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PAIRINGS AND PRODUCTS IN THE

HOMOTOPY SPECTRAL SEQUENCE
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A. K. BOUSFIELD AND D. M. KANÍ1)

ABSTRACT.   Smash and composition pairings, as well as Whitehead products

are constructed in the unstable Adams spectral sequence; and these pairings

and products are described homologically on the  E     level.  In the special case

of the Massey-Peterson spectral sequence, the composition action is given homo-

logically by the Yoneda product, while the Whitehead product vanishes.  It is also

shown that the unstable Adams spectral sequence over the rationals, with its

Whitehead products, is given by the primitive elements in the rational cobar spec-

tral sequence.

1. Introduction.  The purpose of this paper is to show that the homotopy spec-

tral sequence E (X; R) of a space X (with base point) with coefficients in a ring

R, which we defined in [7], admits smash and composition pairings as well as

Whitehead products.  The paper is divided into four chapters.

Chapter I is introductory.  In it we associate with a cosimplicial space  Y  a

tower of fibrations and hence a spectral sequence  E Y, in such a manner that

E (X; R) = E RX, where RX denotes the cosimplicial space obtained by "resolving

X with respect to  R."

In Chapter II we construct the smash and composition pairings.  For this we

first observe that, for any two cosimplicial spaces  X and Y, there exists a basic

pairing of spectral sequences  EX®EY—► E (X A Y).  This is rather unpleasant

to prove in our present setting (i.e. using towers of fibrations), but not, as we show

in [8], if one approaches the spectral sequence of a cosimplicial space in a differ-

ent (but of course equivalent) way.  And we then obtain the desired smash and com-

position pairings by composing this basic pairing for suitable  X  and  Y with appro-

priate spectral sequence maps.

In Chapter III we construct the Whitehead product by first constructing a Samel-

son product for the loops and then delooping. To do this we need an analogous
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320 A. K. BOUSFIELD AND D. M. KAN LMarch

basic pairing of spectral sequences for cosimplicial simplicial groups, for which

we again refer the reader to [8J.

Chapter IV contains homological descriptions of our pairings and products on

the F2-level for the important case  R = Z , the integers modulo a prime  p, as

well as for R - Q, the rationals. Indeed for R = Q we show that our spectral sequence can

be obtained by merely taking primitive elements in the rational cobar spectral sequence [l].

CHAPTER I. THE HOMOTOPY SPECTRAL SEQUENCE

OF A COSIMPLICIAL SPACE

2.  Cosimplicial objects. We start with recalling from [7]  the notion of an (aug-

mented) cosimplicial object and mentioning our prime example, the resolution of a

space with respect to a ring.

2.1. Cosimplicial objects.  A cosimplicial object X (over a category C) con-

sists of

(i) for every integer zz > 0 an object X" £ C,

(ii) for every pair of integers  (z, tz)  with  0 < z < n coface and codegeneracy

maps

dl: X" -' — X" e C,      s!': X"+1 — X" e £

satisfying the identities

d'd¿ = d'd'-1 tot i<j,

s'di = rfV"1 for z</',

= id for i = /', j + 1,

- ¿''~V     for  i> j+ 1,

s' s'= s*-ls!     fot  i> j.

A cosimplicial map f : X—► Y  consists of maps  /: X" —* Y" £ C which commute

with all the cofaces and codegeneracies.  A cosimplicial object (map) over C  thus

corresponds to a simplicial object (map) over the dual category C*.

2.2. Augmentations.  An augmentation of a cosimplicial object  X (over C)

consists of a map d : X~   —► X    £ C such that d d   - d d : X~   —♦ X  . We now

turn to our prime example.

2.3. The resolution of a space with respect to a ring.  Let o^ denote the cate-

gory of "spaces", i.e. simplicial sets with base point  *.  Let   R  be a ring (with

unit), let the "free R-module functor"   R:v^—» rt^ and the natural transformations

0: Id-» R, iß: RR -— R be as in [7, §2] and let  R"  - R ■ ■ ■ R (n copies of /<).  For

X eö^ the resolution of X with respect to R  then is the augmented cosimplicial

object RX over c^ given by
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nXn=Rn+1X,        n>-l,

RX"-1 -£-* RX" = R"X  *'**""* ,  R«+lX>

RX" + 1 _^-> RX" = R" + 2    R^Rn~\  '/r+1X.

Clearly  RX  is natural in  X  as well as in  R.

2.4. Remark.   In verifying that RX  is indeed an augmented cosimplicial object,

one only has to use the fact  (R, <f>, if/)  is a triple in the sense of [lO].  The same

construction thus can be made using other triples.

A way of constructing more cosimplicial objects is by

2.5. Applying a functor.   Let X be an (augmented) cosimplicial object over a

category C and let T: C —» C   be a covariant functor. Application of T to X then

yields an (augmented) cosimplicial object TX over C    with (TX)n = 7tX") for all 72.

For instance, if X is an (augmented) cosimplicial "space", then 77.X (2 > 2)

is an (augmented) cosimplicial abelian group.

3. The derivation of a cosimplicial space.  In order to define the homotopy

spectral sequence of a cosimplicial space in such a manner that it reduces, for

RX, (2.3) to the homotopy spectral sequence of X with coefficients in R  [7, §4],

we need the derivation construction described below, which generalizes the one of

[7, §3]. First we describe

3.1. A path-like construction.  For an (augmented) cosimplicial object X over

C one can construct a path-like (augmented) cosimplicial object   VX (also over C)

by lowering the cosimplicial degrees by one and forgetting the first coface and

codegeneracy operators, i.e. by setting

VX"= X" + 1,

(VX""1 -^VX") = (X"^^X" + 1), 0<z<72,

i z' + l

(VX"+1-^— VX") = (X"+2—-*\"+1), 0<Z<72.

The objects  X  and   VX ate related by the cosimplicial map  v: X —► VX given by

(X" -Ü.VX") = (X" ^X"+1).

