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INTERPOLATION BETWEEN CONSECUTIVE CONJUGATE POINTS

OF AN rzTH ORDER LINEAR DIFFERENTIAL EQUATION

BY

G. B. GUSTAFSON

ABSTRACT. The interpolation problem  xM+P      ,x<-"~ !) + •••+ P ,x = 0,
... n-1 0

x '(t.) = 0, i = O,- • • ,k . — 1, j' = 0, • • • , m, is studied on the conjugate interval

[a, t).(o)]. The main result is that there exists an essentially unique nontrivial

solution of the problem almost everywhere, provided k.+ •••+ k > n, and cer-

tain other inequalities are satisfied, with  a = t _ < i. <• ■ •< t    — T] Aa).

In particular, this paper corrects the results  of Azbelev and Caljuk (Mat. Sb.

51 (93) (I960), 475-486; English transi., Amer. Math. Soc. Transi. (2) 42 (1964),

233—245) on third  order  equations, and  shows that their results are correct

almost everywhere.

1. Introduction.  An interpolation problem for the rath order linear differential

equation

77-1

(1.1) Lx = %(n) +   2ft(i)x(t) = 0

fe=0

is the problem  of finding a solution  x(t) of  Lx = 0 satisfying the  multiple point

relations

(1.2) xu)(t.) = c,       i = 0, .... A.-l, 7 = 0,
'1

The coefficients  in (1.1) are assumed continuous  on  (- °o, °°), or if  L*  is to be

defined, pAt) is assumed  of class   C      0 < k < n - 1.  The points  t „, • • • , t     are

assumed to  be in strictly  increasing order, and the numbers  k. and  c.  are arbi-' ° i i]

trary, subject to  k. < n - 1.   The  investigation  here is directed toward  the  zero

problem, i.e., all  c ..= 0.

To simplify notation, write  k = (kQ, • ■ ■ , k   ), T = \tQ, • • • , t   \; the statement

"x(t)   has a zero of order  k at  T"  will replace "x(t) is a nontrivial solution of

(1.1), (1.2) with all  c... ----0". The symbol  |*|  is defined by  \k\ = ¿Q + ■ • . + km\

hence  x(t) has at   least   \k\  zeros, counting multiplicities, on  [<_, t   ].   The solu-

tion x(t) is said to have a zero of order exactly k at  T, or exactly  |/e|  zeros on

U0, ¿   ] if x(t) has the zeros specified, but no others on  [/„, /   ], counting mul-

tiplicities.
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The equation  Lx = 0 is disconjugate on a connected set  E if for ail solutions

x(t) é 0 with a zero of order ¿at   T C F it follows that  \k\ < re; otherwise, Lx = 0

is said to be conjugate on  E.

In the case of conjugacy on  [a, <x), 0ne can define with Leighton and Nehari

[5] and Sherman [9] a first conjugate point r] Aa) to the point a:  T] Aa) is the mini-

mum of all points  b > a  such that  Lx = 0 is conjugate  on  [a, b].   In [lO], Sher-

man proves that  r¡Aa) is a continuous,   strictly  increasing function of a, whose

domain is of the form  (- <*>, d), where  d < + 00.   Furthermore,  it is shown in [9] that

there exists a solution x(t) with a zero of order (p, re — p) at  ia, 7/.(a)¡ with x(/)

> 0  in  (a, 77,(a)).   The  largest integer  p  is denoted  p(a), and  q(a) is the exact

order of the zero at r¡Aa) fot the corresponding solution x(t).

The main result can now be simply stated: for almost all a in the domain of

r¡.(t), there is an essentially unique solution with a zero of order exactly k at 7,

where  k and   7 satisfy the relations

a = /0</,< ... < tm = Jfjia),

p(a)= |¿| -¿m,        ?(«)= |*|-Än,

p(a) + «7(a) - re > |£| - A„ - ¿m.

In the applications,  equations  Lx = 0 are exhibited such that pia) = a(a) =

re — 1  for every point, and the main theorem  just stated allows the following con-

clusion:  for all points a, there is a solution with precisely re simple zeros on

[a, Tjj(a)].

The proof of the main  result depends heavily on differentiability properties

of Tj.it), and in article  2  the  necessary preliminaries are presented.   Fortunately,

sophisticated techniques are not needed and the  proofs presented  here  are tedious,

but elementary.

The results contained herein correct the false statements of Azbelev and

Caljuk [l], and show that they were correct almost everywhere.  The author is in-

debted to the late J. H. Barrett, and T. L. Sherman, for their conversations on this

subject.

If Tn = {tQ«>'in'"'''mJ*  r-W0,— ,!j  and limn_/.n = /.,0</-TTz, then

one  writes   7   —► 7  as  « —»00.
n

Convergence Lemma.   If Lx = 0 has a solution with a zero of order k at  T ,

and 7   —> 7 as re —► <», then Lx = 0 has a solution with a zero of order k at T.
n

With the aid of the contraction mapping principle in [3, p. 260], one can prove

the following implicit function theorem.   It is different from that found in most texts,

because of the weak assertion of uniqueness.
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Implicit Function Theorem. Let H and K be open sets with (a, b) 6 H x K,

and suppose F(t, s) e Cl(H x K), F(a, b) = 0.

// F (a, b) 4 0, then a neighborhood L C H of t = a and a continuous function

g: L —* K can be found such that g(a) = b, and F(t, g(t)) = 0 for all t e L. Further,

for any h e C(L) with h(a) = b, there is a neighborhood M, a € M C L, such that

h(M) C K, and h(c) = g(c) at points c e M with F(c, h(c)) = 0.

2. Differentiability of 77,. The principal solutions uA.,a),...,u _,(-,a)

of Lu = 0 ate defined by the initial conditions

(D>uk)(a) = 8kj,      k, ; = 0, ...,n-l.

Accordingly, the principal solutions form a basis for the solution space of Lu = 0.

The Wronskian of solutions *,,••• ,x,   of (1.1) is the determinant of the kxk

matrix  (Dl~ x.) and is denoted by  W(x  ,...,x ).

The following lemmas will be used repeatedly.  The proofs are omitted.

2.1. Lemma (T. L. Sherman [9]).  Let u.(t) have a zero of order k. = (p., a.)1 ' 1      ri   V

at \a, b\, j = 1, 2.  // m = max{p2, q2\  and u v u2 6 Cm[a, b],  u^u2 4 0 in (a, b),

then there is a linear combination of u.   and u7 which has a double zero in (a, b).

