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PAIRINGS AND PRODUCTS IN THE
HOMOTOPY SPECTRAL SEQUENCE

BY

A. K. BOUSFIELD AND D. M. KAN(1)

ABSTRACT. Smash and composition pairings, as well as Whitehead products
are constructed in the unstable Adams spectral sequence; and these pairings
and products are described homologically on the E2 level. In the special case
of the Massey-Peterson spectral sequence, the composition action is given homo-
logically by the Yoneda product, while the Whitehead product vanishes. It is also
shown that the unstable Adams spectral sequence over the rationals, with its
Whitehead products, is given by the primitive elements in the rational cobar spec-

tral sequence.

1. Introduction. The purpose of this paper is to show that the homotopy spec-
tral sequence Er(X; R) of a space X (with base point) with coefficients in a ring
R, which we defined in [7], admits smash and composition pairings as well as
Whitebead products. The paper is divided into four chapters.

Chapter I is introductory. In it we associate with a cosimplicial space Y a
tower of fibrations and hence a spectral sequence ErY, in such a manner that
Er(X; R) = ErRX, where RX denotes the cosimplicial space obtained by “‘resolving
X with respect to R.”’

In Chapter II we construct the smash and composition pairings. For this we
first observe that, for any two cosimplicial spaces X and Y, there exists a basic
pairing of spectral sequences EX ® E Y — Er(x A 'Y). This is rather unpleasant
to prove in our present setting (i.e. using towers of fibrations), but not, as we show
in [8], if one approaches the spectral sequence of a cosimplicial space in a differ-
ent (but of course equivalent) way. And we then obtain the desired smash and com-
position pairings by composing this basic pairing for suitable X and Y with appro-
priate spectral sequence maps.

In Chapter III we construct the Whitehead product by first constructing a Samel-

son product for the loops and then delooping. To do this we need an analogous
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320 A. K. BOUSFIELD AND D. M. KAN [March

basic pairing of spectral sequences for cosimplicial simplicial groups, for which
we again refer the reader to [8].

Chapter IV contains homological descriptions of our pairings and products on
the E,-level for the important case R = Zp, the integers modulo a prime p, as
well as for R = Q, the rationals. Indeed for R =Q we show that our spectral sequence can

be obtained by merely taking primitive elements in the rational cobar spectral sequence [1].

CHAPTER I. THE HOMOTOPY SPECTRAL SEQUENCE
OF A COSIMPLICIAL SPACE

2. Cosimplicial objects. We start with recalling from [7] the notion of an (aug-
mented) cosimplicial object and mentioning our prime example, the resolution of a
space with respect to a ring.

2.1. Cosimplicial objects. A cosimplicial object X (over a category C) con-
sists of

(i) for every integer n > 0 an object X" € C,
(i1) for every pair of integers (i, n) with 0 <i<=n coface and codegeneracy

maps
di:xn—l_,xn &-e’ si:xn+l'_,xn6@

satisfying the identities
ddi = did’! for i<j,
std? = dis’™1 for i<,
=id for 1=7,j+1,

=di7l for i> i+ 1,
sjsi= s'7IsT for i> 7
A cosimplicial map [: X — Y consists of maps f: X" — Y” € C which commute
with all the cofaces and codegeneracies. A cosimplicial object (map) over C thus
corresponds to a simplicial object (map) over the dual category C*,

2.2. Augmentations. An augmentation of a cosimplicial object X (over ©)
consists of amap d°: X=! — X° € C such that d'd® = d%4%: X~ = X!, We now
turn to our prime example.

2.3. The resolution of a space with respect 1o a ring. Let 5* denote the cate-
gory of ‘‘spaces’’, i.e. simplicial sets with base point +. Let R be a ring (with
unit), let the ‘‘free R-module functor’’ R:S* — 5* and the natural transformations
¢:1d— R, y: RR— R be as in [7, §2) and let R? =R---R (n copies of R). For
X 65* the resolution of X with respect to R then is the augmented cosimplicial

object RX over 5* given by
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RXx" = R**1X,  a>-1,
di R1¢Rn-r
_

Rx7-1 —— RX" = R"X R**1x,
Rxn+1 s’ RX” = Rn+2 R1¢Rn—z' !R"'HX.

Clearly RX is natural in X as well as in R.
2.4. Remark. In verifying that RX is indeed an augmented cosimplicial object,

one only has to use the fact (R, ¢, ) is a triple in the sense of [10]. The same
construction thus can be made using other triples.

A way of constructing more cosimplicial objects is by

2.5. Applying a functor. Let X be an (augmented) cosimplicial object over a
category C and let T: C€— C' be a covariant functor. Application of T to X then
yields an (augmented) cosimplicial object TX over C' with (TX)* = T(X") for all n.

