,,
« ' n+1' '     m rc+1' '     m n'     n+1'

• ' ' , x   S  is Nielsen reduced, so that x     is a product of these elements.   (Clear-

ly, W    must occur in the product.)   By the property of a Nielsen reduced system, we

have   1 = L  (x  ) > L  (W')so that W' = x " with e    = ±1.   It follows that  a(x  ) =
ç x     n' —     xK    n n n n fi

A   x "B    where A  , B    e (x     ., x     ,,.,,) = G      ,.
n    n       n n'      n       x   n+1'     rc+2' ' n+1

3. Triangular and splitting automorphisms.   We now confine our attention to

the automorphisms of F^ which were described in Theorem 2.4, where  F'x  is

freely generated by  {fl   | n € Z+|.

3.1. Definition.   Let S = ja e AutCF^)! a(fln) e («n, «n+1, •<•/" for n e Z+|.

The collection S will be called the group of triangular automorphisms.   [S is in-

deed a group under composition; that a e S implies a-    € S follows by Theorem

2.2.]

We shall characterize the elements of S in terms of more "elementary" types

of triangular automorphisms, the "splitting automorphisms".

3.2. Definition.   Let y be an automorphism of F^ of the following type:

(1) There is a partition ¡A .| / e Z+l   of the generators  \a     a2, • « < , flR,

• . . ! such that A . = jfl    , fl        ,,•.., fl ,j, where  ;'eZ, and «. = 1 < n    <
j nj'     ny+1' ny+i-l ' f i ¿

7

(2) For k such that n.<k< ny+1 - 1,  y(flfe) e (flfe, «fe+1,-- ', a„.   j.^-
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An automorphism y satisfying conditions (1) and (2) will be called a "split-

ting automorphism".

If we write   F^ = II.  z    (A.) (free product) and define the automorphisms y.

such that y. = y\ , .  , on (A .) while y. is defined as the identity on  (A, ) where

I ¿ /, then we may express y as a product y = n°°_ , y -, where there is no ambi-

guity in this representation, since all but a finite number of these automorphisms

y- act like the identity when applied to a particular freely reduced word in FM.

We now show the connection between the triangular automorphisms and the

splitting automorphisms of F   .

3.3. Theorem.   The group S of triangular automorphisms of F     is generated

by the splitting automorphisms of F   .   In particular, there exist two splitting

automorphisms  y , y   such that a = y   • y   where a e S.

Proof.  Let  a e S be a triangular automorphism.   We shall write  a(a.) = W(a.)

which is the freely reduced form of  (X(a.); notice that the earliest occurring "a"

generator in  W(a.) is indeed a. (earliest in the sense of the ordering a. < «2 <

• • O; this follows from Theorem 2.4.

We now proceed in constructing the desired splitting automorphisms..

Step I.  Consider the mapping a . —► W(a.) for 1 < j' < n where n is arbitrary

but fixed, and let b .,• •. , b     be the generators (aside from «„••<,« ) occur-

ring in the words  W(a,),•<>, W(a ).   Extend the set \bv->>,bm\ to the smallest

set of generators  \b ., • • ■ j b  \ 2> \b., ■ > i , b   \  such that the set \a v • • < , a  ,

Lmi, b '}  has no gap in the ordering of the generators [e.g., if say n = 3, and

Í&!,"", bj =\a4, a7, al6\, then  \b'v-*,, b¡) = {«4, a,,«", «u, «16Ö-   Here

è ' is the largest occurring generator in the set fèp • • < , &mJ.

Extend the map to

a.
i

W(a),       !</<«,

&1 -> b'k> l<k<V-

Step II.   Let  V     ■ « . , V    be the "W" words which generate  b v • • • , b

(aside from  W(b [),..,, W(b 5).   Let  Cj  besuchthat   l^ = W(c j), • . • , cp be such

that  V   = W(c  ).   Extend this set to |c J, • n , c¿| D {cj,• i • ¿ cpi  so that no gaps

occur in the ordered set {¿J, •« i, è '   c |, • < . , c^.|;  c^ is the largest occurring

generator among the members of \c v • • < , c  }.

Extend the map to

a. -► Wla.),       1 < 7' < w,

b'k -* b' 1 < k < p.,

c\ -► W{c\),       l<l<n.
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Next, let [d    • • •-, d], be the generators occurring in W(c  ), • • • , W(c') not already

in \c v ■ • • , c  } and proceed, as in Step I, to extend this set to jfl7', • •• , d'\ D

\dv ■ ■ • , d \ where no gaps occur in jc ', • • • , c     d'  ■ • • , d }.   Then extend the

map so that d.  —> d., for / = 1, 2, • • • , p.   Continue this construction indefinitely

The above process defines a mapping NA of the free generators of FM into

F_  such that

N,

-*-W(e¿),     l<r<a,

/.'. 1 < s < r>

where the e  , / , V/(e  ), W(f ) etc., are defined similarly.   It is clear that this

mapping defines a splitting automorphism of FM1 since the generators in each of

the braces in the above are mapped into themselves in the required manner.

We now consider the mapping N „ of F^ given by

[W(a.)-► W(a ),     !</<«,

N,

W(^)

_W(cp

V(fl")

wU')

- b'

■*<.,

I <k<p,

->W(c'¡),    l</<ny

1 < 1 < P>

-*W(e'r),     l<r<a,

Using the "W" elements as free generators of F^, each of the transformations

which have been blocked above define an automorphism of the free group generated

by the "W" symbols in the block.