2.2. Lemma.   The problem (1.1), (1.2) has a nontrivial solution if \k\ < n.

Let q(a) be the exact order of the zero at rjAa) foi an extremal solution on

[a, rj (a)]. Given a closed interval  F in the domain of 77,, the  sets

Ers = \a e F: />(«) = r, q(a) = s\,

1 < r, s < n — 1, exhaust  F, and by the Baire Category  Theorem the closure of one

of these sets must  contain a segment  G.  This  proves the

2.3- Lemma.   Let  Lx = 0 have a conjugate function  77.   defined on a closed

interval F C (— 00, 00).   Then there exists an open interval G C F and numbers r, s

such that

G C cl{a e C: p(a) = r, q(a) = s\.

It follows immediately from the convergence lemma that Lx = 0 has a nontriv-

ial solution of order (r, s) at \a, r).(a)\, for every a e G. Suppose a e E O G.

It follows from the following lemma that 7?. e C (U) fot some neighborhood U of

a.  The proof appears in article 6.

2.4. Lemma.   Let a belong to the domain of 77., aW assume there is a neigh-

borhood V of a such that Lx - 0 has a nontrivial solution x with a zero of order

(p(a), n - p(a)) at \t, t/jU)! and (Dq{a)-1x)(r¡l(t)) = 0, for each t £ V.  Then there

exists a neighborhood U of a such that   r/^ e C (U).
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In view of the  lemma, if ia: p(a) = r\ is dense in a segment  V, then there is

a closed nowhere dense subset F C V such that 77. £ C2iV — E). Hence the con-

jugate function 7/j  is of class  C    on a dense open subset of its domain.  Since

77    is increasing, 77    is differentiate off a nowhere dense set of zero measure.

2.5. Theorem.   The conjugate function 77.   z's differentiable off a nowhere dense

set of zero measure.

2.6. Corollary.   The points  t satisfying

r¡iis) - rj^t)

lim inf - = 0
s-z s - /

constitute a nowhere dense set of zero measure.

2.7. Example.   A differential equation such  that  17,(0) fails to exist.

Let Ly = 0 be the third order linear differential equation with C°° coefficients

on (- 00, 00) generated by the fundamental solutions  1, sin / sin 2/, cos / sin 2/.

Surely 77,(0) = zt/2, and there exist solutions with zeros of orders (2, 1) and (1, 2)

at Í0, 77,(0)!.  However, there is no solution with a zero of order (2, 2) at {0,

77,(0)!.  Let us show that this leads  to 77, e C (U — Jo!) for some neighborhood

U of 0, and the relations lim    n_ 77^/) = 00, lim    „     77   (/) = 0.  The nonexistence

of 77,(0) then follows by an elementary argument.

First,  let us argue that, for small  h > 0, the intervals  (- h, O) and (O, h)

satisfy the following condition: the only solution of Ly = 0 with a zero of order

(2, 1) at ia, 77,(a)!, a £ (- h, O), is y = 0, and the only solution of Lz = 0 with a

zero of order  (1, 2) at  \b, T¡Ab)\,  b £ (O, tí), is  z = 0.

Indeed,   suppose not.   Then, for example, there would be a sequence of points

/,</<•••   converging to  0  such  that  uJ.rj.it ), t ) = 0.   The function  u2it, t  )

converges uniformly on compact subsets to uAt, O), and since  uAt, O) has a

simple zero at 77.(0),  uAt, t ) has a simple zero at 77,(/ ) for all large re.  Let

Fit) = Wiu2it, O), u2it, 77j(0)), u2it, t )) tot fixed re,  re large.  Then  F(t) is one-

signed. However,

F(0) = -u¡i0, 0)u2i0, t/j(0))h2(0, in)<0,

F(t,j(0)) = - u\ (77^0), 0)^(77^0), ^(O))«^«», /„) > 0.

The proof for the right neighborhood of 0 is analogous.
2

The  lemma on differentiability of 77.  shows that 77,  is of class  C    on

i-h, ¿)-io!.
Since  uAx, 77^/)) = 0, for all t £ i-h, tí) - ¡O!, h small, the implicit function

theorem and  Peano's theorem (see [4, p. 95]) gives
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t¡[ (t) = u2 (t, rjjíí))/"!^, r),(/)).

The solution  uAt, r¡Ao)) is a linear combination of  uAt, 0)  and  uAt, rj.(0)), and

therefore  vanishes at  0.   Accordingly,   r¡.(t)—► °°  as   t —■» 0 —.  Similarly,

77j'(0= ufy^t), í)/a2'(í7jCí), í)

in a left neighborhood of 0, and 77, (/) —» 0 as  / —» 0 +.

It also follows that  77. (t) fails to  exist at integer multiples of  77/2, and hence

77     is nondifferentiable at a countable number of points.

3. Interpolation problems on the conjugate interval   [a, r¡.(a)].  It will be shown

below that, for almost all points  a  in the domain of  77., there is a nontrivial essen-

tially unique solution of the differential equation which has a zero of order k =

(/e„, ■ ■ • ,k   ) at   T = {/„,•••, t   S, where the variables considered satisfy the rela-
0 »! 0 IB '

tions

p(a) = kQ + •• • + km_v       q(a) = kl + • • ■ + km,

p(a) + q(a) - 72 > ¿j + • ■ ■ + km_l, a = tQ< •■■ < tm = rj^a).

The question considered here for the extremal integer p(a) appears to be

oriented towards maximation of the number of zeros at a of solutions of Lx = 0

having a zero  of order  k,   \k\ > n, at  {a, 77Aa)\.  If instead  one maximizes at

77.(a), one obtains an "extremal integer"  p*(a).   All results for p(a) extend to

results for p*(a).

The duality that appears  here is  no accident,   and its peculiarity is explained

by the following lemma,  which follows from the Lagrange identity.

3.1. Lemma.   The extremal integer for the adjoint of Lx = 0 is p*(a).

Let us  introduce   q*(a) just as   q(a) was introduced for the extremal integer

p(a).

3.2. Remark.   One can easily verify that, if  x(t) is a solution of  Ly = 0 with

a  zero of order   k = (kQ, • • • , k   ) at  T - \a = îq, t j, • • • , /    = 77 Aa)\, and

(i)  \k\ - k    > 1 + p(a),   \k\ > n, or

(ii)  \k\ - kQ > 1 + p*(a),   \k\ > n,

then  x(t) = 0.   These facts will  be  used repeatedly.

The following lemmas are fundamental to the   investigation of interpolation

problems on the conjugate interval [a, 77.(a)]; proofs appear in article 6.