Now we can define

3.2. The derivation.  Let o^,, denote the full subcategory of o^ of the Kan

complexes with base point and, for   Y £ S+K, let  Ay —> Y £v^K denote the (stan-

dard) path fibration   over Y \j, V2].   Let  X be an (augmented) cosimplicial space

such that  X" £"^K tot  n > 0.  Then we define an (augmented) cosimplicial space

D X (the derivation of  X) and a cosimplicial map D   X —► X  by requiring that  8

is the (cosimplicial) fibre map induced by the map v: X —► VX from the (standard)

path fibration À: A^X —» VX, i.e.  8 is given by the pull back diagram
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d'x ■-» \vx

[March

\\

This notion of derivation indeed generalizes the one of [7, §3].  In fact one

readily verifies

3.3. The case  X = TRY.  Let  Y £ S^, let R be a ring and let  T: S^ —> S%  be

a covariant functor which respects o^ [7, »1.  Then one has the commutative

diagram

id
D'(TRy) (Z>,T)RY

TRy

4. The homotopy spectral sequence of a cosimplicial space.  In this section

we give a definition of the homotopy spectral sequence of an augmented cosimpli-

cial space which directly generalizes [7, §4 and §7], and discuss some of the

immediate consequences of this definition.

4.1. Definition of the spectral sequence.  Let X be an augmented cosimpli-

cial space such that X" £ S^ for  n > 0.  Form the sequence of maps

DSX •\S — ll D'X D°X= X

where  D' = D  D'~     fot all   i' > 1, and then define the homotopy spectral sequence

|£  XS of X as the homotopy spectral sequence of the sequence of fibre maps

obtained by restricting the above sequence to the augmentations

... — DsX~l -—-*Ds-lX-x — • • • — X"1

'fringed" in dimension  1.  By this we mean (as in [7, V4l) that

DSX°,     /-l>s>0,E\'lX

o,
and that

but in dimension  1

as we define  E'

Es>'X=kerd    ,/imd    ,
r r-1 7-1

otherwise,

Í- 1 > s > 0;

£S.S+1XCES'S+1X/,W    ., s>0;
7 7 7-1 -       '

'X by

FS'S + 1X= Zs'f + lX/imd    ,, s> 0,
7 7—1 7-1 —
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where Z5' f+1X C Es' f+ X consists of what "would" have been the cycles, i.e.
r - 1 r - 1 '

the elements for which the image under the boundary map d: n^X0 —* nQDs+ X~

lifts to iTnD^+'X"1.

One has, of course, to verify that Zs•_ j+ X is indeed a group; but this can

readily be done as in [7, §4]. There we also explained why we use a fringe and

not an edge.

The above definition generalizes the one of [7, §4 and §7].  In fact 3.3 implies

4.2. The case of the resolution with respect to a ring.  Let X, W £ S^ and let

R  be a ring.  Then, in the notation of [7, §4 and §7],

\E{X; R)i = {ErRX|,

\Er(W,X;R)\= \Ehom(W, RX)}.

We can avoid the restriction that  X" e ö^ for  72 > 0 by making

4.3. A slight generalization.  As [l3] there is a natural isomorphism \E  Xj «5

\E Sin \X\\ where   | |  and Sin are the realization and the singular functor, we can

and will, whenever X"  z's not in u^.,  for all n>0, define the homotopy spectral

sequence \E X\ of X by \E  X] - \E Sz77|X|j.

As in [7, §4] we have the following

4.4. Trivialities about E  X and EX.

(i)  dr: E*-'X —E^'+^X;

(ii)  B*;l1XCB*'%/or r>s;

(iii) EA'X = C\      ES'%00 '  'r>s      r '

(iv) for t — 1 > s > 0  there is a natural short exact sequence

0^(Fs/Fs + 1)n      X~l -^Es-'X-* F°°tt ,Ds + ]X~ln kerS^^O,
' t — s 00 t-s -1 *

where  F"n DsX~l = im(n Ds+uX~l —»77 DsX_1)a72¿ F°°n  DsX~l =f|   E"t7  DsX~K
q q q q 'u q

Finally we observe

4.5. The nonrole of the augmentation.  The spectral sequence does not really

depend on the augmentation, i.e. /'/ X  is an augmented cosimplicial space and Y C

X is such that Y™ = X" for n > 0 and Y~    = *, then the inclusion Y —» X induces

isomorphisms  E  YssE  X,   l<r<°o.
r . _ 1

This follows readily from the fact that the tower  <D5Y~   , 8\ used to define

E Y  is induced by the map Y~    —► X-     from the tower iDsX~   , 8\ used to define

e'x.
7

4.6. A homology analogue. It was pointed out by D. L. Rector that one can

obtain a homology spectral sequence by replacing induced fibre maps by induced

cofibrations and homotopy groups by homology groups.  In [17] he shows that this

approach can be used to obtain the Eilenberg-Moore spectral sequence and to intro-

duce therein the Steenrod operations.
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5. A more convenient description of the F,-term. We end this chapter with

observing that the spectral sequence of a cosimplicial space  X, as defined in §4,

has an F.-term which is rather inconvenient for constructing pairings and products

or studying EX. However, a more convenient description of F.X is possible

thanks to the fact, described below, that the groups  77      DSX    ate naturally iso-

morphic to certain subgroups  77   X    C 77 Xs, which will be called

5.1. The normalized homotopy groups.  For a cosimplicial space X  its normal-

ized homotopy groups ate the subgroups   77   Xs C 77 Xs,  î, s > 0, defined by

n¡Xs = 77(XS nkers°n...n ker ss ~l.

A simple calculation then yields

5.2. Proposition.   Let X be a cosimplicial object over "^K- Then the boundary

maps 77 Xs—> 77,_yD  Xs~     induce isomorphisms n'Xs ^Un      ,D Xs~  .

Therefore we can define

5.3. The iterated boundary isomorphism.  For a cosimplicial object X over

S^f the iterated boundary isomorphism n' Xs-^» 77      DSX  ,  t > s > 0, is the com-
*K ' r t 3;     t—s '     —     —    '

posite isomorphism

n'Xs   (-1)5¿> n'    D'X*-1    (~1)S~H    . ..    (~1)a>  n'     DSX° = n      DSX°.
t t —1 t — s t — s

The signs are put in to insure

5.4. Proposition.   The following diagram commutes:

n' Xs   !-^^-> 77 V
z z

dit °it

d,
n,    ,. Ds -lX° = E* "u X   -l—- Es/X = 77     DSX°

Z-Í+ 1 1 t-s

This means that the cosimplicial object  n^X contains all the information

needed to compute F.X.  In fact since  (77^ X, 2 (— lVd^) is chain equivalent to

in^X, £(- lYd'y.) by [12, p. 236] one needs only the operators  d1^ on n^X to com-

pute  E2X (cf. [7, §10]).

CHAPTER II. SMASH AND COMPOSITION PAIRINGS

6. The smash and composition pairings of homotopy groups.  In this section

we recall some "well-known" facts on the smash and composition pairings.