For example, to show that the mapping

w{b'k)

Wie]) Wie]),

1 < k < p.,

KKit,
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defines an automorphism of the free group (W(b.), • • • , W(è  ), W'(c'), • • • , W(c ')),

we need only show that (W(b[), ■■■, W(b¡), W(c [), • • • , W(c¿)) = {b[, • ••, b^

W(c [),■■■, W(c¿».

Now since  cC 1 eS, by Theorem 2.4 it follows that b'k = Cfe Wtk(b^)Dk where

C, and D,   are freely reduced words in the generators  W(b,    ,),•••, W(i ),

W(c [),..., H/(c¿), • • • for 1 < 4 < ¡i and ¿V = C^Hb'jD^ where C^ and D^ are

freely reduced in W(c  ), W(c '), • ■ ■ , W(c  ), • • • .   By the choice of W(c  ),•••,

W(c¿) it follows that CM, D^ e (lV(c j),--. , W(C;)) and C k, Dk e <W(b¡, + J, ■ ■ -,

^(bp), W(c  ),..., W'(c  )).   Hence it follows, by applying Nielsen transformations,

that

(b\,... , i'A, ••• , ¿¿, IKc'j), ... , Vf(cn))

= (C, w'Hè'j) Dv ... , CfeWffe(è;)Dfe,..., C^ièpD^, W(c'j),..., w(c;)>

= (wf Hèp,..., wffe(è;),..., w£^;), weep,..., w(c;))

which is essentially what is needed to be shown.

Returning to the automorphisms  N A and N„ we have N JWv)= N A(av).   Thus

Wv= (NglNA)(av) = NAB_l(av)= a(av) so that a= AS"1 where A, B"1 are

splitting automorphisms.   Setting y   = A, y   = B_1, we have  a = y    • y    and the

theorem is proved.

4. Elementary simultaneous Nielsen transformations and bounded automor-

phisms. In this section we develop two alternate ways of generalizing the ele-

mentary Nielsen transformations so as to operate on collections of F containing

an infinite number of elements. One of these notions turns out to be nonlucrative,

as Theorem 4.4 below shows. The other notion is sufficiently strong as to lead

to the "bounded" automorphism conjecture and to Theorem 4.6, the verification

of this conjecture for "bounded  3" automorphisms.

Let F be the free group on the free generators  \xv\ v £ 71J where Tí is a lin-

early ordered indexing set.   Let {W  | v € 7l\ = u) be a collection of freely reduced

words in the  xv generators.

4.1. Definition.   The following transformations  t , t    of the set w will be

called "elementary simultaneous" Nielsen transformations of rank \TL\:

1. Permute the  W    words and take inverses of some of them, i.e., let 77 be a

permutation of the indexing set K and let T : (b —> F be such that t AW v) =

W^- where e„-±lf u e Jl.

2. Let r2: ffi — F be a function from ¡2 to F, & = \W e ffl| tAW) = W\ and

T2(U) = UílVíl or V±1U±1 where V 6 £ for U € ffi - C.   Those words in £ which

occur in  tAU) for some (i eL-C will be denoted by £ '; they are the "active"

elements of r .

4.2. Definition.   Transformations of type  r   and r2 where C ' has finite
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cardinality (or equivalently card(c' )= 1) will be called elementary Nielsen trans-

formations.

It is clear that if il< generates a subgroup H of F then applying an elementary

(simultaneous) Nielsen transformation produces another system t(\1) of generators

of the subgroup //.

We shall be concerned with the automorphisms induced by the elementary

simultaneous transformations and the "bounded" automorphisms of F which we

now define.

4.3. Definition.   Let ae Aut(F) be such that there exists some natural number

N so that

(i) If Q-(xv) = W^ is freely reduced in the x generators, then  L  (W  ) < N for

all v e Tí where L  (W  ) is the x length of the word Wv.

(ii) If ar {xv)= U is freely reduced in the x generators, then L (t/ ) < N

for all v eil. (Equivalently, if xv is expressed as a freely reduced expression

in the Wv generators then L   (x  ) < N.)

An automorphism a satisfying conditions (i) and (ii) will be called a bounded

N automorphism of F.   For each fixed natural number N, we shall denote by B„

the class of all bounded N automorphisms of F.   The collection B =[J™   . BN

clearly forms a subgroup of Aut(F) which we call the group of bounded automor-

phisms of F.

If F is the free group on the free generators x,, X-,•••,x   where n is finite,

then B = Aut(F) since each automorphism of F will belong to a class BN for some

natural number N.   In this sense it follows by the well-known result of   Nielsen

(see [41, [5l) that B is generated by the elementary Nielsen automorphisms.   If the

free generators of F are infinite then

B<Aut(F),       B^Aut(F).

The following automorphism of F^ = (x{, x2, ■ ■ ■ )  shows this.   Let ß € AutiF^)

be such that /3(* ■) = x   x    ■ ■ -x. for / = 1, 2, • • •  (then ß~~   (x.) = x.   , x . for / =

2, 3, • • • and B~ '(x. )= x   ).   Clearly ß é B since L   (ß(x .)) = ;  which increases

without bound.

