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0-MODULAR BANDS OF GROUPS

BY

C. SPITZNAGEL

ABSTRACT.    The class of 9-modular bands of groups is defined by means

of a type of modularity condition on the lattice of congruences on a band of

groups.   The main result characterizes ö-modularity as a condition on the multi-

plication in the band of groups.   This result is then applied to the classes of

normal bands of groups and orthodox bands of groups.

Introduction.   The class of 0-modular bands of groups is defined in [ll], where

it is shown that 0-modularity is necessary and sufficient for a certain function to

embed the lattice of congruences AÍS) in a product lattice.   In this paper, we in-

vestigate some properties of 0-modular bands of groups, and find several conditions

equivalent to 0-modularity.   The main result gives a condition on the multiplica-

tion in a band of groups S which is necessary and sufficient for S to be 0-modular.

This result is then applied to the classes of normal bands of groups and orthodox

bands of groups, to obtain a very simple characterization of 0-modularity in these

classes.

1.   Preliminaries.   We use the notation and terminology of Clifford and Pres-

ton [2], with the following exceptions:

x~   : the inverse of x in H  ,  in a band of groups.

BÍS): the lattice of band congruences on S.

MiS):  the lattice of idempotent-separating congruences on  5.

|(x, y)S   : the congruence generated by the relation whose only element is

the pair (x, y) (see [2, Theorem 1.81).

By a band of groups, we mean a union of groups on which Green's K-relation

is a congruence.   Following [12], a band B will be called normal if   axya =

ayxa   fot all   a, x, y   £ B.   Theorem 8.2.9 of [6] lists several necessary and suf-

ficient conditions for a band to be normal.   A band of groups  S is called a normal

band of groups if the band S/si is normal.   It is known that a band of groups S

is a normal band of groups if and only it S isa strong semilattice (mapping semi-

group) of completely simple semigroups, namely the D-classes of S.   This result
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appears in [7], and in LlO].   Some necessary ingredients to obtain the result also

appear in [6].

A regular semigroup S is called orthodox if its set  F„  of idempotents forms

a subsemigroup.   Orthodox semigroups have been studied in [4] and elsewhere.

If A  is a subset of a semigroup S,   then  (A ) will denote the subsemigroup of .9

generated by A.   Of special interest is the subsemigroup (Es),   which has been

studied in [3J.

If S is any regular semigroup, then the ö-relation on A(S) is defined by

(p, t) £ 0 if and only if p n (Fs x Es) = r n (Es x E$) (see [8]).   It is shown in

[9J that if S is any regular semigroup, then 0 is a complete lattice congruence

on ACS).   The ö-relation provides an enlightening means of viewing A(s), par-

ticularly in the case that S is a band of groups (see [ll]).

Now let S be an arbitrary semigroup.   If p, y £ A(s\ and y C p, then the

relation ply on S/y defined by p/y = [iyBix), y5(y))| ix, y) £ p\ is a congruence.

Moreover, the lattice y V A(5) is isomorphic with SAS/y) under the map y V r —»

(y V r)/y.   In particular, if y Ç p, r, then  (p A r)/y = (p/y) A (r/y), and (p V r)/y

= (p/y) V (r/y).   These facts are readily verified, as is pointed out in [8].

2.   ö-modularity.   The following generalization of the concept of modularity

is defined in [ll]:

Definition 2.1 [ll, Definition 3-1 lJ-   Let  L be a lattice, and C a lattice

congruence on   L.   We say that  L  is ¿^-modular if the conditions  a > b,   (a, b) £ Ç,,

a A c - b A c,   and zj V c = b V c,   tot elements a, b, c £ L,  imply that a = b.

The strength of the (¿-modularity condition depends, of course, on the lattice

congruence £.   For instance, if C is the congruence  L x L,   then (¿-modularity

reduces to modularity.   If Ç, is the diagonal congruence on  L,   we obtain a triv-

ial condition.

We agree to call a semigroup S (¿-modular, provided that ACS) is ¿¿-modular.

In particular, taking z¿ to be the congruence 0 on A(s) yields the notion of

ö-modularity.   Several basic classes of semigroups are ö-modular.   It is pointed

out in [ill that bands and groups are ö-modular.   Also, we will see below that

completely simple semigroups are ö-modular.