6.1. The smash pairing of homotopy groups.  For X, Y £ o^ we denote by

nX Ant,Y -^-^TTi+lAX AY),       t, t' > 0,
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the smash pairing [8, §10] and recall that this pairing is

(i)  linear in the first (second) variable whenever t > 0 it   > 0),

(ii) associative,

(iii) commutative with sign (— l)u , i.e.  r^iu A v) = (- l)    iv A u) for u £

77 X, v £ n , Y and r: X A Y —» Y A X  the twisting map.

We consider some special cases.

6.2. The suspension. Let X £ S^, let S    £ S^ be the 1-sphere, let Sm = S    A

... A 5    6 S^ be the zzz-sphere and let  i denote the generator of a  Sm. Then the

map

CTm = - Az: 77,X^77      (X ASm)
t t+m

clearly is nothing but the m-fold suspension map.

6.3. The composition.  Let W, Y ei)t, let homi,) denote the "function com-

plex with base point" functor [7, §7] and let

homiX, Y) AhomiW, X) -AL-, homiW, Y)

be the map which assigns to a pair of ^-simplices

A[q] A X —ÎL» Y,     A{q] A W -Z-+ X,

the composition

A[q]  A W    dÍagAÍd> A[q] A A[q] A W -^U A[q] AX-^V.

Then the composition pairing ° is the composite map

nhomiX,Y) A n^homiW, X) —^-» n^.ihomiX, Y) A homiW, X))

AAL->77t+t,homiW, Y).

We end with

6.4. Expressing the smash pairing in terms of the composition pairing.  For

X, Y £öt  the smash pairing

nX Ant,Y-A\-,nl+lAX A Y)

admits a factorization

nX Ant,Y  hdlL, nthomiY, X A Y) A n[t Y -^ jt/+/,(y A y)

where h: X —» homiY, X A Y) is the map which assigns to a map a: A[z?] —» X

(i.e. a (/-simplex of X) the map

\[q] A y JíA!^ x A Y.

This follows immediately from the fact that the identity map of X A Y admits

a factorization
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x A y ^^ hom(Y, x a y) A y — x A y.

7. A basic pairing of homotopy spectral sequences. We will derive the smash

and composition pairings with coefficients in a ring (§8 and §9) from the following.

7.1. Basic pairing of homotopy spectral sequences.  Let X and Y be augmented

cosimplicial spaces.  Then there exist unique (natural) pairings

E*»'X A E^'y — Esr+s'>t+t'(X AY),       l<r<oo,

with the following properties:

(i)  the pairing on  E     is induced by the iterated boundary isomorphism <9

(5-3) from the following pairing of the normalized homotopv groups

vxs a u't,\s'-l^ 7Tt,xs+s' a ,r;,Ys+s'-A* n't+tAx a \r+s',

where / is the (graded) Alexander-Whitney map [13, p. 132] given by

/(a, i)={(-l)ts'ds+s'... ds¥Xu, ds-A..d%);

(ii) for  u £ ES''X  and  v £ ES'-''Y  (l < r < «>);
r r —

d(u Av)= (du Av) + (- lY'Au A dv);

(iii) the pairing on E    j  is induced by the one on E (l < r < oo) and the pair-

ing on E^ is induced by the ones on the  E    (1 < r < oo);

(iv)  the pairing on  E     is compatible with the smash pairing of the homotopy

groups of the augmentations, i.e. if  u £ FrjrX~     and v £ Fr n   Y      , then  zz A v £

Fr+r'n    „(X AY)-1  ande     , (zz A v) = e u A e ,v;
t+t' r+r> r r>    '

(v)  the pairings are bilinear;

(vi)  the pairings are associative;

(vii) the pairings  are commutative with sign  (— l)('-s)(-' ~ s     for  r>2.

Proof.   In view of [8, 7.3], this is nothing but Theorem 10.4 of [8].

8. The smash pairing with coefficients in a ring. For X e o^ and R a ting we

write (as in [7, §4]) \ErX\ tot \EjiX; R)\ = \ERX\.

Using the basic pairing of §7 we now construct

8.1. The smash pairing with coefficients in R.  For X, Y £ o^ let

RX A RY —^-» R(X A y) = RX ® RY

be the map given by  (x, y) —» x ® y.  The compositions

R" + 1X AR"^Y ^R(RnX AR"Y) -^ ...   ^AnntI(XA Y)

then yield   a cosimplicial map RX A Ry -íL> R(X A Y^ and we define this smash

pairing
Es-tX®Es''t'Y-^Es+s'<t+t'(X AY),        Kr <oo,
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as the composition

E a
E Ra «> F Ry -A±-> E (RX A Ry) —r—* E R(X A y).

r r r r

8.2 Properties.   The obvious analogues of the properties 7.1(i) through (iv)

hold.  In particular on  E     this pairing is compatible with the pairing

n X A 77i(y-» "t+t>iX A y)-

And as the map a  is both associative and commutative, properties 7.1(vi) and

(vii) also hold.

A special case of this smash pairing is

8.3. The suspension.  Let   i £ E   'mSm  (l < r < oo) denote the element that

corresponds to the generator of 77   S™.  Then the smash pairing

EX<8>ESm--.B(XAí"),       l<r<~>,
7 7 7 —        —

restricts to the m-fold suspension

cf": Es>lX — Es't+miX A S™)
r r 7

given by  u —> zz A i for all  u.  This suspension has all the properties implied by

8.2.  In particular om is compatible with the m-fold suspension (6.2) am: n X —►

77      (X A Sm).
t+m

9. The composition pairing with coefficients in a ring.   For X, W £ a^ and  R

a ring we write (as in [7, §7]) {EÍW, X)\ for  \Ei\W, X; R)\ = {EhomiW, RX)| and

construct, again using the basic pairing of §7,

9-1. The composition pairing with coefficients in  R.  For W, X, Y £ ö   the coi

position pairing

Ej,X, y) ® E(>, X) —^-» F/U ,  y),        1 < r < oo,

is defined as the composite map

A Ec

Et homiX, Ry) ® Ef homiW, RX)-> ■ • •   ——» F^ hom(V-, Ry),

where  c  is the cosimplicial map

bomiX, Ry) A homiW, RX) -S-» homiW, Ry)

constructed as follows.  For

u: A[q] A W — RnX,       v: A[q] A X — PAY,

c(u, v) is the composition

\[q] A W—\[q] A   \[z7l A W — A[q] A R"X

it;
— Rn(\[q] A X) — R2nY -i- R"y
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where the unnamed maps are the obvious ones (6.3) and w     is the map which

"combines the z'th and (77 + z')th copies of R", i.e. w    is the composition

t     ,                 i.,     ,                         0                          Rw     ,
R2ny        n+\ t 2h-1   (   ¡{2n y _I_^ R2»-ly   -^iL^ Rn y

where w^ = s    and 7 : R  nY —+ R  "Y is the map which "interchanges the z'th and

(z — l)th copies of R (counted from  Y)", i.e.

t,   . = ¿v + <i/+V-id.
2t2-z

The proof that  c is indeed a cosimplicial map is straightforward (but not short).