3.3. Lemma.   Suppose p(a) + v > n, and there  is a solution x of (1. 1) with

a zero of order exactly k = (p(a) - u, u, v) at  T = \a, b, 77 Aa)\.

If T   = (t  , b, riAt )) —> T and Ly = 0 has a solution x   4 0 with a zero of
'«»'I« j n '

order k at  T , then there  is a solution y 4 0 of Ly = 0 with a zero of order

(p(a) - x - 1, u + 1, v — l) at  T.



242 G. B. GUSTAFSON [March

Further, y is essentially  unique, and if

r¡Atk)- rjAa)
lim inf-

fc-00 /, - a

z's positive, then y   'jas exactly pia) + v — 1  zeros on [a, 77,(0)].

3.4. Lemma.   Suppose pia) + v > r, u > 0, and Ly = 0 has a solution x ¿ 0

with a zero of order k = ipia) - u, u, v) at  7 = {a, b, 77.(a)!.

// 7   ={t  , b, 77,(/ )! —> 7,  Ly = 0 has a solution x    with a zero of K at
n n ' I    n y n '

Tn, and lim infk_tOC (t/^/^) - r¡)ia))/itk - a) > 0, then  Ly = 0 has an  essentially

unique  solution y é 0 with azero of order ipia) - u + 1, u — 1, v +  l) at  7.

Let us call a point a in the domain of 77.  distinguished if it satisfies the

following condition:

[/: pit) = pia), qit) = qia)\ is dense in a neighborhood U

of a, and  77, (a) exists and is positive.

Suppose that the distinguished points are not dense in  U.  Then there exists a

segment  V C U and a point f? e V such that p(è) = pia),  qib) = qia), and 77 ' it)

either fails  to exist of is zero for all  / £ V.  By the lemma on the differentiability

of 77,, we can assume that 77    £ C (V).  Hence  77JO) = 0 on  V.  This means that

77,   is constant on  V.  However, Sherman [lO] has shown that  77.   is strictly increas-

ing.  This proves

3.5. Lemma.   The distinguished points are dense in the domain 0/77,.

From the preceding lemmas,  one can draw the following conclusions; proofs

appear in article 6.

3.6. Theorem.   Let a be a distinguished point, and let b £ ia, r/Aa)).

If r is any integer satisfying  0 < r < pia) + qia) - re, then Ly = 0  has an

essentially unique solution y    with a zero of order ipia) - r, r, qia) - r)  at {a, b,

ri^a)].

3.7. Theorem.   Let a be a distinguished point, and suppose k = ikQ, • • • , k   ),

7 = i/Q,...,/m! with

pia) = kQ + ... + km_v       qia)= kx + • • • + *m,

pia) + qia) - re > k¡ + • • • + ¿m_P       a = tQ < • • • < tm = T\xia).

Then  Ly = 0 has an essentially unique  solution yit) é 0 with a zero of order k

at  7, and y(t) has exactly  \k\  zeros on [a, r¡A.a)].
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In a similar fashion, one can prove the same theorem  for p replaced by  q*, q

replaced by  p*.  However, the distinguished point a must be replaced by its proper

analog.  One  must be careful not to confuse  p*(a) and  q*(a) with the numbers

arising from the adjoint equation.  It is true that p*(a) is the extremal integer for

L*y = 0, but   this is   the   most   that   can   be   said.    Indeed,   if   L*y   =

W(y, 1, sin t sin 2t, cos t sin 2t), then  Ly = 0 has a solution with a zero of order

(2, 2) at iO, 77/2}, but L*y = 0 only has solutions with zeros of order (2, 1) and

(1, 2) at {0, 77/2}.  In this case, p(0) = p*(0) = a(0) = a*(0) = 2, whereas for L*y = 0

one has p(0) = p*(0) = 2 and o(0) = q*(0) = 1.

3.8. Theorem.   Except for points a belonging to a nowhere dense set of measure

zero, Ly = 0 has an essentially unique solution with a zero of order k al  T,

where k and T satisfy either of the following conditions:

(i) a = tQ <■• ■< tm = 77j(a),  p(a) = \k\ - km, q(a) = \k\ - kQ, p(a) + q(a) - n >

\k\ - kn- k   ; or

(ii) a = tQ <•••< tm = -n^a), p*(à) = \k\ - kQ,  q*(a) = \k\ - km, p*(a) + q*(a) -

72 >  \k\-kQ- km

For  72 = 3, Azbelev and Caljuk [l] falsely  claimed the existence  of solutions

with zeros of orders (2, 1) and (1, 2) at [a, 77^)} implies the existence of a solu-

tion with a zero of order (2, 2) at  {a, 77,(0)}.   The following sequence  of theorems

shows that such boundary  value problem behavior is correct  almost everywhere.

To illustrate the results further,  consider a 6th order equation with the fol-

lowing property (constant equations serve as examples):  for each  a e (c, d) and

each b € (a, 77,(a)), there is a solution of Ly = 0 with a zero of order (1, 4, 1) at

{a, b, 77,(a)}.  The results say that Ly = 0 has solutions with zeros of orders (1,

4, 1), (2, 3, 2), (3, 2, 3), (4, 1, 4), (5, 0, 5) at {a, b, 77^)}.  Further, Ly = 0 has

solutions with a zero  of order k at  T, provided the number of zeros in  [a, 77 Aa))

or  (a, 77 Aa) ] does not exceed 5.

3.9. Theorem.   Let  a  be a distinguished point, U a neighborhood of a,  be

(a, 77. (a)) - U, and for each t    €  U  there  is a sequence   \t,\ converging to

z    (t   4 tA with the property that  Ly = 0 has a solution with a zero of order

(p(a) - u, u, v) at \tk, b, r/^t^l.

If u > 0,  p(a) + v > n, then Ly = 0 has a solution with a zero of order k at

T, where the variables  involved satisfy the relations

(*) p(a) = \k\ — k   ,       v + u = \k\ — kQ,

p(a) + u + v - n > \k\ - kn - k   .
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3.10. Theorem.   There exists a nowhere dense set A  of zero measure with the

following property: for all a 4 A, the existence of a solution of Ly = 0 with a

zero of order ipia) - u, u, v) at  {a, b, r)A.a)\ for all b £ ia, 77Aa))  implies that

Ly = 0 has a solution with a zero of order k at  7, where the variables involved

satisfy relations (*).

4. Applications to  equations with constant coefficients.   Equations with con-

stant coefficients do not exhibit singular behavior  on  [a, 77.ia)], and the "almost

everywhere" results  of the preceding sections can  be applied  at every point.