The elementary simultaneous Nielsen automorphisms, induced by the elemen-

tary simultaneous Nielsen transformations of rank |TI|   applied on the generators

\x | v £ 711, belong to the class B-.   In fact, it is obvious that B.   consists pre-

cisely of those automorphisms which permute the generators and change their ex-

ponent signs.   It can be shown (without much difficulty) that the automorphisms

in  S     may be expressed as products (compositions) of the elementary simultane-

ous automorphisms (and it is clear that the elementary simultaneous automorphisms

are in B.).   As we proceed toß,, the same result turns out to be valid but the

proof (Theorem 4.6) is so heavily involved with case arguments that no easy gen-

eralization seems possible.   Since we have (B2) = (B?) where B^ C B2 C B? C- • ■
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C B, C • • • C B, it seems natural to conjecture that (B2) = (B )= (Bfe) = (B) for all

k > 4.   This is equivalent to the conjecture that the elementary simultaneous auto-

morphisms are a set of generators of B, the subgroup of bounded automorphisms.

We may easily characterize the automorphisms generated by the elementary

Nielsen automorphisms, as the following theorem shows.

4.4. Theorem.   Let  a e Aut(F) where 0-(xv) = W v(x) is the freely reduced form

of a(xv).   Then a. is a product of elementary Nielsen automorphisms if and only if

(1) there exists some integer N such that  L  (W'  ) < N for all v € 71, and

(2) there exists a finite number I of words W   (x     , • • •, x   ),   1 < /' < /, in the

generators jx     ,•••,*] and the remaining Wv words have freely reduced ex-

pressions Avxp(v) By where A   , B    € {xy  , • • •, x    ) and n is a permutation of the

indexing set 71 - \v. , • • ■ , v\.

Proof.   The proof that a product of elementary Nielsen transformations satis-

fies (1) and (2) follows by a straightforward induction on the number of factors in

such a product.   Conversely, if a e Aut(F) satisfies conditions (1) and (2), then

by applying a permutation </j to the xv generators we can be sure that &<f>; x    —>

WvyC*Vl, ' ' ■ » V f<* I <7" < /, and a^: xv - AvxtJr^)Bv for v e 71 - \v v • '•,

v\.   For notational convenience we replace x     by x.,   1 < / < n, and the remain-
I Vj ;

ing generators xv by x     for \l € M.   In this notation, the automorphism a = a<f>

is such that

a'(x.)=W. e <*,,...,*,)     and    a'l^^x^B^^,

where A     B    ^(Xj, •• •, x,).   By appealing to Theorem 2.2, a finite sequence of

(standard) elementary Nielsen transformations can be found taking (W     W     • ■ •',

Wp into (Xj, x2, •••, xp while fixing the remaining words  W..  .  (see [3]).   By

the structure of the words W . .  .  and their uniform boundedness we may eliminate

the initial and terminal members A „, B,, of W , .  . = A , x   f (/J,)B,,, for all a by a

finite application of elementary Nielsen transformations.

Thus a finite sequence Na , Na , • • •, Na    of elementary Nielsen transforma-

tions exists such that

N„   • • • AL AL
a¿ a2  al

W.->x. for  1 <;'< /,
7 7 - ' -    '

Hence N     • ■ -Na Na Nai   applied on the xv generators produces a permutation

of these generators with changing exponent sign, i.e.,

fe 2       1 fe +1
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where  a is an elementary Nielsen transformation which permutes and changes

exponent signs.

By using the anti-isomorphism between the Nielsen transformations and the

automorphisms of the free group F, we find

which implies that

^«W**      \+1

^^l^1--'  a~2' Ch1^"1

is a product of elementary automorphisms.

4.5. Example.   We now give an example of an automorphism of F     which be-

longs to B,   (i.e., is a "bounded 3" automorphism) but cannot be generated by

the elementary Nielsen automorphisms.   The automorphism a. is defined by the

w
2(1mapping  a(K2fc-i>= *2Jk-1*2*+1*2A * W2*-l>  a(x2¿ = *2fe*2fe+ 3 X2k +

for k = 1, 2, 3, • • • whose inverse cC     is given by cC   (x_ ,    , ) = x_ ,    . X-,x~:   ,° ' 2fe-l 2fe-l    2k   2fe+l

=  U2k-Va'1(x2k^ X2k+5X~2l + 2x~2lk =   U2* for *- 1.2.3,-".   Note that

ais also a triangular automorphism.   We show that condition (2) of Theorem 4.4

is not satisfied by this automorphism.   Suppose on the contrary that criterion (2)

holds here, then we can find / words  W,, (x,,  , • • •, x„ ), • • •, W, (x„  , • • • , x , )

in the / generators x,,  , • • • , x„ .   We may assume that x,,   , • • • , x,,    have been

already arranged so that x     < x for 7 = 1, 2, •••,/- 1 and that W     = W(x    )
Vj ISj+ ! i/y I/y

for  ; = 1, 2, • • • , Z  (we are using the notation in Theorem 3.3).   It then follows

that x      is the "latest" occurring x generator in the expressions  W     , ■ ■ ■, W    ,

and in particular we would have that  W      is expressible only in terms of x    ,

i.e., Wv   = xv , e = ± 1.   This contradicts the definition of the automorphism a.

Thus a does not satisfy condition (2).

We shall later show that the automorphism defined above is generated by the

elementary simultaneous Nielsen automorphisms.   It is now clear that the sub-

group generated by the elementary simultaneous automorphisms strictly contains

the subgroup generated by the elementary automorphisms.

We now enter into the proof of the following proposition.