9.2. Properties.  Again the obvious analogues of 7.1(i) through (iv) hold.  In

particular 072  E     the pairing is compatible with the composition pairing (6.3)

7Tthom(X, Y) Antlhom(W, X)-^7Tt+tAW, Y).

And as the map c is associative (verification of which is lengthy but straightfor-

ward), property 7.1(vi) also holds.

We end with

9.3. Expressing the smash pairing in terms of the composition pairing.  For X,

Y £ S^  the smash pairing E X ® E Y ^» E(X A Y), 1 < r < °°, admits a factorization

E h ® id 0

E x ® E y —-► e (y, x A y) ® e y -—>e (x A y)
r r r r r

where  h: RX —►, hom(Y, R(X A Y))  is the map which assigns to a map  u: A[q] —►

RnX the composition

A[q] A y   "Aid » P"X A y - P"(X A y).

where the second map is the obvious one.

This follows directly from the commutativity of the diagram

r,v A Ry —h-^-► hom(Y, R(x A y)) A Ry

R(x A y)

the verification of which is, as usual, lengthy but straightforward.

10. The (composition) action of E Sm. Here we discuss how E Sm acts on

(most of) E X by means of composition (for fixed  R, of course).  First a

10.1. Lemma.  For X eS+ the map

FAASm, X) -^-» E^i+mX,        1<t-<°o,

obtained by restricting the composition pairing
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Es'tiSm, X) (giF0-™^->Es-t+mX
7 ' 7 7

to the generator  i £ E   <mSm  (8.3), is an isomorphism if t — s > 1.

The proof is easy.

Now we can define

10.2. The action of E Sm  on F X. The (composition) action oí E Sm  on
7 7 r 7

F X
7

Es,Z+mx g ps'.t'sm _i_, F/+s'.z+<'x, 1< r < oo,
7 7 7 —       —

is the composition (defined only when  t — s > l)

Es.t+mx q Es',t'sm      r      8id   ,   Es,t'Sm    y) g ^'.z'^zn _^_  gí+s'.í+í'y
7 7 7 7 7

Ozz  F^  this action is clearly compatible with the unsual action of n^Sm  on

n^X,nt+Jc®ntlS>»-.ni+tlX.

On X A Sm this action is closely related to the smash pairing.  In fact 9.3

readily implies

10.3. Proposition.  The following diagram commutes for all 1 < r < 00:

om ® id > F (X A Sm) ® F Sr

l:(X A Sm)

CHAPTER III. WHITEHEAD PRODUCTS

11. The homotopy spectral sequence of a cosimplicial simplicial group.  Let

X £ o    and let  G be the loop group functor [13J-  Then (up to a possible sign) the

Whitehead product in n^X corresponds under the boundary isomorphism to the

Samelson product in n^GX.  The latter is the more natural notion (it adds dimen-

sions) and handles easier.  In order to construct, for a ring  R, a Whitehead product

in  F RX  we will first introduce a Samelson product in  E GRX  and then translate7 r 7

the result to E RX. Hence we start with explaining what we mean by

11.1. The homotopy spectral sequence of a cosimplicial simplicial group.  The

approach of §4 applied to an augmented cosimplicial simplicial group B causes

problems in dimension  0.  To get around this we define  {F Bj by requiring that

[F^BS be isomorphic with {E WB\, where  W denotes the classifying functor [l3l.

To be precise we require

Let d: n    .IVB5 « 77 Bs be the boundary isomorphism [l3l and let

d    =i-\)ld:n    ^Hs KnBs
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be the "other' boundary isomorphism.   Then there exist for all t>s>0 (i.e. even

if   t — s = O) unique isomorphisms

Es,i+1WB   «   ES,'B,        1< r< oo,
r t —     —

such that

(i)  the isomorphism on  E.   is the composition

d-i                           d
77   ,     DSWB° = EAt+lWB—^-> „'  , m  -°-U ¿B*-^ Es'lB = n      DSB°,

t+l-s 1 Z + l Z 1 t-S '

(ii)  if u £ Es-t + lWB, then d„d u = ddnu,
' r ' OZ   r r   Oz   '

(iii)  the isomorphism on  E    .   is induced by the one on E    (l < r < oo) and

the isomorphism on Ex  is induced by the ones on the  E    (l < r < oo),

(iv) u £ Fsn    jWB"     if and only if dQ u £ Fsrr B~    and in that case

e dnu = cL e  u.
s   Ot 0(   s

11.2. Remark.  One readily verifies that the above definition coincides in

dimensions > l   with the one of §4, justifying the use of the same notation. This

would 720^ have been the case if we had used d instead of ¿L .

For later reference we mention an immediate consequence of the above defini-

tion.

11.3 The case  B = GX.  Let X  be an augmented cosimplicial space, let G  be

the loop group functor [l3Í (applied to the component of the base point), let d:

77    jXs K n GXs  be the boundary isomorphism [13] and let

d0t = (-lYd:77t + lXstt7TtGXs

again be the "other" boundary isomorphism.  Then there exist unique isomorphisms

,       d0z
Es,t+lX      w     ES,tGX l<r<oo,

r r ' —     —      7

which on E.   are the compositions

Es,z + ix lAL^ n'i + ixs _Á1U   „'^Xs—^E^GX

and for which the obvious analogues of 11.1 (ii), (iii) and (iv) hold.

12. The Samelson and Whitehead products for homotopy groups.  In this section

we recall some "well-known" [4] results about Samelson and Whitehead products.