4.1. Lemma.   Suppose Ly = 0 has constant coefficients.   Then

(i) If yit) £ 0 has a zero of order k = ikQ, • • • , k   ) at  7 = {/..., t   \, then

for any  /* £ (- 00, 00), the solution yit — /*)  has a zero of order k  at  t* + T =

U* + t  ,•••, t* + I   j.
U m

(ii) The domain of T) At) is (— <*>, 00), unless  Ly = 0  is nonoscillatory.

(iii) 77^/) = / + 77,(0).

(iv) pit) and qit) are constant functions.

4.2. Theorem.   Let Ly = 0 have constant coefficients.  Given arbitrary a - t

< t ,<•••< t    = riAa),  k = ikn, • • • , k   ),  7 = i/n, • • • , /   ! with p + q - re > k, +
1 m        <\ 0 m 0 772 ci _1

• ' .+ k       ,, p = \k\ — k   ,  q = \k\ — kn, there exists an essentially  unique solution

with a zero of order exactly k at 7.

A method for the systematic determination of the numbers p, q, 77.(0) will be

sketched below.  The author has found the method to be reasonably practical for

generating examples and counterexamples in the oscillation theory of higher order

equations.

Let  Ly = 0 have characteristic polynomial p(x) = 0 with complex roots  a. of

multiplicity  re.,  /'= 1, ...,k.  Number the fundamental solutions  u .,•••, u     so that

the first  re,   solutions are   tr exp ia, t), 0 < r< re, - 1, the  next  «2  solutions are

tr exp(a2/), 0 < r < re2 - 1, etc.

Define  Wit) = Wiu,, • • • , u ) and let   V (/) be the determinant formed from the
1 rz r

first r rows of W(0) and the first re - r rows  of  W(t),   1 < r < re — 1.

To determine 77,(z) let b   denote the least positive root of  Y it) = 0, if such

exists, and set b   = °° otherwise.  Then 77.(0) = min {b j, •••, b      j!, and by the

lemma above, 77A/) = / + 77^0).

To determine p  and q, observe that p = maxir: b   = 7/^0)!; to find a, define

X is, t) to be the  re x re   determinant constructed from the first  p rows of w(s),

the first  n — p — 1  rows of  W(t), and the rth row  of  W(t),   1 .< r < n — 1.  It is  easy

to verify that  q = maxiw: X^CO, 7/^0)) = 0 for   1 < r < v\.

Some remarks can be made  here which considerably  reduce the labor  involved.

To form  X(0, /),   write down the first column, which has form

xia, /) = [1, a, - . - , ap-\aeat, - - - , a"-P~leat, a'~ V]T.
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Then the first  77,  columns of X (O, t) ate  (¿Vda) x(a, t),  0 < k < 77. - 1.  Similar

statements hold for the remaining columns.   This procedure works equally well for

Y(t).

5. Applications to nth order equations generated from second order equations.

An 72th order equation  Ly = 0  is said to be generated from a second order equation

Ex = 0 if and only if every solution x of Ex = 0 satisfies  L(xn~ ) = 0.  Liter«

ture  on  such equations is reasonably plentiful,  and the reader is referred to Seda's

work ([6], [7], [8]), and the references therein.

The uniqueness  of Ly = 0 is a consequence of the following: if u and v ate

fundamental solutions for Ex = 0, then \vrun~r~~   !"3n *s a fundamental set of solu-

tions for Ly = 0.  To prove this statement, let x(t) = u(t) + pv(t); then 0 = L(x"_1)

= 2"~0 C pr, where  C   = (n~ )L(vrun~r~  ).  A polynomial vanishes identically only

in case all coefficients vanish, and hence  L(vTun~T~ ) = 0,  0 < r < n — 1.  Put

x (t) = vT(t)un~T~ l(t),  0 < r < n - 1.   The  uniqueness follows if W(xQ, •••»*_ j)

is never  zero.

To prove that  W(xQ, • • • , x _  ) is never zero, the identity

WJ*1 L

wk    dt k + l

= W(a     ..., u,., u)ik+r

is used,  where  W, = W(zz„, • • • , zz ), 0 < k < 72 — 1.  The identity is proved by con-

sidering both sides to be differential equations in p.  One calculates

W(upvm-p, uqvm~q) = (o - p)^9-Vm-i'-9-1W(I,, u).

it c

found satisfying

By induction it can be verified that nonzero constants  A     ,  0 < p < q, can be

W(x0, . . . , Xp) = A^t/^H«-*-1 V(v, a),

W'^0' • • • « Vl' \) = Agp(u/v)^PW(x0, ..., Xf>).

In particular, these  identities are satisfied for p = n — 1, and W(x  ,. • • ,x  _.)

is a nonzero  constant multiple  of  Wn~  (u, v).  Since   u and  v ate fundamental for

Ex - 0,  W(x., • • • , x      ,) is never zero. •
7 U n — 1

Therefore,  Ly = W(y, x , • • • , x  _ l)/W(x(j, ■ ■ • , x  _.), and this representation

is independent of the choice of basis \u, v\.

5.1. Lemma.   Let  Ly = 0 be generated from Ex = 0.  Then

(a) Ly = 0 aTzfl" Ex - 0 ¿awe //be same conjugate function rj.(t), and 77. £ C ,

i7j(f) > 0.

(b) p(a) = a(a) = 72-1, whenever r¡Aa) exists.

(c) L = L*  if and only if E = E*.
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5.2. Lemma.   Let u be any nontrivial solution of x" + a(/) x = 0, and put v =

u, x = um,  Qf = ttz(ttz - 1) ■ . . (ttz - r - l)um-rvr, and yr = rim - r + l)?x(r-1),   r =

1,2,   yT=ritn-r + l)q[xlT~ n+ 2£~ \ y<r-*-2>] /or r > 3.   7¿ere  Lz = y(m + lK

2™, y-m~r> = 0  z's /¿e equation  of order m + 1 generated from  x" + qit)x = 0.

5.3. Example.   The first three equations generated from  x" + qit)x = 0 are

given by

y    + 4qy' + 2q'y = 0,

y iv + lOay" + 10a'y! + (9a2 + 3a" )y = 0,

yv + 20ay'" + 30a'y " + (18? + 64a2)y' + (4a" + 64qq')y = 0.

By Peano's Theorem (see [4, p. 95]), the fundamental solutions  a At, s), • • • ,

u      At, s) defined earlier satisfy the relations
n— I J

duA,t, s)/ds = p0is)un_lit, s),

dukit, s)/ds = pkis)un_At, s) - uk_At, s),       1 < k < n - 1.