4.6. Theorem.   Let  B,   be the class of all "bounded 3" automorphisms of F,

the free group on the free generators \x\ v € l\\.   Then the group generated by B,

is identical to the group generated by the elementary simultaneous Nielsen trans-

formations {a fortiori (B2) = (B  )).

We shall show that if cl e B then a is a product of elementary simultaneous

Nielsen automorphisms. To produce this result, we shall express each x genera-

tor of |x   I  v € ÎIS  as a freely reduced word in the "W" generators, where  a(xy) = Wl



1973] AUTOMORPHISMS OF FREE GROUPS OF INFINITE RANK 109

is freely reduced in the x generators, e.g., x = II._ , W .   and k < 3,  f • = il.   We

shall then apply certain elementary simultaneous Nielsen transformations on the

system  jx   | v 6 71} to obtain a system of generators which will be Nielsen reduced

(see   [3]) when viewed as words in the W generators.   It shall then follow that the

resulting   system of generators is  lW   ,v J fv - ± 1; v e 71} where n: 71 —* 71  is a

permutation of the set Jl.   By applying a permutation with changing exponent sign

on the resulting system, we shall succeed in converting jxy| v € K\ to {W' | ivçTt}

by a finite application of elementary simultaneous Nielsen transformations.   By

using the anti-isomorphism of Aut(F) onto N(F), the group of Nielsen transforma-

tions of F, we will have shown that  a e B    is a finite product of elementary si-

multaneous automorphisms.

Canonical forms for the xv generators.   By replacing x    by its inverse x~ , if

necessary, and calling the resulting generator     f    we can be sure that  £, falls

in one and only one of the following categories:

1. Çv = ABC where A, B, C e \Wv\ u {M*'"1}, the expression being freely reduced

as a word in the W generators and

Lx(A) = Lx(B) = Lx(C) = 3,

Lx(AB)=4, Lx(BC)=2.

2. £v = AaB where A, a, B e \WJ u ¡W'1],

Lx(A) = Lx(B) = 3,       Lx(a) = 1;    and

Lx(Aa) = 4,        Lx(aB) = 2.

3. f„ = ABa where A, B, a e ¡Wj U {W~M and

L(A)=L(B) = 3,        L>)=1,

Lx(AB) = 2,       Lv(B«) = 2.

4. £v = Aab where A, a, b e \WJ u SU7"1} and

Lx(A)=3,       LxU) = Lx(¿) . 1.

5. 4 = aAb where A, a, è 6 flCv| U iW"1}  and

L (a) = L(b)=i,
X x '

Lx(A) = 3,       Lx(aA) = LjAb) = 2.

6. cfv= TAr where T, A, r e\Wj U ¡V/"1)  and

i.x(D= Lx(r) = 2,       Lx(A)=3,    also

Lx(TA)=3,       LxUr)=l.
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7. £v = TAt where T, A, t e \Wj U ¡W'1]  and

Lx(T) = Lx{r) = 2,       Lx(A) = 3,

Lx(TA) - LMt) = *■

8. fv= TrA where T, A, r e ¡Wj uiW"1! and

Lx(T) = Lx(r) = 2,       Lx{A) = 3,    also

Lx(Tr) = 4,        Lx(M) = 1.

9. fv = ATr where A, T, r e |Wj U JW"1!  and

Lx(T) = Lx(r) = 2,        Lx(Tr) = 2,    also

Lx(AT)= 3,       Lx(A)=3.

10-   £,= Trë where T, r, g e ¡U'J UJIV"1! and

Lx{T) = Lx(r) = 2,     Lx(7Y) = 2,       also

Lx(g) = l,       Lx(rg)=l.

11. fv- Tgr where T, g, r e }WJ U ¡W"1!  and

Lx(T) = Lx(r) = 2,        Lx(g)=l,    also

M7«) = 3,        Lx(gr) = 1.

12. fv = BS where B, S e (WJ U JW"1!  and

Lx(B) = 3,       Lx(S) = 2.

13. £,= To where T, 0 ejIVJ U \W~M   and

Lx(T)=2,        Lx(0)=l.

14. Çv= W where IV e \WJ  and

Lx(W)= 1     (i.e.,  W=x*!).

Let  F. denote the collection of all  f   such that f   satisfies condition /',

for / = 1, 2, • • • ,  14.   By a quick check, it can be seen that each xy generator

may be put into its canonical form in just one way, so that (J. _ . E. is a free set

of generators of F.   We note that U ■ - i ^ ■ consists of those xv or their inverses

with "W" length 3 which contain at least one W symbol of x length 3.   E   0 uEn

consists of those  xy generators (or their inverses) which have W length 3 but

which have no W symbol of x length 3.   F[2 UE]3  consists of those  xv genera-

tors (or their inverses) with IV length 2.   E14  consists of those xy generators
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(or their inverses) which are already W symbols.

We now work with the set (J _ 6 ^ > viewing lts elements as words in the W

generators; we will Nielsen reduce this set with respect to itself by elementary

simultaneous transformations so that the resulting system of W words is Nielsen

reduced (with respect to itself).

The following lemmas are stated without proof and may be checked by routine

arguments involving simultaneous use of the x-length and W-length of the genera-

tors jfj v e\\.

4.7. Lemma.   By application of a finite number of elementary simultaneous

Nielsen transformations, E. may be converted to E., for 6 < / < 14, / ^ 9, where

E . consists of the set of W initial elements of cf   e E . when expressed in terms

of the W symbols.