12.1. The Samelson product in  rr^GX. For  X e o^  the Samelson product

rr GX A nt,GX —~!-A-> nt+t,GX,       t,t'>0,

is the composition
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ntGX A nt, GX -^-» n¡+t, (GX A GX)—, ir/+<( FiGX A GX) -^U t7<+(, GX

where F is Milnor's "free group on" functor [9], the unnamed map is the obvious

one and  c is the homomorphism which sends each generator  (a, b)  into the commu-

tator aba~   b~   . It has the properties

(i)  it is linear in the first (second) variable whenever / > 0  (/   > 0),

(ii)  it is commutative with sign (— l)n +  ,

(iii)  it satisfies the Jacobi identity with signs  (— 1)"", (- l)' ' and (— 1)' '

whenever t, t , t   > 0, i.e.

(- 1)"" [[«, „], w] + i- lY'^iv, w], u] + (- 1)'"'' [[«,, «], tz] = 0

for zz £ nfGX, v £ 77(/GX, w £ n   GX and t, t , t" > 0.

Similarly one has

12.2. The Whitehead product in n^X.  For X e fl^ the Whitehead product

nX A n(lX        ' ■*>  77i+£,_jX,       t, t' > 1,

is the composition

„X A nt,X ^ nt_yGX A n^^GX -Li, 77/+i,_2GX — t^^X

or equivalently (11.3)

a°tAd°< ,V  K ,V     I.   ] Oí
ff|X A VX -► 77í_1GX A 77í,_]GX -!^U 77í+í,_2GX-7 n^.^X.

Clearly it has the properties of 12.1 with everywhere   t — 1, t' — 1   and  t" - 1  in-

stead of  t, t    and  t .

I2.3. Remark.  The above definition of the Whitehead product differs from the

"usual" one by a sign [4l.

13. The Samelson and Whitehead products in E y.  If, in order to construct a

Samelson product in  F.GRX, one defines a Samelson product in  77^ GRX  in the

obvious manner (7.1(i)), then one gets a trivial product.  To get around this we

make

I3.I. Some observations.

(i) The map c: F(GX A GX) —» GX obviously admits a factorization

FiGX A GX) -^-> r2GX      incl ■ GX

where V2  denotes the commutator subgroup functor,

(ii) There is a commutative diagram
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r2GRX

r',GRX

»2

'GRX

'3

d'gRx

■*  T2GRX

incl

GRX

GRX

pro]

GRX r2GRX = QZRX

p2

n/îRx

p<

GRX -*- VGBX^GRBX

where  fi  denotes the standard loop complex (i.e. the fibre of the standard path

fibration [7, §2]), p2   is induced by the ring (with unit) homomorphism  Z —» R, p,

sends the generator corresponding to a simplex  y £ P.RX  into y — sQdQy, the hori-

zontal maps on the left are fibre maps induced from a path fibration by the ones on

the right, and the vertical maps on the left are induced by the ones on the right.

(iii) As  p,   induces isomorphisms of the homotopy groups, so does  a,   and

hence composition of q.^, q2^. and q~     yields a natural homomorphism q^:

77+r2GRx -»tt^GRX.

Now we are ready to construct in a nontrivial manner

13.2. The Samelson product in 77^. GRX.  The Samelson product

i-^GRX^A n't,GBXs'    l '   J-  77;+/,+ 1GRXs+*'+1

will be the composition  (with  / as in 7.1 and d as in 5.2)

n'fiRX* A 7r'tlGKXs'—U ^GRX**5' A 7r't,GÏ{Xs+s'^77't+t,(GÏ{Xs+s' A GRXS+S')

-► 77;+<,E(GRX*+*' A GRXS+S') -^ 77;+¿,r2GRXs+s' •

-^*77't+[lDlGBXs+s' -^
S+S+l   5-1

n't+t'+lGVXX
s+s'+l

And similarly we get

I3.3. The Whitehead product in 77^ RX.  The Whitehead product

T7'tRXs A ir^RX5'-   [ '  ].   7t;+<(RXs+s'+1

will be the composition
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tt;rx* a 77;,rx*'   d(3t a°'> ^;_,grxs A 77;MGRX*'

[ ' ]> »;+f,_1GRx'+*'+I -^tt;+í,rxs+s'+1

For later use (§19) we mention here

13.4. A more direct construction of the Whitehead product in Ej.  For  V eo+

let w: RY A RY —» R   Y denote the composite map

RY A RY —^ R(RY x RY) —^-»R2Y

where, for all (u, v) £ RY A RY,

C(u, v) = l(u, v) - l(a, *) - l(*,  v)

and + denotes the "addition map"  RY x RY —► RY. Then, for X £ b^, w induces

maps

«V tt;(RX A RX)*"1 -<Rx\

and a long but straightforward computation shows

13.5. Lemma.   The Whitehead product (13.3)

nfix* a 77;,rx*'  [ ' ] > 77;+í,rxs+s'+1

is (— 1) -s_     times the composition

rr'RX* A T^RX*'-* „^(RX A RX)S+*'^^ rr't+t,ï{Xs + s'+l

where the first map is as in 7.1.

14. The Samelson and Whitehead products in E . Now we use the E.-level

results of §13 to construct a Samelson product in  E GRX  and the desired Whitehead

product for  E RX.

14.1. The Samelson product in E GRX.  Let X £ S^ and let R  be a ring. Then

there exist unique natural products

ES-'CRX A Es'-''gRX    [ '  ]> ES+S'+1-Í+Í'+1GRX,       1< r< »,
r r r ' —     —

with the following properties.

(i) The product in E^   is induced from the Samelson product in rr' GRX (13.2)

by the iterated boundary isomorphism (5.3).

(ii)  For u £ ES''GRX and v £ E*'-''gRX  (1 < r < oo)
T 7 —

dr [u, v] = [du, v] + (-lY~s[u, dv\.

(iii)  The product in  E    j   z's induced by the one in E    (l < r < oo) and the prod-

uct  in   Em z's induced by the ones in the E   (l < r < oo).
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(iv)  The product in Ex  is compatible with the Samelson product in n GX,

i.e. if u £ FrnGX and v £ FT'nt,GX, then [u, v] £ Fr*r'+ln    „GX ande        ,[«, v]
i i t + t' r+n + l     '

-[e u, e fj\.

(v) The product is linear in the first (second) variable whenever t ? 0 (t > 0).

(vi) The product is commutative with sign (— \yt-s)(ti-si)+    jQT T>\_

(vii)  The product satisfies the Jacobi identity with signs  (— iyt-s){.t*-s» )^

(- 1)<«'—'>(«-•> and (- !)(**-*»>(*•-*') wheneveT t} t't t"y o and r> 1.