Here, Ly = y(n) +pn_1(/)y(n_1) + .-•+p0(/)y.  Let  F (/) be the vector of length  a

with components  uqirj ^t), /),  0 < z < a — 1,   1 < q <n — 1.  The above results

and a short induction argument show that F (/) = 0 for 1 < a < re — 1.  Hence we

the following:

5.4. Theorem.   Let  Ly = 0 be generated from  Ex = 0.   Then  uAt, a) has a

zero of order ik, k)  at {a, r¡ ia)\, 0 < k < re — 1.

5.5. Corollary.   The values of a As, t) at s = r¡.it) duplicate according to the

relation

«l-*+l(V<>' l) = iv'^tu^XriAt), t),

¡or p + k < re — 1.   Therefore, u  _, _ As, t)  has an odd or even number of zeros in

it, TjAt)), accordingly as k  is even  or odd.

If one  applies the theorems of the preceding section, then the following results

are obtained:

5.6. Theorem.    // Ly = 0 z's generated from Ex = 0,  k = ikQ,. • • ,&m)<  T =

i/0,...,/m!, a = tQ<t1  <...<tm = rjlia), n - 1 =.|*| - *m = |*| - *„, kl+-..+

k         < re — 2, then there exists an essentially unique solution of Ly = 0 with a

zero of order exactly k at  7.

5.7. Corollary. For any point a, there exists an essentially unique solution

with re simple zeros on [a, 77^«)]. Further, the interior zeros can be assigned

arbitrarily.
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5.8. Theorem.   Define rfx(t) ̂  ■qA.rf^Kt)),  jy°(i) = t.  If t Q < /, <• . .< tm =

771(/Q),  T = \tQ, • • • , tm\,  k = (kQ, • • • ,k) and y(t)  is an essentially unique solu-

tion of Ly = 0 (generated from  Ex = 0) with a zero of order exactly k at  T, then

y(t) is an essentially unique solution of Ly = 0 with a zero of order exactly k at

rfx(T) = |^(i0),. • . , r¡\(tm)\ for p = 0, + 1, + 2, • • • .

5.9. Corollary.   Given r] S\t)  and Ly = 0  (generated from  Ex = 0), and the zeros

of y(t) on [0, 77.(0)], all other zeros of y(t) on (- 00, <x) are known.

5.10. Corollary.   Given 77 Ci) with domain (— 00, 00) and Ly = 0 (generated from

Ex = 0) of order n, all solutions with one zero are  oscillatory for n odd, and all

solutions are oscillatory for n  even.

5.11. Example.   The functions  77 (t), p(t), q(t) do not determine the equation

Ly = 0.

Let  c be any real  number, and put  a — c + i,  b = c + 3z, and define

Lcy = (D - a) (D - a) (D - b) (D - b)y

where  D = d/dt.  It is possible,  but tedious,  to verify that L  y = 0 is generated

from  Ex = x'+px+qx = 0 where p  , q    satisfy the relations  3/>   = - 2c,

lip   + 10a   = 6c   + 10.   Further, the conjugate functions for all equations are the

same, and hence  77.(/) = t + tj by consideration of the equation  E x = 0 for c = 0.

By theorems from this section, p(a) = q(a) = 3 for all  a.

5.12. Example.  Consider the third order equation

Ly =(D -a)(D ~b)(D - b)y = 0

with a real and Im (¿0 > 0.  The following assertions hold:

(i) If Re (a - b) > 0, then p(t) = 1,  q(t) = 2 fot all t.

(ii) If  Re (a - b) = 0, then  p(t) = q(t) = 2 for all  t, and  77 (r) = t + 2n/lm(b).

(iii) If  Re (a - b) < 0, then  p(t) = 2,   q(t) = 1  for all  t.

A consequence of this example  is that there exists  infinitely many third order

equations with the same functions  p(t), q(t), r¡,(t).

6. Proofs of the theorems.

Proof of Lemma 2.4.  Let b = r]Aa).  Define G At) and H At) as follows:

G,(0 is the matrix formed by the first k rows of W(uQ(t, a),. • • ,un_A.t, a)), and

H At) is the zfeth row, 1 < k < n.  Define  F(t, s) to be the determinant of the 72 x 72

matrix formed from the matrices  G   .At), G^_   .  ._ }(s), H      As).  A submatrix is

omitted if its subscript is zero.

It will be shown that the implicit function theorem is applicable to the func-

tion F(t, s). Since there is a nontrivial solution x of the equation with a zero of

order  (p(a), q(a))   at  {a, b\, we have   F(a, b) = 0.   If  Fs(a, b) = 0, then there is a
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nontrivial solution y with a zero of order ipia), re — pia) - l) at ia, b\ with

D*(fl)yU>) = 0.  Let

zit) = Dp(a)xia)yit) - Dp(a)yia)xit).

Since  x and y are linearly independent, z ¿ 0.   Further, z is a solution with a zero

of order ipia) + 1, re - pia) - l) at ia, b\.  This contradicts the definition of p(a),

and one concludes that  F (a, è) ^ 0.

The implicit function theorem says that there  is a neighborhood  L  of  / = a

and a function g e C(L) with g(a) = è and Fit, git)) = 0 for t £ L.  By uniqueness

and the continuity of Tj^t), the relation   F(/, r¡ ̂ t)) = 0 implies that g = 77,   in a

small neighborhood of t = a.  The function  F is of class  C  , so g is of class  C .

Hence, 77. 6  C (fi) for some neighborhood  (7 of  / = a.G

Proof of Corollary 2.6.   The theorem implies that we only have to show the set

V = {t: TjAt), Tj'it)   exist,   77,0) = 0! is nowhere dense and has measure  zero.

Actually, V is a finite union of discrete   sets, as will  be shown  below.

Let J      be the set of all points  tQ 6 V such that  Ly = 0 has an essentially

unique solution with a zero of order exactly (a, v) at i/Q, 77^^)!, but no nontrivial

solution of Ly = 0 has  n  zeros on   [/., Tj^it^] and  v + 1 zeros on  (/„, 77,(/0)], i.e.,

v is the maximum number of zeros on (/„, t¡ At A] fot any nontrivial solution with

re zeros on  [/Q, 77^/^].