4.8. Lemma.   The set  £„ may be converted to the set  Eg of W initial elements

of ¿;v e F„  by application of elements from U ._.    ., _E. to £. using simultane-

ous Nielsen transformations.

We now proceed to alter the sets  F.,  ; = 1, 2, 3, 4, 5, in such a manner that

after transformation, the set F    will be converted ro a set of W symbols of x

length 3.

Step I.  Apply elements from  £     so as to convert  £   to E, consisting of

the major initial segments of the words in £,.   Similarly convert £ . to £ ,  con-

sisting of the initial elements (which are W symbols) of the words in  £.  by using

elements from £, ,; convert E    to £,, consisting of the central elements (which

are W symbols) of the words in £,.

Step II.  Collect into distinct classes those words in  £j which share the same

terminal segments.   To those classes whose major terminal segments are elements

in  £, U E~    apply the appropriate elements in  £,  to reduce such classes to

classes consisting of W symbols of x length 3.   Denote this transformed set by

£,.   (£, may well still contain words in the W symbols of W length 3.)

Step III.   In   £2, collect into disjoint subsets those words in  £2  whose ter-

minal elements are the same W symbol (or its inverse) which belongs to £4.   Re-

duce these words by the proper application of elements in  £4 U £[4  to convert

these subsets to W symbols of x length 3.   (There may well be elements in £2

which have been unaffected by these transformations.)

Let £2 be those words in  £,  unaffected in this step.   Thus  £2  is converted

to  E? U £2  where  E2  is the transformed subset of £2-

Step IV.  Collect those words in  £,  whose right halves are W symbols in

£   U £~ ; collect them into classes and reduce them by proper application of W

symbols in  E    so as to produce a collection of W symbols; call it £j.   The re-

maining unaffected words in  £,  will be called  £,.
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Step V.  We will now convert  E*   into a collection of W symbols of x length 3.

For this purpose we require the following:

4.9. Lemma.   Let £ = ABa e E    be such that AB £ E*   where A, B, a e jWjU

jW-1!.   77>ew B±l eSj U F2 U Ë^UË^ U F9 U Ë
12-

The verification is similar to the previous combinatorial lemmas and is omitted.

3
Now by collecting into separate subsets those words in F^ whose right

halves belong to EjU Ej  , those whose right halves belong to F2 U E-  , etc.,

and applying the appropriate W symbols (x length 3) in E   U E.,U •••U£      we

may reduce  E,  to the set of left halves of words in E,.   These W symbols are of

x length 3.   Call this set E *.   We have therefore converted E? into E,UE**, a

set consisting of the initial elements of the words in E      Set E, = E,UE,  ,

then  F3  consists of all W initial elements of c,, eE..
i v-\.      3 _

Up to this point we have converted E, into E,, and E. into E . for / = 4, 5,

• • • , 14.   These new collections each consist of W symbols.   We may also reduce
— i
E     to the same type:  a set of W symbols of x length 3 by using a finite sequence

of elementary simultaneous Nielsen transformations and using the W symbols in

Ë.U I    UE2U Ë. UË.UÊ.UË.,.
1 2 3 4 5 9 1 z

This follows by appealing to the following lemma.

4.10. Lemma. Let f= AaB e E"2, then B± l e Ë{ U Ë4 u ï  U Ë^ u Ë;UË9UË12.

We may thus collect the elements in E    of W length 3 in the following manner

Put in the first collection those words of E, whose terminal elements are W

symbols in E ; in the second collection those words of E. whose terminal ele-

ments are W symbols in E • etc., • • • . In.each such collection we may apply an

elementary simultaneous transformation using the appropriate elements in E U

E,U E.U ••• UE.,. Next, apply the appropriate elements in E14 to produce

the desired set of IV symbols. The set which results along with E will be de-

noted by E       The set E2 consists of the initial elements of the words in E2.

We return now to the set E    and convert it to a set of W symbols of x length

3 by using a finite succession of elementary simultaneous Nielsen transformations.

We collect into distinct classes those words in  E.  which share the same

major terminal segments.   To put things into focus, let us denote such a class by

I  f = ABC

In each such class pick a representative  f =   ABC , for example.   (Of course,

such a representative might already be a IV symbol, Ay as might be the case.)   In

each such class apply the representative to the remaining words in its class to

produce the set
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f = ABC

We now consider a typical representative: f = ABC. Let A = Çgh be the re-

duced x expression for A, so that g = C~ B~ h~ . Now the following situations

may occur:

(i) LJh)= 1.   Then g = C-lB-lh-1 € £3 and thus A el,  (recall the con-

struction of Ej) so that  ç= ABC has already been converted to A in E

(ii) LJh)=2.   l.etb= PQ be its W expression.   Then g = C~ lB~ 1Q~ lP~ 1

so that B = Q~l and thus h~x = BP~l,   g= C^lP'1 implying that B, C-1eÊ12.

(Clearly, ¿ ^ g  since if not =» B = P so that ¿~   * 1; also it is obvious that

b~l¿g since LJA) = 3.)

(iii) LJÄ) = 3.   Set Ä = PQP where P,Q, R e [Wj U ¡W"1}.   Then g =

C^B-'R-^-1?-1 =» R =B~1  and thus

(*) ¿t^bq-1?-1,    g=c-1e_1p-1.

Now in this case (iii), h will fall in one and only one of the following cate-

gories:

(a) h~    e £2.   If Lx(Q~   P~   ) =4, then from the expressions in (*) above it

follows that h~    = g, since L  (B) = L  (C~   ) = 3, which is impossible.   Thus

Lx(2" lP~ l) = 2, so that &~ \ g e £2 and B e E-, and C- l e £2.