Proof.  Parts (i) through (iv) follow readily from the fact that

(i) the maps  c^ , q^ and  (— 1)   +    + d of 13.2 induce spectral sequence

maps which are compatible with the augmentations, and

(ii) the remaining (composite) map in 13.2 induces (in view of [8, Corollary

4.3 and Theorem 10.8]) a spectral sequence pairing which is also compatible with

the augmentations, while (v) through (vii) are consequences of 12.1(i) through (iii)

and Theorem 10.8 of [8] or can be proved using [3J.

Finally we get, by applying to 14.1 the "other" boundary isomorphism ¿L

(§11),

14.2 The Whitehead product with coefficients in a ring.  Ler X e S^ and let R

be a ring.  Then there exist unique natural products

FJ^X A E*''t§X. -L-!- Es + s'+l<t+<'x        K r < oo,
7 7 7 ' _        _ '

such that

(i)  the product in  E.   is induced from the Whitehead product in  n^ RX  (13.3)

by the iterated boundary isomorphism (5-3), and

(ii)  the obvious analogues of 14.1 (ii) through (vii) hold.

CHAPTER IV. APPLICATIONS

15. The rational spectral sequence F (X; Q) and its Whitehead product.  As

one might expect from the simplicity of rational homotopy theory [16], our rational

spectral sequence  F (X; Q)  is already "well known".  In fact, we will show below,

that our rational spectral sequence  F (X; Q) (with a Lie algebra structure induced

by the Whitehead product) coincides, from E.  on, with

(i) the rational version of the lower central series spectral sequence [9]

(with Lie algebra structure induced by the Samelson product), and

(ii) the primitive elements in the rational cobar spectral sequence [l].

This allows us to give a homological description (15.6) of E.(X; Q).

I5.I The lower central series spectral sequence. Let X £ o^ be connected,

let G be the loop group functor [l3l and let

...cr     ,GX CT GX C... cr.GX= GX
s+1 s 1
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be the (integral) lower central series filtration of GX [9].  The associated homotopy exact

couple gives rise to the lower central series spectral sequence  \ErX\ [9] with

<zx = ^rscx/rs+]Gx)

and this spectral sequence has a Samelson product [6, §9]

[      ]     ~Er    X®Er,  ,X A '   J , E*     ,     ,X
s,t s',t' s+s   t+t

compatible with the differentials. Now we can state

15.2. Theorem.   For X £ 0    connected, the natural spectral sequence map

Es<t+l(X; Z)= Es-i+1ZX—^-£S''GZX -*&...     X,       r> 2,
T » r r s+1 ,t—s    ' —

(where cL    is as in §11 and the second map is the one described in [7, §6]) carries

Whitehead products in E (X; Z) into Samelson products in E GZX and ETX. More-

over the induced map

Es-' + 1(X; 0) as 0 ® Es't + 1(X; Z) — Q ® ÊA, ,     X,       r>2,
7 '    Ä — 7 ' K S+I.Z-S      ' —       '

z's «72 isomorphism.

Proof.  Using the dual (i.e. cochain) version of the Barr-Beck acyclic model

Theorem [3], it is not hard to prove that the (cochain) maps

EjGZX ® EjGZX -LJ-» EjGZX -. ElX,

EyGZX ® EjGZX -* ÊlX ® ElX    *•'■*> PAx

are (cochain) homotopic. This, together with 14.2, yields the first part of the

theorem.

To prove the other part observe that

(i) Q ® Ê  X  depends functorially on QX;

(ii) Q ® E X collapses to rr^X whenever X is a simplicial Q-module.

Hence [7, 10.7] we can use the arguments of [7, §10] to show that the map

E (X; Q) —> Q ® ETX  is an isomorphism for r = 2  and hence for all  r > 2.

15.3. The rational cobar spectral sequence.  For X £0^ connected, there are

several essentially equivalent constructions for its rational cobar spectral sequence

ET(X; Q) ([1], [6], [11]), of which we will use the one of [6, §10] (with Q instead

of Z2).

Recall that Er(X; Q) is actually a Hopf algebra spectral sequence (i.e. each

(Er, d/) is a differential graded Hopf algebra). Hence, in view of [l6, p. 280] and

[14], the primitive elements  PEr(X; Q) of Er(X; Q) yield a Lie algebra spectral

sequence, and the results of [6, §10] then readily imply:
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15.4. Theorem.  For X £ S^ connected, the natural spectral sequence map

Q ® ETX — F/(X; Q),  r> 1   (constructed as in [6, §10], with   Q   instead of   Z ),

induces a Lie algebra spectral sequence isomorphism Q ® ÊTX » PE~r(X; Q),

r> 1.

Combining this with 15.2 we get

15.5. Corollary.  For X £ o+ connected, the natural spectral sequence map

Es,t+Hx. Q)^Q® E; + ]<_sX -, ^ + ltt_s(X; Q),        7> 2,

induces a Lie algebra spectral sequence isomorphism E (X; Q) « PET(X; Q),  r > 2.

15.6. Corollary [I5L  For X £0^  connected, there is a natural Lie algebra

isomorphism

E2(X; Q) » P CotorH*(X-Q\o, Q).

15.7. Remark. When H AX; Q) is of finite type, then the Hopf algebra
H    (X ■ O)

Cotor (Q, Q) is equivalent to the classical cohomology  Ex/„* (v.o/ß, Q),

of the algebra H*(X; Q).  It is thus highly computable (see [5]).

16. The rational spectral sequence E (W, X; Q). In this section we will

(i) prove that the rational spectral sequence E(W, X; Q)  is completely

determined by E(.X; Q) and H^W; Q),

(ii) use (i) to show the essential triviality of the rational composition pairing,

and

(iii) use (i) to recover a result of Arkowitz-Curjel on the rank of certain groups

of homotopy classes [2].

16.1. Reduction of Ef(W, X; Q).  For W, X e S+, X connected, and t > s > 0

there is a natural isomorphism

Esr'l(W,X;Q)^    Y\  H"iW; EsT't+niX; Q)),       f>l.