The set   V is the union of the sets   /    ; this can be verified through use of the
Juv °

adjoint equation.  It will be shown that each /      is discrete.  Let F(t, s) be the

determinant whose first  re — v rows are the first  n — v — 1 rows, and row  u, of

WiuAt, tA,. • • ,u      At, /„)), and whose last v rows are the first  v rows of

WiuQis, t0), ■■■ ,un_]is, tQ)).  If  tQ £ ]uv and every  neighborhood of  /n  meets  ]w,

then there exist solutions  x it) £ 0 and points   /^ ¿ tQ such  that  tn —> tQ as re —» °°,

and x it) has a zero of order (u, v) at !/  , 77 (/  )!, re > 1.   Therefore, Pit. 77A/ ))

= 0,  re > 0, and it follows that

v[ih^F A' V'o»+ F;(/o' *?iM = °-

Since  77! (/„) = 0, one has  F(/Q, 77^/^) = 0.  Therefore, there exists a solution

xit) ¿ 0 of Lx = 0 with a zero of order in - v - 1, v) at i/Q, 77^/Q)j with x("'(/Q)

= 0.  The solution yit) à 0 with a zero of order exactly (u, v) at \tQ, t/jOq)! is

essentially unique, so x and y are linearly independent.  Further, tQ £ ]uv implies

x^X-qAt^) ^ 0 and y^T,^)) ^ 0.  Therefore, zit) = x^Xr, A\tJ)yit) -

y^X-q At Q))xit) ja 0.  However, zit) has a zero of order in - v - 1, v + l) at i/Q,

771(/0)i, which contradicts  tQ £ ]    .   One concludes that   tQ has a deleted neigh-

borhood which misses  J v.  Therefore, Juv is discrete, as claimed.  Consequently

V is a finite  union of discrete sets, and hence  V  is  nowhere dense and of zero

measure.G
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Proof of Lemma 3.3.  Let  W(t) = W(uAt, a), ■ • . , u     At, a)), define G,(t) to be
U 72—1 fe

the  k x n matrix formed from the first  k rows of  W(t), and put  H At) equal to the

4th row of W(t),   I < k < 72.  Put p = p(a), c = rj^a), and let

Fk(t) det

p-u

G (fe)

Jn-p-V

(Kk<v).

A matrix is tobe omitted in this formula if its subscript is zero.   The relation

F (a, c) = 0 follows from the hypothesis that x(t) has a zero of order k at  T.  In

order to prove that dF (a, c)/ds 4 0, let us assume the contrary; then there exists

a solution  z 4 0 of  Lz = 0 with a zero of order (p — u, u, n — p — l) at  T with

z'^'Cc) = 0.  A linear combination of x and z has a zero of order (p — u, u + 1, n —

p — l) at  7*.  However, this solution has  n zeros in  [a, 77 (a)] and p + 1  zeros in

[a, 77.(a)).  By previous remarks, this solution vanishes identically.  Accordingly,

dFv(a, c)/ds 4 0.

The implicit function theorem implies there is a neighborhood  U of a and a

real-valued function g 6 C2(ll) such that g(a) = c and  F (/, g(t)) = 0 for all  t e U.

The weak uniqueness assertion together with  F (t., r).(t,)) = 0 implies g(t¡) =

77j(/,) for all large  K.

Define  F .(t) = F.(i, g(z)), t e U,   1 < 7 < f.  The function F .(¿) vanishes  for

t = t.,   k large, and therefore   E ' (a) =0,   1 < 7 < f.   The formula for  Fit, g(t)) is
K ] 7

differentiated at  t = a, and  one  obtains for j + I < v

0 = E ' (a) = det

(6.1)

p—u—1

¿>—u+1

G (fc)

G     „   ,(c)

det

L"/(c)

¿>—u— 1

Gu(M

72—¿>— I

H.(c)

+ g'(a) det

C7„    (a)
X7-U

G (fe)
n

Hn-pM

Hic)
l_ ;

g'(a) de

GP-uM

Gib)

Gn-p-X^

H.+ 1(c)

Hence,  for   1 < /' < v — 1, there exist solutions  x .(t) 4 0 with a  zero of order

(p - u - 1, u, n - p - 1) at  T, and x^"")(a) = x^_1)(c)= 0.
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It will be shown that x¡it), • • • t"     At) are constant multiples of a single

solution y0(/) Â 0.  It suffices to prove that x. = a.x.    .for some a.  ¿ 0,   1 </.<

v — 1.  First, one observes that x\p~u~lXa) ¿ 0, for otherwise there would be a

nontrivial solution with a zero of order (p — a + 1, a, re — p — l) at  7, an impos-

sibility by (3.2).  Therefore, one can put  a. = ^"""-"(íj)/^"""1^), and by

(3.2) one concludes that x.it) - <*■*■   ¡it) = 0.  Thus, there exists a solution yQ é 0

with a zero of order  ip - u - 1, u, v - l) at  7, and y^-"^) = 0.

If y^Xb) = 0, then we may put yit) = yQit), and y(Z) is the desired solution.

Otherwise, y^Xb) ¿ 0.  Further, x*-uXb) ¿ 0, for otherwise x(t) would have a zero

of order ip — u, u + 1, v) at  7, an impossibility by (3.2).  In this case one can

take yit) = y Qit) + axil), where a = - y[uXb)/x(uXb).

The solution y(t) is essentially unique, for if y (t) is another, then

y(u+1Xb)yit) - y(u+ 1Xb)y it) has a zero of order ip - u - 1, u + 2, v - l) at  7,

and hence is identically zero by (3.2).

Finally, let us assume that lim inf^^ (77^/^) - 17,(«))/(/.  — a) > 0, yet y(t)

has at least ip + v — l) + 1 zeros in [a, r¡¡ia)].  Since g(/fe) = V^/) ror all large

k, we have g'W > 0.  By (3.2), y(t) can have no other zeros in [a, 77,(a)), and therefore

y(t) has  v zeros at  c.

Consider the three determinants which appear in (6.1) for j = v.  A linear com-

bination z(t) of x(t) and y(t) has a zero of order (p — u — 1, u, v) at  7, and

z(í> — u\a) a 0; hence the first determinant vanishes.  Since x(Z) has a zero of order

(p — a, a, v) at 7, and p + v > n, the second determinant vanishes.  Therefore, the

last determinant must vanish.