The class of Ö-modular bands of groups is particularly interesting, in view

of the following result:

Proposition 2.2 [ll, Theorems 3.14 and 3.151-   Let S be a band of groups,

and define if/: A(s) -* B(S) x M(s) by if/(p) = (p V K, p A K).   Then if/ is a lattice

embedding if and only if S  is 0-modular.

In view of this result, we regard ö-modular bands of groups as being those

whose lattice of congruences can be embedded in a natural way into the product



1973] e-MODULAR BANDS OF GROUPS 471

of certain sublattices. With this in mind, the main theorem of this paper (The-

orem 4.9) can be interpreted as providing information about the structure of S,

from information about the structure of the lattice of congruences on S.

We will now show that 0-modularity is preserved under homomorphisms, but

first we need some preliminary results.   The following lemma is due to Lallement.

Lemma 2.3 [5, Lemma 2.2J.   Let S be a regular semigroup, and <P : S —> T

a surjective homomorphism.    Then  ET - {<pie)\ e £ EA.

Lemma 2.4.   Let S be a regular semigroup, and p, r, a £ Ais) such that

a C p, r.   Then p 0 r if and only if p/a 0 r/cu.

Proof.   By Lemma 2.3, we have Es/a= Ja-He)! e £ Es\.   Then if p d r, we

have  aHe) pi a aK/) <=>ep /«er /<=» aHe) r/a aH/), so that pi a 0 r/a.   The

converse argument is similar.

Lemma 2.5.   Suppose S is a band of groups, and <p: S—>T z's a surjective

homomorphism.   Then  i<P x <p) uiA = fij..

Proof.   We first note that T = i-)x€S f[H  ], so that T is a union of groups.

Thus the K-classes of  T  are groups.   Now it is easily seen that for any semi-

group,  if x f) [Ks] C KT.   Conversely, suppose tlKJ.t2, and let py p2 £S

such that  tip) = ty   Let e{ be the identity of Hp., tot i = 1, 2.   Then fie.)

KT fip) = t y   But vie) is an idempotent, so since Htl = Ht2 is a group, we

must have  fie A = <pie 2) is the identity of Ht. = Ht2.   Now let s. = p ,e 2,  and

s 2 = ejP2*   Then since  p j X e j,  and  p2 K e_,   and since K  is a congruence, we

obtain  SjKs2.   Moreover, we have fis j) = <pip y)<pie 2) = t ,<pie A = t.,  and  <f>is A =

f>ie y^ifiip2) = <piel)t2 = t2, completing the proof.

Corollary 2.6.   Suppose S is a band of groups, and ip: S —• T is a surjective

homomorphism.   Then  T is a band of groups.

Proof.   Having already noted that T is a union of groups, it remains to show

that Kj. is a congruence.   So suppose  t. iiT t,,  and  t,  £ T.   By Lemma 2.5,

there are elements  s,, s, £ S  such that s.Ks,,   and ipis ) = t..   Let s, eS

such that  fis A = £,.   Then since K^ is a congruence, and again by Lemma 2.5,

we have í.í, = ^(s.sjKj. p(s2s,)= i,/,.   Thus K~ is a right congruence.

Dually, KT  is a left congruence.

We can now prove

Proposition 2.7. // S is a d-modular semigroup, and y £ AiS), then S/y is

a d-modular semigroup. If S is also a band of groups, then S/y is also a band

of groups.
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Proof.   The second statement follows from Corollary 2.6.   Now suppose that

p/y C r/y ate ö-related congruences on S/y.   Then p Ç r, and by Lemma 2.4, these

are ö-related congruences on S.   Now suppose there is some congruence  a/y on

S/y such that p/y V a/y = r/y V a/y and p/y A a/y = r/y A a/y.   Rewriting

this, we have  (p V a)/y = (r V a)/y and (p A a)¡y = (r A a)/y, so that p V a =

r V a and p A a = r A a.   By ö-modularity of S,   we conclude that p = r, and

hence p/y = r/y.   Thus  5/y is ö-modular.

The property of ö-modularity is unfortunately not preserved under direct prod-

uct, as the following example shows.

Example 2.8.    Let S = \e, a, f, b\ be the semigroup given by the table

;    a    f    b

e    a    j    b

b    fa    e

f     b    f     b

b    f     b    f

Then S is isomorphic with the direct product of the two-element semilattice with

the cyclic group of order two. Each of the factors is clearly ö-modular; and it is

not difficult to show that S is not Ö-modular (see [ll, Example 3.7]).