Proof.  For / > 1  there is a natural isomorphism

77i  i077z(W,   QX) «      []    H"iW;  77(+r¡QX)
nHO

of cosimplicial Q-modules, which implies the cases  7=1,2. The cases  r > 2

then follow by a straightforward induction using 10.1 and the facts

(i)   if M and N ate graded Q-modules, then any additive cohomology opera-

tion of the form

u   HniY; Mn) -,   u   «"(*; Nn),        Y £S^,
7Z>0 71^0

is induced by coefficient homomorphisms M    —» N  , n > 0,



1973]       PAIRINGS AND PRODUCTS IN HOMOTOPY SPECTRAL SEQUENCE 337

(ii)   for W, X £&^ and any ring R  (though we only need here  R = Q) there

exists a natural spectral sequence  [big E (W, X; R)\ such that

big Es2'l(W, X; R) *a 77s7Tthom(W,RX),     t>s>0,       t > 0,

» 0, otherwise,

big Esr'l(W, X; R) « Esr'l(W, X; R), t>s>0,       r>2.

The existence of this enlarged spectral sequence can be proved using the approach

of [8]; its only usefulness is for studying Es'l(W, X; R) on its "fringe"  t — s = 1

[7].

16.2. The essential triviality of the rational composition pairing.  For W, X, Y

eS    with X, Y connected, the composition pairing (§9)

EA'(X, Y; Q) ® Es''l'(W, X; Q) -^ Es+s'<t+t'(W, Y; Q),       r> 2,

is trivial if s   > 0.

Proof.  The inclusion ci: X —» QX induces, by 16.1, an epimorphism

FS/(QX, Y; Q) -+ Esr'l(X, Y; Q) and by [7, §4] the group ES'^'(W, QX; Q) vanishes

for s   > 0 and r > 2.  The desired result now follows by a naturality argument.

16.3. Remark.  The composition pairing for s   =0 has an obvious description

using 16.1 and the canonical inclusion E°'*(X; Q) C r/+(X; Q). The details are left

to the reader.

For our second application of 16.1 we need

16.4. The rank of a group.  A group G is of finite rank if there exists a finite

filtration

G = NnD... D N.D N.   . D... D N. = 10 z z +1 b

such that each  N .   ,   is a normal subgroup of N . and each  N ./N .  ,   is either infi-
z+l or , i i+l

nite cyclic or periodic.  For G of finite rank the number p(G) of infinite cyclic

N ./N.  j  is called the rank of G and depends only on  G. This notion of rank

coincides with the usual one for abelian groups, and is discussed in detail in [2].

Now we can formulate

16.5. The Arkowitz-Curjel result.   Let W £ S^ be finite dimensional and let

X £ o^  (3.2) be simply connected.  Then the group [SW, X] (of homotopy classes

rel. *  of maps  SW—» X) has rank

p[SW, X] =   £   p(H(SW; Z))p(rrnX).
72>0

Proof.  Combine 16.1 for r = oo with the convergence propertities of the integral

spectral sequence [7] and the isomorphism [7]
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EjW, X; Q) « 0 ® EjW, X; Z).

17. A homological description ol the smash and composition pairings for

E2( ; Z  ).  In [7, §11 and §12] we considered the category CU  of (connected) un-

stable coalgebras over the Steenrod algebra and observed that

(i)  the  Z  -homology functor is actually a functor H^i ; Z  ): o^    —> Cu

where w^    C o^  is the full subcategory of connected complexes, and

(ii) for W £ o^, X £ o^    and t > s > 0  there are natural isomorphisms

Es/iX; Zp)^  Extl^iS*.^), H¿X; Zp)),

E*/iW, X; Zp) « Ext^iH^iS1 A W; Zp), H^iX; Zp))

where the   Extpa   are> ^n some sense, the right derived functors of f/ozzzgg.

This suggests that it should be possible to give a homological description

of the smash and composition pairings for EA; Z ), and we devote this section

to showing that this indeed can be done, in fact by merely mimicking our construc-

tions for spaces of Chapter II.  But first a

17.1. Notational convention.  Throughout the rest of this chapter we will freely

use the notation (and results) of [7], except that from now on we will write H^

instead of HÁ;Z  ).
1      * p

17.2. A smash product in CO. For C, D £ Œ let C A D £ C3 denote the quo-

tient object of C ® D £ Cd such that J(C A D) « JC ® JD. Clearly, for X, Y £

o^,  , there then is a natural isomorphism

h^x A^y» H^ix Ay) £ Œ.

17.3. The functors  ExtSpL.  Let  CU    J &X denote the category defined in the

same way as Cu [7, §ll] but with connected replaced by co-augmented. Then, for

B £ LCI    and  t> 1,  H^S1 A B  z's in Cu and has trivial comultiplication, and hence

we can define functors

Ext^iB,     ):   Co — (Z  -modules)

by

Ext^iB,   )  « Ext^iH^ A3,)     s > 0,       t > 1.

As  HjW £ CG.    for all W £ b^, the isomorphisms at the beginning of this section

now can be written

Es/iX; Zp) « Ext¡¿ÍHj\ H^X),       Es/iW, X; Zp) « Ext^iH^W, f/+X).

17.4. The smash pairing for Ext^iHJ°, ). For C, D £&î let TC A TD -i.

TÍC A D) £ Lit be the adjoint of the obvious map
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J(TC A TD) = JTC ® JTD = JVJC ® JVJD -* JC ® JD= ](C A D).

Then a induces, as in §8, a cosimplicial map TC A TD -2+ T(C A D) and we

define, for s, s' > 0 and f, /  > 1, the smash pairing

Ext^H^S0, C) ® Ex$\HmS°, D) — Ext^'- t+t'(HJ°, CAD)

as the composition

ttAH^S', TC] ®77s'[Hy, TD]^L 77S+S'([H^¿, TC] ® [H^S*', TD])

- 77s + s'[H^St+t', TC A TD] -^-»»7s+s'[H#St+/' T(C A D)]

where [, ] denotes Horn      (,), f is the (graded) Alexander-Whitney map (7.1)

and the middle map is the obvious one.

Clearly this definition implies that, for X, Y £ o^    and t > s > 0,   /   > s   > 0,

the pairing

Exts^(HJ°, H^X) ® Ext^'^S0, H^Y) ~l\ Ext^'^'X^S0, HAX A Y))

coincides with the pairing (§8)

EMX; Z) ® Es'<l'(Y; Z J -^-*Ei* s''t + t'(X AY; Z  ).
¿ '      p I '      p 2 P

Similarly we deal with

17.5. The composition pairing for Ext%'L  For B eÖ3',  C, D ecu and s,

s   >0,t,t   > 1   we define the composition pairing

Ext^(C, D) ® ExtSçf(B, C) -1* Extse+as'<t + t'(B, D)

as the composite map

rtAHJ' A C.TD] ® 77*'[zV A B,TC] -M-Î1+ ns+s'[H^S' A H^'A B,TD]

where again [, ] denotes  Horn      ( , ) and / is the (graded) Alexander-Whitney

map, while the map

[/V* A C, TD] ® [H^S1' A B. TC] -î^ [H^S1 A H^S1' A B, TD]

is defined in the same way as the map c  of §9.