One concludes that there exists a solution of Ly = 0 with a zero of order (p -

a, a, re — p — l)  at  7, and this solution  is  not a multiple of x(t).  An elementary

linear combination argument and (3.2) show this to be impossible.  Therefore, y(t)

has exactly p + v — 1   zeros  on the conjugate interval.G

Proof of Lemma 3.4.  Let y At) be a nontrivial solution of Ly = 0 with a zero

of order (p — u + 1, zz — 1, re — p — l) at  7,,  £ > 1.  Renumber the sequence, if

necessary, so that xAt) and yAt) have exactly  p zeros on [/fe, 77^/^)), /é > 1;

this can be done by the convergence  lemma and Remark (3.2). If the exact order

f    of the zero of xAt) at 77,(/,) is less than v, then Sherman's Lemma 2.1 shows

that  Ly = 0 has a nontrivial  solution with a zero of order (p — u, u — 1, 2, vQ) at

{t,, b, c, TtAt,)], where  c e (&, 77^/^)).  By (3-2), such a solution cannot exist,

and therefore vQ>v.  A linear combination of x k(t) and yk(t) has a zero of order

(p — a, u — 1, v + l) at  7,, and by the convergence lemma there exists a solution

w(t) fi 0 with a zero of order ip - u, u - 1, v + l) at  7.  Further, the convergence

lemma applied to iy, ! shows there exists a solution z(t) fi 0 with a zero of order

ip - u + 1, u — 1, v) at  T.
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Let r be the exact order of the zero of z(t) at c = r/Aa).  It will be shown

that r > v + 1.

Suppose not,  and let  Gk, Hk be defined as in the previous lemma.  Define

F(t, s) as the determinant of the matrix formed from G ,(/), G       (b)
t P~« +! n-I     "

G„_p_ A.s)H(s), as in the previous  lemma.  A matrix is omitted if its subscript is

zero.  It is checked that  F e C2,  F(a, c) = 0,  Fs(a, c) 4 0.  The implicit function

theorem implies the existence  of a  neighborhood   U of a and a function / e

C2(U) such that f(a) = c = 77 j (a) and F(t, /(/)) = 0 for all  t £ U.

Differentiation of F(t, /(/)) = 0 gives  F((a, c) + f'(a) F (a, c) = 0.  The first

term of this expression is the determinant of the matrix formed from G       (a),
1 p—u

H Aa), Gu_l(b), Gn_      A\c), H(c).  The determinant  F (a, c) is the sum of two

determinants: the first is formed from G_        ,(a), G      Ab), G Ac), H      (c),
p-u+1 u—1 n—p—2 n-p

H(c), and the second is formed from G^ Aa), G     ,(b), G Ac), H    Ac).
r p—71+1 it— 1 7i — p — 1 r+1

By examination of the  solutions w(t) and z(t), and linear combinations of these

two solutions,  one can verify  that the first two determinants just described are

zero.

It will  be shown that the  last determinant vanishes; this will follow if / (a) 4 0.

By the weak uniqueness assertion of the Implicit Function Theorem, we have

f(t¡) = TlMu) f°r all  large   K, because   F(t,, t/jO^)) = 0, and  t,  ■-» a as  k —► 00.

Therefore,

„,    v ,. ï?l(/fe)-r-'l(fl) „

/ (a)= lim - >0.
k— 00 /   — a

The vanishing of the determinant in question implies  the existence  of a  solu-

tion  Z0U) 4 0 with a zero of  order (p - u + I, u - I, n - p — l) at  T with zQr(c)

= 0.  Since  r = v, z(t) and  zAt) ate  linearly independent.   A linear combination

of z and z    has a zero of order  (p — u + 1, u, n — p — l) at  T, which contradicts

(3.2).
Therefore, r > v + 1, and  z(t) has a zero  of order  (p — u + 1, u — I, v + l) at

T.  In view  of (3.2), z(t) is essentially unique.□

Proof of Theorem 3.6.   For  r = 0, the theorem  follows from Sherman's result

[l0].   Let  r > 1  be given and suppose the theorem is true for r — I.

There exists a sequence  l^ir.j,  lk 4 a, with ife —» a as  k —> 00, tk< b <

77 (/,) for each k>l, and p(t.) = p(a) for all  k.  Further, we may assume that each

I,   is distinguished.

The  induction hypothesis  implies that there exists a solution xAt) 4 0 with

a zero of order  (p - r + 1, r - 1, q - r + l) at   Tk = ¡/fe, b, rj^t^l,  k > 1, and a

solution with a zero of order exactly (p — r \ 1, r - 1, a — r + l) at  T = ja, ¿>,

77.(0)!.  Lemma 3.3 shows that there exists a solution y(l) 4 0 with a zero of order

(p - r, r, q - r)  at   T.   Since  a  is a distinguished point,   y(t) has exactly p + q - r
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zeros, and we take   y   = y to complete the induction.D

Proof of Theorem 3.7.  Let vn = k. +• • ■ + k      ,.  Then kn = p - v„, k    = a -
U I m—1 0      ^ 0m^

f 0, and 0 < vQ < p + q - n.  By the previous theorem, there exist solution y ,  k   <

r < vQ, such that  yr has a zero of order  (p - r, r, q - r) at  Í / Q, if j, <   }. Constants

cr>  ^\SrS vr>> shall be determined such that

At) =      X      v/^
& . < r < v r.

is a nontrivial solution  with a zero of order  k at  7".

The function  x(t) already has a zero  of order  (kQ, k., /e   )   at  {/„, /., z1   }, so

it suffices to determine conditions  on the constants to  insure that x(t) has a zero

of order  (k2, • • • , km_ ^) at  \t2, • • • , t   __ j}.  If one puts  x(z)  into the boundary con-

ditions of this  problem,  then a  system  of  &2 +•■•+ ze   _, = v 0 — k.   equations in

v0 — k. + 1  unknowns results.   This system  of equations always has a nontrivial

solution.  Hence, nontrivial constants   c    can  be found, and x(t) 4 0  is the desired

solution.

It remains to prove that x(t) is essentially  unique, and  x(t) has exactly  \k\

zeros on the conjugate interval.  To this end,  suppose x At) is another solution.

Since both x(t) and x At) have p  zeros on  [a, 77 (a)), and n zeros on the closed

interval, (3.2) implies that x    and  x are linearly dependent.  Thus,   x(t) is essen-

tially unique.  If x(t) has   \k\ + 1  zeros on the closed interval, then the additional

zero occurs at r¡Aa) by (3.2).  It follows immediately that x(t) is a linear combina-

tion of the y ,   k, < r < v„.   But these  solutions all have a zero of order p — v„ + 1

at  a, and hence   x(t) has  /> + 1  zeros on  [a, 77,(0)), contradicting (3.2).   There-

fore,  x(t) has exactly   \k\  zeros on  [a, 77^«.)].o

Proof of Theorem 3.8.  Let A       denote the set of all points  t such that p(t) =

zz, o(/) = v, and

)/,>) - r/jCi)
lim inf  - > 0.

s-z s -t

Let B„ = A     , and inductively define B,     .  to be the set of all  / e B,   such that
0 uv ' k, + 1 fe

every deleted neighborhood of t meets B      /« = 0, !,• • ■ ,d, d-u+v — n— 1.