We shall see in Example 4.15 below that the property of ö-modularity need

not be inherited by subsemigroups.

3. Conditions equivalent to ö-modularity. In our first result, we use Prop-

position 2.2. We will also have occasion to use the following results from [llJ,

concerning bands of groups:

(a) (p V K, p) e Ö for all p £ A(S).

(b) The function if/: A(s) — B(S) x M(s) defined by if/(p) = (p V K, p A H) is

one-to-one and A-preserving (without the assumption of Ö-modularity).

As usual, the idempotents  Es  oí any regular semigroup form a partially ordered

set, under the ordering / < e  if and only if ef = fe = f.   We can now prove

Proposition 3.1.   Let S be a band of groups.   Then S is 0-modular if and only

if the following condition is satisfied:

(*)   For each pair of idempotents  e, f with f < e,  and for each x £ He,   y £

H ,,   then x p e  for every congruence  p such that x p y.

Proof.   Suppose S is ö-modular, but that condition (*) fails to hold.   Then

there exist idempotents  e, /  with  f < e,   and x  £ He,   y  £ H,,   and some congruence

p  such that x p y,   but  (x, e) ^ p-   We do, however, have   e (p V K) /,   so that

e p f since p V Hö p.    Let r be the congruence on  S  generated by the relation

\(f, y)\.   Since D ,< D    in the natural partial ordering of the -D-classes, we have
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t n (D   x D ) = AD  ; that is, r identifies no two distinct elements of D .   Now
e e e e

ie, x) £ K,   and  e p f r y p x,   so that  ie, x) £ ip V r) A K.   But  ie, x) £ p A K  by

assumption, and so by the above remark about r,  we have (e, x) £ (p A H) V

(r A K).   Thus (p V r) A H / (p A K) V (r A K), so that the function iff. AÍS) ->

Bis) x Mis) is not V-preserving.   But this contradicts  Proposition 2.2.

Conversely, suppose (*) holds.   By Proposition 2.2, it will suffice to show

that the function  iff: AiS)     ' BÍS) x MÍS) is an embedding; and since if/ is always

one-to-one and A-preserving, it will suffice to show that ip A K) V (r A K) =

ip V t) A K for each p, r £ AiS).   Now it is obvious that ip A H) V (r A H) Ç

ip V r) A H.   On the other hand, suppose  ix, y) £ ip V r) A H.   Then x H y,  so that

x  and y  lie in the same maximal subgroup, which we will label  G.   Let e  be the

identity of this group.   Since  (x, y) £ p V r, there exist elements z ., z2, • ■ ■ , z

such that xpz,rz-.p...pz     , r z   = y.   For each  i,  let v . = ez.e.   Thenr12r r       72 — 1 72 •/ 2 2

clearly xpv^rv2p..-pv  _ , r *y   = y.   Moreover, each zv. lies either in G,  or

in some J^-class below  D    in the natural partial ordering of the -O-classes.   If all

v. are in G,  it is obvious that ix, y) £ ip A K) V (7 A H).   Otherwise, let ; =

miniz I zv. f G[.   Then v. £ G,   but for i < /',  zv. e G.   Thus, letting  a alternately

denote p and r, we have x (a A K) y. (a A K) ¡v, (a A K) • • • (a A K) v.   , av..
12 ;- 1 j

Let / be the identity of Hv..   Then / = v~  v. = iez .e)     iez .e), so that fe =

iez .e)~   iez ,e)e = iez .e)~   iez .e) = f.   Similarly writing  / as  v .v~   ,  we see that
; 7 ; J ' ' 6 ' 7  1    '

ej = f,   and so /< e.    But since 77. % G,   we must have / < e.   Then by   ( * ), we

have v.   , a e,  and thus v.   , (a A K) e.   Now let k = maxiz | v. k G\-   Then
7-1 7-1 '    z T

vk «f G,   but for 7 > 1%,   v. e G.   Thus vk a vk   { (a A K) z;,   2 (a A K) • • • (a AH)

v   = y.    Letting g  be the identity of the group Hy),-   and proceeding as above, we

see that g < e,   and hence v,    , (a A K) e.   Thus we have x (a A K) v j (a A K)

• • • (a A K) v.   , (a A K) e (a A K) v,   , (a A K) • • • (a A K) v   = y.   Thus ix, y)
] —  1 fe + l TZ-7 J

£ ip A K) V (7 A K),  which completes the proof.