(b) A- ! e E3.   Then g e £? so that B, C~l eEy

(c) £_ ! e E4.   Then g e £4 so that B, C~ x e Ê"4.

(d) i"1 eE Then g e E so that B, C-1 e E (Note that h~ l'i E^ since

L  (B) = 3; also h á E„ for the same reason.)

(e) h~l e£r   So that g e Ej and ¿>_1 = Bg-1 P_1, g= C"^-1?-1.

Let us call those representatives that satisfy the conditions in (i), (ii) or

(iii)(a)—(d), above, representatives which are of category I.   Also call those re-

presentatives which satisfy condition (iii)(e) representatives of category II.
<-\.        *\.        _        _        _

By applying the W symbols from £2U£uE4U£9U£12 to those repre-

sentatives which satisfy category I we may convert the representatives  if = ABC\

by elementary simultaneous transformations to   JAB}, then further to \A\.   Thus

for those classes whose representatives satisfy category I we have succeeded in

transforming them to

A

^-'»v*-1

Using an elementary simultaneous Nielsen transformation, we can convert the

classes
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A.A • l
to

so that those classes whose representatives are in cateogry I can be converted

to W symbols of x length 3.

For those representatives which satisfy category II above, e.g.,

£ = ABC

U-^AA-1

-1d-1we know that h~l = BQ~1P~1, g = C~lQ-lP-1 as in (iii)(e). Let Ç = KQ~lP

be the representative of the class containing h~ ,g (£ might be h~ or g,

in which case we argue similarly).   Thus the class appears as

C= KQ
-1

h~l = BQ-1 P-1

g^C-'Q-'p-1

which already has been transformed to

C=KQ~lP-r

h-lC~l = BK-1

We apply an elementary simultaneous transformation which converts the category

II representatives  f = ABC to (ABC)C   K~    = ABK~   , then apply the elemen-

tary simultaneous transformation which converts ABK~    to (ABK~   )(B K~   )~   =

A for each "new" representative.

The category II classes have now been converted to

/       A

KA
-i

We finally apply the elementary simultaneous transformation which converts

these classes
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A

A. A'1      to       {A,

The union of the resulting classes whose "ancestors" were in categories I

and II will be called Ej.  E ^  consists purely of initial W symbols with x length 3

which belong to £,.

Hence having applied a finite number of elementary Nielsen transformations

(finite but tediously large in number) we have succeeded in converting the [¿\

generators {£„} = (I ._ x E    into the set E j U E2 U E ^ U ( |J._ 4 £ .) consisting

of all the jW^j  symbols save for exponent sign which are the initial IV elements

of the canonical forms  £,, e N     , E ..

This completes the proof of Theorem 4.6.

Applying the process described in the proof of Theorem 4.6 to the specific

"bounded 3" automorphism described in Example 4.5 we find that  a= a^-a-a,

where

ai(x2*-l} = *2*-l«   (Zl(x2fc) = x2k    f« * - 1, 2, 3, • • • ;

a2(xj) = xj, a2(x2fe) = x2k, a2(x2fc+1) = *2fe+1*-¿    for A - 1, 2, 3, • • • ;

a3(x1) = XjX3, a3(x2fe_2) = x2k_2x2k+v ^(x^) = xn_1    for k « 2, 3,4,... ;

a4(xj) = Xj, a4(x2/fe) = x2fc) a4(x2/fe+1) = x2k^x2k    for A = 1, 2, 3, • • •

are the required simultaneous transformations.

5. Bounded "two occurring" automorphisms of F.   In this section we study a

special class T of Aut(F) as defined below and show that the class  T O B  is

contained in the subgroup of Aut(F) generated by the elementary simultaneous

Nielsen automorphisms.

Let F be the free group generated by the free generators  {x  | v e j\\.   Sup-

pose   U £ F is a freely reduced word in the  xv generators.

5.1. Definition.   The function o  : F —* Z.  is defined as follows:   a (U) is
X + X

the number of distinct xy generating symbols occurring in U.

5.2. Definition.   An automorphism  a: x    —» IV , where  W^ is freely reduced

in the x generators, is said to be of class T if and only if a (W ) < 2 for all

v e 71.   (Note that T is not a group since  a e T does not guarantee that  cC   e T.)

We now state the following theorem.

5.3. Theorem.   Let a e T, where  a(x  ) = IV    is the freely reduced form of

a(x^), ¡or all v e ÎÏ.   Ler xy   e jxj fee fixed and let \Wv , Wv , • • • , Wv \ be

the smallest subset of W    generators required to generate x     .
1
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Then the number of distinct x generators occurring among the words  W     ,

M\/ , • * • , W„   is r.   Denote these generators by x     , x       ...    x    .   Then (x

2 rl2 r

In order to facilitate the proof of Theorem 5.3, we need the next two lemmas.

The groups which we consider in these lemmas will be assumed torsion free.

5.4. Lemma.   Let  G = A * (V) (free product of group A with cyclic group (V)).

If av a2 e A, then (A, a^Va2) = A * (a^Va^.

The proof follows by appealing to a standard characterization property of a

free product by homomorphic extensions (see e.g., [3]).

We proceed with the next lemma..