Then

^ = Eo^,u ■•• uEd,

where  Erf = B d,  Ek=Bk-Bk + l  fot k < d.

It will  be shown  by induction that for any  t £ B, ,  k = 1, • • • ,d, there  is an

essentially unique solution  with a zero of order exactly  (u — k, k, v — k) at  \t,

b, T\At)\, for all  b £ (t, rjAt)).  For k = 1, this follows directly from Lemma 3.3.

Assume the result for  k; then for  all  / e Bfe  there is an essentially unique  solu-

tion with a zero of order  (u - k, k, v - k) at  {/, b, r¡A.t)\, fot all  b £ (t, 77^/)).
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Given any tQ £ B,    .,  ZQ is the sequential limit of points  / £ Bk with / ¿ tQ.

Since  ZQ = BQ, the hypothesis of Lemma 3.3 is satisfied,   and therefore there exists

an essentially unique solution with a zero of order exactly iu — k - 1, k + 1, v —

k - 1) at izQ, b, r¡A.t0)\, for all b £ (zQ, ^¡it^).  This completes the induction, and

shows that for all  Z0 £ E ,, there is an essentially unique solution with a zero of

order exactly (a - k, k, v - k) at izQ, b, r¡xit^\ for all b £ itQ, 77^/^) and all k

with 0 < k <u + v — n - 1.  The proof of Theorem 3.7 shows that, for all tQ £ E rf,

there is an essentially unique solution with a zero of order exactly k at  7 (k and

7 as in the statement of the theorem).

Let H     denote the union of the sets  F,,  0<k<d— I,  K     = E ,, and let
uv te —      — uv a

M      be the points / such that pit) = a, qit) = v, and

7/jCs) - r¡At)
lim inf - = 0.

s-t s - t

Define H, K, M as the union of the  sets H    , K    , M    , respectively.  Then H U

K U M is the domain of 77^).

By Corollary 2.6, M is nowhere dense and has zero measure.

It will be shown that H is nowhere dense and has zero measure.  Actually, H

is a finite union of discrete sets, and this fact will be proven to establish the

result.  Consider again the sets  E., E.,•••, E ,_., whose union is  H    .  If Z £ E.

and every neighborhood of Z meets  £Q, then every neighborhood of Z meets BQ,

and hence  Z £ B..  But EQ = B, — B., so this is impossible. Accordingly, each

point of  Fn has deleted neighborhood which  misses  E„.   Thus   F    is discrete.  In

the same way, one proves that  F,,- • • ,E,_.   ate discrete.   Thus  H    , and also  H,

is a finite union of discrete sets.

For all  Z. £ k, there is an essentially unique solution of  Ly = 0 with a zero

of order exactly k at   7.   The complement of K in the domain of  77,(/)  is  H U M,

and this is a nowhere dense set of zero measure.G

Proof of Theorem 3.9.  This result follows from Theorem 3.7,  if one can show

that the  inequality  qia) > a + v is a consequence of the given hypotheses.

If Lemma 3.4 is applied to each distinguished point ZQ £ U with pit A = pia),

then it follows that  Ly = 0 has a solution with a zero of order  (p — a + 1, u — 1,

v + l) at i/Q, b, rjA^tJl.  The points tQ with the described property are dense in a

neighborhood of a, and a standard induction with Lemma 3.4 shows that Ly = 0

has a nontrivial solution with a zero of order ip, v + u) at ia, 77,(3)!.  Therefore,

qia) > a + zj, and the result follows from Theorem 3.7.G

Proof of Theorem 3.10.   The set K of all points a with the property described

in the hypothesis of the preceding theorem can be taken to be the complement of

A, and it only remains to prove that A  is nowhere dense and has zero measure.

These arguments are tedious,  but straightforward, and parallel the proof of

Theorem 3.8.G
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Proof of Lemma 5.1.  Suppose  a* is conjugate to a for the equation Ex - 0.

It will be shown that r]Aa) exists for Ly = 0, and equals a*.  Any solution with p

zeros at a has the form

72-p-l

y(t)=     ¿        Cun~T-l(t)vr(t)

7 = 0

where u and v ate solutions of Ex with u(a) = 0 and W(v, u) 4 0. Since y0(t) =

un~\t) has n zeros on [a, a*], rj^a) exists, T]A.a)< a*. Let p = p(a), and sup-

pose y(t) has a zero of order (p(a), z/a)) at \a, 77,(a)}. Therefore, since q- q(a)

satisfies  a > n — p, differentiation of y(t) at rj^a) < a* gives

W(un-p-\ vu"-p-2, ..., vn~p~l) = 0

at 77.(a), which  has been shown to be  impossible   when W(v, u) 4 0.  Hence

77 .(a) = a*.  The preceding calculation is valid at a    if p < n — 1, so p(a) = 72 — 1.

Then y(t) = c0Hn-1(i), and q(a) = 72-1.

To prove r¡. £ C , and 77.(7") > 0, it is convenient to consider the relation

uAt, rjAt)) = 0, valid for any second order equation.   The theorems  of differentia-

bility of 77,(t) imply  77, £ C , and the above relation gives  — r¡'At)uAt, rjAt)) +

u[(t, j]v(t)) = 0.  Since u[(t, 77^)) 4 0,  77(Cr) > 0.

The statement about formal adjoints is a  consequence of the relation

W(x0, ■•■,x„_1) " W(v, u)

where  c 4 0 is a constant and x   = uTvn~r~  , in conjuction with Liouville's for-

mula (see Hartman [4]). □

Proof of Lemma 5.2.   This is easily established by induction; uniqueness

shows that the recursions do  not depend on the choice of «.D

Proof of Theorem 5.4. Since  zz _At, a) = cu"~ (t) where  u(t) is a nontrivial

solution of  Ex = 0 with 72(a) = 0, the theorem is obviously true  for k = n — 1.  The

formula  u  _.(t, t]At)) = 0, together with rj'^t) > 0 and simple induction, establishes

the result.D

Proof of Corollary 5.5.  This is a consequence of the proof of theorem.D

Proof of Theorem 5.8.  There is nothing to prove for p = 0. Write y(t) =

S^_0 cr"„_r_i(¿> (iL Then, by Theorem 5.4, y(t) has a zero of order k    at

J7j(i j).  Similarly, y(t) has a zero of order k2 at T)A.t2).  The induction is left tc

the reader.D
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