We include Propositions 2.2 and 3.1 in the following theorem.

Theorem 3.2.   The following conditions on a band of groups S are equivalent:

(i)   S  is d-modular.

(ii)   The function  if/: Ais) -» BÍS) x M(s) defined by iffip) = ip V K, p A K)

z's an embedding.

(Hi)   Condition  (*) of Proposition 3.1.

(iv)   For each pair of idempotents e, f with f < e,  and each x £ H ,  y £ H,,

we have  if, y) £{iy, x)\   .

(v)   For each pair of idempotents  e, f with f < e,   and each x £ H ,  we have

if.fx) e\ie, /)!*••

Proof.   The equivalence of (i), (ii), and (iii) has already been demonstrated.

We will now show that (iii), (iv), and (v) are equivalent.
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(iii) implies (iv):   Suppose (iii) holds, and let e, f, x,   and y be as in (iv).

Let p = {(y, x)!   .   Then x p y,   so by (iii), x p e.   But (p V K, p) e Ö, and (e, f)

£ p V H,  so we have (e, f) £ p.   Thus f p e p x p y,   and hence (iv) holds.

(iv) implies (v):   We first note that for e, f,  and x as in (v), we have

i(x, fx)\* = \(e, /)!*;  for  (e, f) = (e, /e) = (xx~\ fxx~l) e[(x, /*)}*, and  (x, fx) -

(ex, /x) e !(e, /)[*.   Now taking y = /x in (iv) yields (/, /x) e {(/x, x)|* = i(e, /)!*,

whence (v) holds.

(v) implies (iii):   Let  e, f, x,   and y  be as in (iii).   By (v), we have  (/, fx) £

\(e, j)\   •   Let p be as in (iii); that is, x p y.   Then e (p V K) /,   so that e p f

since  (p V K, p) e 0-   Thus  (/, /x) e i(e, /)!    C p.   But then since x p y,   we have

y = fy p fx p f.   Thus x p y p f p e,   and (iii) holds.

Since every completely simple semigroup vacuously satisfies conditions (iii),

(iv), and (v) of Theorem 3.2, it follows immediately that such a semigroup is

ö-modular.

The next theorem shows that in order to check a band of groups for ö-mod-

ularity, it suffices to check each subsemigroup of the form  D   U D.,  where  e

and / are idempotents with f < e.   We first need a lemma.

Lemma 3.3.   Let S be a band of groups, and let e, f be idempotents with

f < e.   Then f commutes with every element of H .

Proof.   Let x £ He,   and consider the element x~ fx.   We first note that

x~  fx is idempotent, for x~ fxx~ fx = x~ fefx = x~ fx.   Also, since H is a

congruence and x K e,   we have x~  fx K efe = /.   Then since each K-class con-

tains only one idempotent, we must have x~  fx = f.   Then  xf = x(x~  fx) = efx =

fx,   completing the proof.

It will also be convenient to introduce some notation.   Theorem  1.8 of [2]

determines the congruence  p generated by (i.e., the smallest congruence contain-

ing) a given relation  p0  on a semigroup S.   We will be particularly interested in

this in the case when p0  is a singleton pair \(e, f)\ of idempotents.   In this case,

it follows that elements  x  and y  of S  are p-related if and only if there exists a

nonnegative integer ñ,   and elements a., b. (i = 1, 2, • ■ -n) of S such that

x= axgbx

alSbi = a2Sb2

a2gb2 = a3gb3

aigb3

«ëbn = y
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where g denotes either e or /.   If this can be done, we will say that there is a

p-chain (or simply a chain) from x to y,  and we will call the number 72 its length.

Of course, there is no loss of generality in assuming that such a chain has mini-

mal length, and this will always be the assumption.   In this case, we may assume

that the g  in the chain alternately denotes  e  and / in its vertical steps, lest

there be a chain of shorter length.   It is possible, however, that g could denote

the same element in horizontal steps of the chain.   For ease of notation, we will

agree to write the above chain as

alefbl

aXebl = fl2?2

fl2^2 = ö3?3

aj¿z,
ie   3

a fb  -
ne   72

We can now proceed with the theorem.

Theorem 3.4. Let S be a band of groups, and for each pair of idempotents e,

f of S with f < e, let T(e, f) = D IJ D ~ Then S is 0-modular if and only if each

T(e, f) is 0-modular.