5.5. Lemma.   Let  G = A * B, where A, B £ 1..   Let  U v ■ ■ ■ , Uk e A,  V € A *B

and V ¿ A.   If an element of A can be expressed as a word in the symbols   U

• • • , U,, V then  it can also be expressed without the  use of V, i.e., if

W(UV-.., Uk, V)eA thenW(AJv---, U k, V) = R(U v ■ ■ ■ , U k).

Proof.   Let g 6 A  and suppose g = W(U., • • • , U,, V) is an expression for

this element as a word in the symbols   U., • • • , U,, V.   Express V in the normal

form of a free product  V = a ,b ,a -,b„ ■ • • b-.a     , where a . e A,  b . e B and a .,r 1122 2s+l J 1 I

b . ¿ 1 for / = 2, • • • , s except for a, or a      ,.   Set  V = b ,a-b~- • • a  b .
1 r ' ' r ls+l 122 s_s

Clearly,  (A, V) = A *(v) so that by Lemma 5.4 we have  (A, axVas    .) =

A *(aiVas+l), i.e.,  (A, V)=A * (V).

Choose an expression for g of smallest word length in the symbols   U.,•••,

U,, V and assume that the V symbol occurs in this expression.   This expression

for g may be written as

n

g=Al(U.)V  lA2{U)V 2... Ak(U.)V kAk + l(U)

where  A AU .) are the expressions in the   U . symbols grouped together (A ( ^ 1

for / = 2, • • • , k by virtue of the minimal length).   But then  V    A2V     • • • V

and A~ gA7    ,   are two different reduced sequences for the same element in the

free product A * (V).   Thus the V symbol does not occur in an expression for g

of minimum length in the symbols   U v • • • , Uk, V.

To avoid notational inconvenience in the proof of Theorem 5.3 we relabel

x       as x.,  W      as W.   etc., in .the statement of the theorem.

Proof of Theorem 5.3.  Consider the set {»\, W2, ■ ■ ■ , Wr\, then x,  is a word

in these W symbols, i.e.,  x    = i?(W,, • • • , W ).   At least one of these W symbols

contains-Xjj call it W y   If  W l  contains no other x symbol then  W l = x~    and

r = 1.

Suppose that Wj = Wx(xv x2),  W2 = W2(x2, Xj),---, W. = W.(x., x.+ 1) where
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/< r and xk ^ x¡ if k ^ I < j + 1  (i.e., axQNk) = 2 for k = 1, 2, •• •, /').   If no other

W symbol (aside from W.) in jWj, • • • , IV.,. .. , W \, contains x.   ,, then let

A= ixv\xv^xj+V v e^>

B = (x-4.1)>  so that F = A * B.

Thus, IV. ¿A while

U/l."-.Wy_l'W7+l'-"'M/re'4   and   x,   =   RflVj, • • •, IV.^, tV., W.+ ,, • • •, Wf ) 6 A,

so that the hypotheses of Lemma 5.5 are satisfied.   Therefore x.  maybe expressed

without the use of W., contradicting the minimality of r.   Therefore, if / < r, we

may find a W symbol, say W.   ,, which also contains x.   ,.

We have shown that we may produce the sequence Wjfxj, x2), W2(x2, x3), — ,

^r- \(x     i > x \ ^ (xr> */) where W (x , */) is a W symbol involving xr and x, where

/ is some number < r.   It therefore follows that the number of distinct occurring x

generators in the symbols  W., • • •, W   is indeed r.

By using Theorem 2.2 we obtain (*.,•••, x )=(B,1I,,,) W ).

We now link up the class  T n B with the elementary simultaneous Nielsen

transformations.

5.6. Theorem.  The group generated by the class  T OB, i.e., (T O B) is the

same as the group generated by the elementary simultaneous Nielsen automorphisms.

Proof.  It is clear that each elementary simultaneous Nielsen automorphism

belongs to the class  FOB.   It will be sufficient to show that if a e T O B then

a can be expressed as a product of elementary simultaneous automorphisms in

order to complete the proof.   This is taken care of by the following lemma.

5.7. Lemma.   Let F be the free group on the free generators \xv\ v € Jl\.   Let

a: x    —• W    be an automorphism in class T such that for some integer N,

L (câ(xv)) < N, for e = ± 1 and all v £ K.   Then there is a free product decomposi-

tion of F =   n.       X ., t being some ordinal, and there exists a permutation u of

the set \xv\ such that (a n(X .)) = (X .).   There is an integer N such that the auto-

morphism a 77  is a product of N elementary simultaneous V/hitehead automorphisms

where  N < N   +1.

Proof.  Let Xj 6 jxj.   By Theorem 5.3, we can find Wj, IV2,-.-, Wr such that

(Xj, x2,..-, xr)= (W](.IV2,---, Wt).   It is clear that r< N since Lx(a~1(x1))< N

implies that number of distinct W symbols occurring in the freely reduced IV word

representing x.   is no larger than N.

Let Hx, = {Wj U^yjlVj,.-., Wjand Wy contains x(., e = ± ll for ; = 1, 2,

• • • , r.   Note that the sets   H    , H     ,•••, H      ate pairwise disjoint since if

W e H   ,nH     then W = W(x., x.) where /, k < r; but then (W,, IV ,,-•-, W    W) =
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(xl> *2>'"> XT) so that the symbols  Wj, W2,... , Wf, W are not free (contradic-

tion).   Therefore, H     OH     = 0 for 1 < j' ¿ k < r.
Xj X fe —   ' —

Let W, U e Hx, where W, U are distinct symbols, say   W = W(d, x.), and   U =

U((ß, xp.   We show that 6 ¿ <p", i.e., the symbols have different x generators.