Clearly this definition also implies that for W, X, Y £ S^    and t > s > 0,  t' >

■s   > 0  the pairing

ExÇgiH+X, E,y) ® Ex$'(HtW, E,X) - ^E*£J*'.'«'(fl,W,.fl,y)

coincides with the pairing (§9)

Ef-'(X, Y; Z ) ® Es2'-t'(W, X; Zfi) -1* Es2+s''t+t'(W, Y; Z).
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18. The composition action of EASm; Z ) in the Massey-Peterson case. We

now combine 17.5 with the results of [7, §13] to give a useful simple description

of the composition action of E2iSm; Z ) on E2(X; Z ) for "very nice"  X  in terms

of the classical Yoneda product.

18.1. The description in terms of the Yoneda product.  For X £ S^    and t >

s > 0,   t   > s' > 0, the composition action (§10)

(i) Es2<"miX; Zp) ® Es2';t'(Sm, Zp) ^-+Es2+s''t+t'iX; Zp)

corresponds, by 17.5 to the composition

(ii)   Extsp-{A.HJ™, H*X) ® Ext^'d^S0, HJm)^Extse+¿''t + t'iH„S°, H„X)

But, if X and Sm are "very nice" (i.e. it there is an M £%& such that H^X fa UM £&t

and either m is odd or p = 2), then H^Sm = UH^Sm and hence [7, 13.6] the composition

(ii)  corresponds to a composition

(iii)       E*,^(zVm, M) ® Ext^'iH^S0, HmS") -^- Ext^'-tn,("J°. M

where the  Extî.'a ate defined in terms of the Extí. _   in the same manner as the

Ext%'{ were defined in terms of the Ext^Q    (17.3) and the composition pairing °

for the FxtL'„ is constructed as the one for the Exr^'i (17.5) (using the functors

/    and   V     instead of /  and  V).  Finally, as Mil  is an abelian category we can

(and will) identify  Exty.~   with the Yoneda group of s-fold extensions using the

correspondence  Ç,  of [12, p. 96] and a straightforward calculation then yields that

the composition (iii) corresponds to (— l)ss + s    times the composite map

ExtsmiHJt+m, M) ® Ext^iH^', Vm)

(iv)

where the first map is  induced by the operation  H^S   ® — and the second map is

the Yoneda product [12, p. 82] in the abelian category 'Mil.

19. A homological description of the Whitehead product in  F2( ; Zp).  Using

our second construction for the Whitehead product in  E.   (13.4) we will

(i)  show that the Whitehead product in F (   ; Z ) corresponds to a certain

homological product in  Extp„ iH^S  , ), and

(ii) use this to show that the Whitehead product in   E2(   ; Z ) (and hence in

E (  ; Z ) for r > 2) vanishes for "very nice" spaces (i.e. in the Massey-Peterson

case).

19.1. The homological Whitehead product. For C e CS and s, s' > 0,  t, t  >

1, we define the homological Whitehead product

Exf^iHJ0, O ® E*^'(/V°, C) - Ext^'t+>'iH,S°, C)

as the composite map



1973]        PAIRINGS AND PRODUCTS IN HOMOTOPY SPECTRAL SEQUENCE 341

nAH^S', TC] ® 77S'[/Vi', TC] -L* ^s'ÇLH^S', TC] ® [H„S'', TC])

- 77s+s'[H^St+t', TC A TC] —?*+ 7rs+s'+1[H^St+t', TC]

where again [, ] stands for Hompfí(, ), / is the (graded) Alexander-Whitney map

(7.1) and the middle map is the obvious one, while w^  is induced by the composite

maps

TkC ATkC S^T(TkC ®TkC)—^-+ Tk + lC,       k>l,

where  4  is the adjoint of the obvious inclusion

J(TkC A TkC) = JTkC © JTkC — }(TkC ® TkC)

and x: T^C ® TkC —► TkC is the "multiplication map"

TkC ® TkC = V]Tk~lC ® V]Tk-]C= V(jTk~lC © JTk~lC) -ÀA+L, vjTk~lC= TkC

induced by the "addition map"  +: JTk~lC © JTk~lC -, }Tk~lC. A lengthy but

straightforward calculation shows that w^ is well defined, and it then follows

readily from 13.5 that, for X £ S+    and t > s > 0,  t  > s' > 0, the homological

Whitehead product

Ext^(H^, UJCI ® Ext¿f(HJ°, H^X) - ExÇ/^^'(H^S0, H*X)

corresponds to (- l)'~s_1   times the Whitehead product (§14)

E2''(X; Zp) ® E^'CX; Zp)     [  '   ] . Es2+s'+l-t+t'(X; Zp).

19.2. The Massey-Peterson case.  If X £0^    is "very nice" (i.e. there is an

M £%& such that /LX«j UM £ (£3), then the Whitehead product in  E (X; Z)  is
•* 7 p

trivial for 2  < r < 00.

This follows readily from 19.1, the fact that UM £ Cu is an "H-object" (i.e.

there is a map UM ® UM —> UM £ CU which restricts to the identity on Z ® UM

and  UM ® Z  ), and the following

19.3. Lemma. // C ecu z's 072 H-object, then the homological Whitehead prod-

uct in   ExtpAHjS  , C) is trivial.

For the proof of this lemma (which is similar to the proof that in an E-space

all Whitehead products are trivial) one needs

19.4. Proposition.  For C, D £ cu and s > 0,  t > 1, there is a natural isomor-

phism

Extse¿(HJ°, C ® D) « Ext*£(H^S°, C) © Ext^(HJ°, D).

This follows from [7, 12.2] using the natural isomorphism



342 A. K. BOUSFIELD AND D. M. KAN LMarch

Horn    iH^S', TC ® TD) « Hom^iHJ1, TC) ® Hom^iHJ1, TD)

and the fact that TC ® TD  is a cosimplicial resolution of C ® D.

I9.5. Remark.  Another interesting consequence of 19.4 is the fact that, for

X, Y £ ö^  , there is a natural isomorphism

E2(Xx Y; Zp) * F2(X; Zp) © E2(y; Zp).
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