Proof.   Suppose first that each  T(e, f) is ö-modular.   Let  e  and / be idem-

potents with f < e.   Then by Theorem 3-2(v), it suffices to show that if x e H ,

then  (/, fx) £ \(e, f)\s ■   But by ö-modularity of T = T(e, f), we have (/, fx) £

\(e, f)\T.   But certainly \(e, f)\T C ¡(e, f)\s , so it follows that S is ö-modular.

Conversely, suppose that S is ö-modular, and that e and / are idempotents with

f < e.   Let  T = T(e, f), and let g < k be idempotents of T.   Then for x £ H,, since

S is Ö-modular, there is a chain in  S  from g  to gx:

g=alkbl

a,b, = aAb
lg   1        2k

aA-b^
2g   2

ab   = ex.
n o    7, o72g    72

It cleariy suffices to show that these a., b ■ can be chosen from T.   Now gxg = gx

by Lemma 3.3, so that multiplying each entry in the above chain on each side by

g,  we obtain the chain
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8 = ««!**!«

Saitbi8

ga kb g = ex.
°    72g    72° °

Thus we may assume that in the original chain, a. £ gS  and b. £Sg.    with this

assumption, since g = a j? b , £ a yS n Sb j, we have a , J\ g à. b..   Since D    is

completely simple, we then have a.gb.  £H  .   But also, a.kb.  £ D  ,  so a.kb.=

gdykbyg £ gDggCHg.   Thus algbl = a2^b2 £ Hg.   So there is an element y £ H

such that g = a'28kb2y = y«2f^ 2*   Thus g £ a2S D Sb2,  so we obtain fl2 ÍR g £. br

Hence certainly a2> b2 £ T.   Repeating the argument, we see that all a., b .  are
*

in  T.   Thus  ig, gx) £{ik, g)\T,  so that T is 0-modular

4.   The main result.   In this section we obtain a condition on the multiplica-

tion in a band of groups S which is necessary and sufficient for S to be 0-mod-

ular.   We then apply this condition to 0-modular orthodox bands of groups and

0-modular normal bands of groups to obtain information about their structure.   We

begin with a preliminary discussion of the idempotents in a band of groups.

Lemma 4.1.   Let S be a band of groups, and let  e, f,   and g  be idempotents

with f, g < e.   Let f*g denote the idempotent in H, ,  and g *f the idempotent

in H   ..    Then f * g, g * f < e.

Proof.   Since / $ / *g £ g,   we have  / *g = fif * g)g-   Then  eif * g)e =

efif * g)ge = /(/ * g)g = f * g,   so that f * g < e.   But obviously f * g \= e,   since

f *g and e ate in different -f-classes, and so / * g < e.   The result for g * f is

dual.

Lemma 4.2.   Let S be a band of groups, and let e, f be idempotents with f

< e.   Let G = Er>, OeSe,  and let T = U  €(~H •   Then  T is a completely simple

subsemigroup of D,.

Proof.   Let a, b £ T,   and let g, h be the idempotents in H . H,  respectively.

Then abK gh K g * h,  and by Lemma 4.1, g * h < e.   Thus g * h £ G,   so ab £ T,

establishing that T is a subsemigroup.   Moreover, a Ji^ ab »Lc b;  and since T is

a union of groups, and hence regular, it then follows from [l, Proposition 2] that

a Jt_ ab ¿~T b.   Thus  a jJj- b,   implying that  T is bisimple.   Since the idempotents

of T  are also idempotents in  D,,  and are thus primitive, it follows that they are

primitive in  T.   Thus,   T is completely simple.
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Proposition 4.3. Let S be a band of groups, and let e, f be idempotents with

f < e. Let F = (E/j , n eSe) O H ,. Then F is a subgroup of H„ but is not neces-

sarily normal in  H,.

Proof.   It is obvious that F is closed under product.   To see that F is also

closed under taking inverses, let p £ F.   Let T be the subsemigroup of Lemma 4.2

which is associated with (e, /).   Then p £T,   so by Lemma 1.1 of [il, p has an

inverse  q  in  T which is also a product of idempotents in   T;  that is,  q £

(ED, O eSe).   But then fqf is also an inverse of p.   For (fqf)p(fqf) = fo(fpf)qf =

IqPqf = /<?/;   and  p(fqf)p = (pf)q(fp) = pqp = p.    But fqf £ fTf Ç fDffÇ Hf,   and so
fqf = p~ l.   But q £ (EDf O eSe),   so fqf £ (ED/ DeSe) n Hf = F.   Thus  F  is a

subgroup of H,.   We will see in Example 4.15 that F need not be normal.