Thus, suppose  6 = <f>, then it follows that (W, U)= (d, x.) (by Theorem 2.2) so

that x   e (W, U) while x   e (Wj, • •• , Wf); this contradicts the unique expression

for x. in terms of the W symbols.   Therefore, different W symbols in H     havex i

different x generators, aside from x. (for j = 1, 2, • • •, r).

Further, ii W = W(6, x .) 6 Hx. then (»j, • •., Wf, W(0, x .)) = (x,, x2, • • ., xk, 6)

(always  appealing to Theorem 2.2) so that

(i) W{6, x.)=x^w)d^w)xlSw)
i        i i

where  k(W), l(W) ate integers and ((W) = i 1.   This shows that H     consists of Wx i

symbols of the type (i), for / = 1, 2, • • •, r.

From the expression (i) we find that

Lw(8) = Lu,(x-fe(H')) + Lw{x-l<Wy) + 1 > Lw(x.) + 1 > 2.

By using the standard finite Nielsen transformations we may convert \W.,

W2, • • •, Wf\ to {x,, x2, • • •, xfS in a finite number of steps and then applying the

elementary simultaneous transformations applied on the sets   H    , H    , • • •, H    ,£. xl        x2 xr

using jx., x1,--. , x } as "active" elements (here x.     would be applied to H

. ... 1 1
in the appropriate manner), we may in a finite number of steps convert \W^, W2,

■ ■■iW| Ufi    u • -•   UH     to the set of x generators (x,, • • -, x } U H     U   • • ■
T X \ X y 1 1

UH   .   Here  H     = \d e \x, \\ 6 ¡Í x. and 6 occurs in W e H    }, for ;; = 1, 2, • • • , r.
xr xj J j

Let  2, = ix1,.-.,xr}u(Uy=1 H^andset«! = (J/= i HXj>  H2 =

\WV\WV¿\WV--- ,W\ UHvand Wv contains an x generator from (Jy=i Hx *•

Now if V e f/2 then V = V(8, f ), where  0 e (Jy = , Hx . and f ¿ 2j.   Just as before,

it follows that  Ly(¿ ) > Lw(0) +1>2+1 = 3.   Again, applying elementary simul-

taneous Nielsen transformations to the set £j U H2 we may convert this set to

22 which consists of only x generators (¿2 3Zj).

Set  H   = ÍWj Wvy ¡Wj,.-. , WfS UFjU 772, and W contains an x generator

from 22}.   Here, if  U e H3, then  (J = (/(cS, y) where cf) e 12 and y 4 22.   It then

follows that  Lw(y) > Lw(cf>) + 1 > 3 + 1 = 4.

More generally, if E, = fWj W„ ̂  {Wj, • • •, Wri Uf/jU ••• UHj., and W„

contains an x generator of 2;_j} then, for W e H¡,  W = W(£, X) where £ 6 S;_ j

and LW(A) > £„,(<£) + 1 > / + 1.  2, is defined as the set of x generators when

2.      UH, is reduced by elementary simultaneous transformations (2¿ D ^/_i)-

Thus the sequence {Wj,- ••, Wr}, Hv H2, • ■ •, H¡, • ■ ■ will break off before

the Nth stage of construction, say, at the Mth stage where M < N. Also the set

[W.,... , Wfe} U Hj U H2 U ••• UHM may be converted to the set SM by a finite
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application of elementary simultaneous Nielsen transformations.

We set Xj = 2^, and suppose that X. has been defined for all ;' < k, for some

k.   We define  X,   as follows:

(a)First,letXfe=Ui<feXy.

(b) Pick a generator x   e jxvl - X,   and repeat in an analogous manner the

construction of the set X    by use of Xj, but now use x   in place of x..   Call this

set X

It is evident, from the manner of construction, that the groups (X, ) are pairwise

disjoint, i.e., intersect in the identity.   They are generated by disjoint subsets of

the free generators ¡xv| v £ Til.

Let the construction terminate at some ordinal number r.   Then, F =   ü,  ., X,

(free product).   We may certainly find a permutation n : xv —► x  /„, such that

(a 7r(X, ))= (X, ) and where a n\x     is a finite product of elementary simultaneous

Nielsen automorphisms (since an(X, ) may be converted to a system of x generators

by a finite application of elementary simultaneous Nielsen automorphisms).

The number of elementary simultaneous Whitehead transformations used to

convert !IVj, — , Wr\  Uf/jU ••■ Ur/jj  to a set of x generators can be given an

upper bound depending only on N.   This upper bound can be used to estimate the

number of these automorphisms used to produce a.

To reduce the set jWj, • • •, W \ to jxj, • • •, x^l will require no more than

L^Wj)+ • • • + L (W ) — r elementary Whitehead transformations (this follows from

J. H. C. Whitehead's results [8], [9] or see [3, pp. 166-167]).   Since r and LJW)

are both no more than N, the reduction process will require no more than Nr - r

Whitehead transformations.   In reducing the set f/j U H2 U • • • UFF, we are ap-

plying no more than M simultaneous transformations, where M < N.   Thus the

smallest number N of elementary transformations required to convert the W's to

the x's is no more than N(N - 1) + M + 1  (if we include the permutation with ex-

ponent sign), and therefore  N < N(N - 1) + N + 1 = N2 + 1.
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