Our next proposition relates ö-modularity with the normal subgroup generated

by the subgroup F  above.   We begin with some lemmas.

Lemma 4.4. Let S be a band of groups, and let e, j be idempotents with f

< e. Let a, b £ S such that a Â f X. b. Then a~ ae £ ER n eSe, and ebb~ £

El., n eSe.

Proof.   Since fe = f,   and a~  a ju f,  we have a~  ae e D      Then since a~

% f,  we have fa~   = a~  ,  so that f(a~ ae) = a~  ae.   Thus a~  ae £ R ,.   To see

that a~  ae is idempotent, note that (a~  ae)(a~  ae) = (a~ lae) f(a~ ae) = (a~ la)

ief)ia~ ae) = ia~  a)fia~  ae) = ia~ a)ia~xae) = a~  ae.   Moreover,  eia~  ae)e =

ea~  ae = e(fa~  ae) = (ef)(a~  ae) = f(a~  ae) = a~  ae.   Thus  a-   ae£ER.C\eSe.
— 1

The result for ebb        is dual.

Lemma 4.5. Let S be a union of groups. Let f, g, h be idempotents, and

a, b £ S such that a ¡\ g J\ f X h K b. Suppose that N is a normal subgroup of

H = H. containing gh.    Then ab £ N  if and only if afb £ N.

Proof.   Let x = af,  y = fb,   and  p = gh.   Then x, y £ H,   and  p £ N.    Further?

more,  xy = affb = afb,   and xpy = afghfb = aghb = ab.   Thus, it will suffice to

show that xy £ N  if and only if xpy £ N.    But now  (xpy)(xy)~    = xpyy~ lx~    =

xpfx~    = xpx~     £ N  by normality of N.   Thus xy  and xpy  lie in the same right

coset of N  in  H,   and the result follows.

Proposition 4.6.    Let S  be a 0-modular band of groups.   Then whenever e, f

are idempotents with f < e,   the product f ' H    is contained in the normal subgroup

N    of H,   generated by  F = (Er), O eSe) O H,.

Proof.   Let x € H  .   By Theorem 3.2(v), we have (/, fx) £ p = \(e, f)\   ■   Hence

there exist elements  a., b . oí S  such that
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/=fli?l

fli>i =  °2?2

2e    2

a 7 b   = fx.
ne   72       '

Following the proof of Theorem 3.4, we may assume that a. J\ f =L b. tot all   i.

Now letting g. - a~  a.e,   and h . = eh b~   ,   we have a .eb . = (a .p .)(¿ .è .), and°    °Z 2 2 2 2     2        ' 2 2 î°2 Z     2

a.fb . = ia .g) fih .b).   Thus, letting a .= a g .,  and b.=h.b., we can rewrite the

above p-chain as

/= a'-b\

a'Jb'^ - a'fb'

a'2'_b2 = .-.

a' I b' = fx,
72—     72 '

where the symbol - indicates that no element appears.   Moreover, we have a'.

Kg.ÂfjLh.jib-, tot each  i.   So applying Lemma 4.5 to each vertical step in

the above chain, and using the fact that f £ N,,  we see that every entry in the

chain is in  N ,.   In particular,  fx £ N..   Thus / ' H    C zV.,   as was to be shown.

The converse of this proposition is also true.   Before we prove it, however,

we need another lemma.

Lemma 4.7.    Let S  be a hand of groups, and let  e, f be idempotents with

f < e.    Let  p £ (EDf D eSe).   Then  ip, f) £ {ie, f)\ *■

Proof.   Let p  denote  {ie, f)\   ■   It will suffice to show that g p f,   tot every

g £ E ¡y, O eSe.    For in this case, writing p = g yg 2 • • • g  ,  where each g . is in

Ed . n eSe,  we have p = g yg 2 • • • g    P //■■•/ = /■   So suppose g £ Ep, D eSe.

Then fgf p ege = g  since g £ eSe.    But since  D . is completely simple,  fgf K /.

Thus  ig, f) £ p V K.   Since (p VK, p) £0, we then have ig, f) £ p, completing

the proof.

We can now prove

Proposition 4.8.    Let S  be a band of groups such that whenever e, f are

idempotents with  f < e;  then f ' H     is contained in the normal subgroup N, of

H. generated by  F = (Er/, n eSe) n H..    Then S  is d-modular.
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Proof. Since by Proposition 4.3, F is a subgroup of H,, it follows that N,

consists of all finite products of conjugates of F in H,. That is, the elements

of N, have the form W   ,h.p.h~l fot some 72,  where h. £ H.,  p. £ F.   Now let-
/ Z =1     2r2     2 I I        rI

ting p = \ie, f)\   , we have by Lemma 4.7 that p. p f fot each  z.   Hence h.p.h~

p h .fh~    = /,   and thus  ^n-xh .p .h~    p f" = f.   In particular, since f ' H     is as-

sumed to be contained in N.,  we obtain fx p f,   for every x £ H  .   Then by The-

orem 3.2(v), it follows that S  is ö-modular.

Combining Propositions 4.6 and 4.8, we obtain the following characteriza-

tion of ö-modular bands of groups.

Theorem 4.9. Let S be a band of groups. Then S is 0-modular if and only

if whenever e, f are idempotents with f < e then f ' H is contained in the nor-

mal subgroup N,   of H,  generated by  F = (Er), DeSe) n H,.

We now apply this result to the class of orthodox bands of groups.

Theorem 4.10. Let S be an orthodox band of groups. Then S is 0-modular

if and only if whenever  e, f are idempotents with f < e  then f ' H   = \f j.

Proof.   Since S is orthodox,  Er), Pi eSe is a subsemigroup, and hence

{ED    n eSe) C\H. = EDf n eSe n /L = {/ \.   The result then follows from The-

orem 4.9.

Before we apply Theorem 4.9 to the class of normal bands of groups, we

need some additional results.

Lemma 4.11. Let S be a regular semigroup, and ifi: S —> T a surjective

homomorphism. If e, f, eE_ with f < e, then there are elements e , f eE-

with f ' < e ',  and such that <fi(e ') = e, tp (f ') = f.

Proof.   The existence of idempotent pre-images of e  and / is the content

of Lemma 2.3.   The fact that e    and /    can be chosen so that /   < e    was first

brought to the author's attention by John Seiden (unpublished); a proof is given

here for completeness.   Having chosen  e    £ Es  such   that <fi (e ) = e,   restrict ifi

to the regular subsemigroup e Se    of S.   We have <fi[e Se   1= ifi(e  )<fi[S]<fi(e  ) =

eTe,   and / = efe £ eTe.   So applying the first part, we obtain /    £ E   >s   >,  so

that <fi(f ') = /.    But then clearly / ' < e '.

Lemma 4.12 [6, Theorem 8.2.91.    Let B  be a normal band, and denote the

JJ-classes of B  by <Ba| a e Y\, where  Y is the semilattice  B/JJ.   Then for all

ß < a in  Y,  and each e £ Ba  there is a unique element f £ B n such that f < e.

If S is a band of groups, we will denote the J)-classes of S by [Sj a £Y\,

where  Y  is the semilattice S/V.   It follows easily from Ll, Proposition 2] that
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if S is a band of groups, then Kca = H^ O iSa x S A-   It is also easy to see that

the D-classes of S/H.  can be identified with the rectangular bands Sa/Ks a. (For

the details, see L10J-)   We then have

Lemma 4.13.    Let S  be a normal band of groups, and suppose  e £ Fc^ and

ß < a.   Then there is a unique element f £ Es ß such that f < e.

Proof. Since S/si is a normal band, we obtain the existence of / from Lem-

mas 4.11 and 4.12, by considering the homomorphism K : S —► S/si. Now if there

is another element /' £ £c„ with /'< e, then (/, /') eiD, so that iK(f),}i if')) e

Î)c/K.   By Lemma 4.12, we then have Jr^ (/) = KHf');  that is, / K /'.   Hence

We now have

Theorem 4.14.   Let S be a normal band of groups.   Then S is d-modular if

and only if whenever e, f are idempotents with f < e  then f ' H    =[/!'■

Proof. By Lemma 4.13, ED n eSe = {/ i, and hence (ED n eSe) n H, = {f\.

The result then follows from Theorem 4.9.

We conclude with an example which shows that Theorem 4.9 cannot be

strengthened by replacing the condition f ' H   Ç N. with f' H   CF.   (This latter

condition, however, is clearly sufficient for 0-modularity.)

Example 4.15.    Let  G  be the dihedral group of eight elements.   That is,   G

is the group generated by two elements a and b,  subject to the relations a   =

b4 = 1,   and  ba = ab  .   The elements of G  are  Í 1, a, b, b , £>  , ab, ab , ab^\-

Of these,  a, b , ab, ab  ,  and ab    have order 2.   The center of G  is   Z - ¡ 1, b   (••

Let  T  be the completely simple semigroup X x G x Y,   where  X = ix, x \,

Y = {y, y'\, and the sandwich function  cb: Y x X —► G  is defined by  cbiy, x) =

a, cbiy , x) = cbiy, x ) - cbiy , x ) - 1.   One then computes that the idempotents of

T  ate  ix, a, y), ix ,  1, y), ix ,  1, y ),  and  ix,  1, y').   Furthermore, we have

ix, a, y)ix', 1, y') = (x, a, y'),        ix', I, y)ix, 1, y') = ix', a, y ),

ix', 1, y')ix, a, y) = ix', a, y), ix, 1, y')(x', 1, y) = ix, 1, y).

Hence, these elements are in   ÍET).   But since the element  a has order 2, and

cb takes on only the values   1  and a,  it is evident that  (Er)  consists precisely

of F,   together with the four elements computed above.   In particular, for each

idempotent  / of  T,   (E) n H,   is the set of elements in  //,   having G-coordinate

1  or a.   That is, thinking of H,   as a copy of  G,   (F) O f/    is a copy of { 1, a\.

But 1 1, a\  is clearly not normal in G,   for /jar?"   = bab* = ab b   - ab , and this result

carries over to H,.   The normal subgroup of G generated by   il, a\    ;s
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\1, a, b  , ab   \, and it is readily verified that the appropriate copy of this in   H.

is the set of elements in  H . having G-coordinate   1, a, b2,  or ab2.

Now let  S = T U Z,   where  Z  is the center of  G,   and extend the multiplica-

tion by defining

(*a> g' y.ß) • h = (xcl> #*' yß)>     h • (xa> z?' 7ß) = ^xa' ¿s> yß)

for xa e X,   y o £ Y,   h £ Z,   and g £ G.   It is straightforward to establish that  S

is a semigroup.   It is then obvious that S  is a band of groups having  T and  Z  as

its i)-classes.   The element  1  of Z is an identity for S,  and Z is the group of

units of S.   (We are now using   1  and  b    to stand for elements of both S  and G;

but there should be no confusion.)   For each idempotent / of T,   we have / < 1,

and F = (Ezj . O 151) n r/, = (E r) C\ H, isa subgroup of //,,  but, as we have

seen above, is not normal in H..   (We continue with the example, but note that at

this point, the proof of Proposition 4.3 is complete.)

Write / = (x  , g, y A, where / is an idempotent of T.    Then g  is either   1  or

a,   as we have seen above.   It is then easily seen that  F = \(xfí, 1, y A,

lxQ, a, yQ)\.   On the other hand,  / • Hj = / * Z = (xQ, g, yQ) ' il, b2\ = i(xn, g, yQ),

(xo' £^2, yo^-  ^his set *s tnen eitner i(*rj' *■ yo^' ^xo' b2, y0^' or ^x0' a' ^0^'

(x  , afc , yn)i,  depending on whether g  is equal to   1  or a.   In either case, we

see that / ' H j f F.

However, the normal subgroup of //,  generated by   F  is N, = KxQ, 1, y0),

(x  , a, y A, ix., &  , yQ), (x_, ae  , y0)!,  so we certainly have / ' H . C /V,.   It then

follows from Theorem 4.9 that S  is Ö-modular; and yet there exist idempotents

/< e (namely  e   = 1) in  S  such that f ' H   ¿F.

This example also shows us that subsemigroups of ö-modular bands of groups

need not be ö-modular.    For instance, the subsemigroup  Í 1, b  ,  ix ,  1, y ),

(x',  b , y')\ of S  is isomorphic to the semigroup of Example 2.8, which, as we

already remarked, is not ö-modular.

This paper is a portion of the author's doctoral dissertation, written at the

University of Kentucky.   I would like to express my gratitude to my advisor,

Dr. Carl Eberhart, for his numerous helpful comments and suggestions.
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