For instance, if X is an (augmented) cosimplicial ‘‘space’’, then nl.X (i>2)

is an (augmented) cosimplicial abelian group.

3. The derivation of a cosimplicial space. In order to define the homotopy
spectral sequence of a cosimplicial space in such a manner that it reduces, for
RX, (2.3) to the homotopy spectral sequence of X with coefficients in R [7, §4],
we need the derivation construction described below, which generalizes the one of
(7, $31. First we describe

3.1. A path-like construction. For an (augmented) cosimplicial object X over
C one can construct a path-like (augmented) cosimplicial object VX (also over )
by lowering the cosimplicial degrees by one and forgetting the first coface and

codegeneracy operators, i.e. by setting

Vxnzxn"'l,
WX 1 L yXm - (X XY, 0<i<a,
. si si+1 ‘1
VX" = pyXm) = (Xt —— X)) 0<i<n

The objects X and VX are related by the cosimplicial map v: X — VX given by
(X7 Zyxn) = (X d_(_" X'”'l).

Now we can define

3.2. The derivation. Let ‘S*K denote the full subcategory of 5* of the Kan
complexes with base point and, for Y € S*K’ let AY &y GS*K denote the (stan-
dard) path fibration over Y [7, $2). Let X be an (augmented) cosimplicial space
such that X” € S*K for > 0. Then we define an (augmented) cosimplicial space
DX (the derivation of X) and a cosimplicial map D!X 2 x by requiring that 6
is the (cosimplicial) fibre map induced by the map v: X — VX from the (standard)
path fibration A: AVX — VX, i.e. 8 is given by the pull back diagram
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Dlx — > AvX

[k

X —/— X
This notion of derivation indeed generalizes the one of [7, $3]. In fact one
readily verifies
3.3. The case X = TRY. Let Y €8, let R be a ring and let T: 8, — 8, be
a covariant functor which respects S*K (7, $3]. Then one has the commutative

diagram

pi(TRY) —d (D, RY

N A
TRY
4. The homotopy spectral sequence of a cosimplicial space. In this section
we give a definition of the homotopy spectral sequence of an augmented cosimpli-
cial space which directly generalizes [7, $4 and §7), and discuss some of the
immediate consequences of this definition.
4.1. Definition of the spectral sequence. Let X be an augmented cosimpli-

cial space such that X" € S*K for »> 0. Form the sequence of maps

e DSX DS TIX = DIX 2 DOX = X

where D' = DD ! for all i > 1, and then define the homotopy spectral sequence
{E_ X} of X as the homotopy spectral sequence of the sequence of fibre maps

obtained by restricting the above sequence to the augmentations
3
“ 0. — sz‘l ——éDS_IX_l—v v e — X'l

“fringed’’ in dimension 1. By this we mean (as in [7, $41) that

ES*X=7_ DX’ 1-1>s>0,

t-

=0, otherwise,
and that

ES'*X = kerd . /imd__,, t-1>s20;
r r-1 r-1

but in dimension 1

Es,s+lx C Es,s+1x/l-md
r r r—

r =5
as we define Ef’”lx by

Ef-5+lx= Z’S__’IS+IX/imdr_1) SZO’
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where Zf’_i*lx C Ef’_f*lx consists of what ‘‘would’’ have been the cycles, i.e.
the elements for which the image under the boundary map 0: 771DSXo — 770DS"1X'1
lifts to mDS+X ™1,

One has, of course, to verify that Zf'_f*lx is indeed a group; but this can
readily be done as in [7, $4]. There we also explained why we use a fringe and
not an edge.

The above definition generalizes the one of [7, $4 and §7). In fact 3.3 implies

4.2. The case of the resolution with respect to a ring. Lez X, W e 5* and let
R be a ring. Then, in the notation of (7, $4 and §7],

{E (X; R} = {E RXY,
{E (W, X; RIY = LE hom (W, RX)}.

We can avoid the restriction that X" € S*K for n > 0 by making

4.3. A slight generalization. As [13] there is a natural isomorphism {ErX} z
{E_Sin|X|} where || and Sin are the realization and the singular functor, we can
and will, whenever X" is not in ‘S*K for all n> 0, define the homotopy spectral
sequence {E_X} of X by {E _X}={E Sin|X|}.

As in [7, $4] we have the following

4.4. Trivialities about E_X and E_X.

(i) d : ES"X — EStrtvr=lX;
(ii) E'S;tlx C Ef’tx, for 1> s;
(i) ESX =N, ESX;

(iv) for t — 1> s >0 there is a natural short exact sequence
e
+1 -1 S =S ,t 00 +ly -1
0— (FS/Fs )ﬂt_sx —— E>'*'X —F ﬂz-s-lDS X7'N kerd, —0,

where Ftm D°X~' = im(w D***X~' —  D*X~1) and F™n D°X~' =, F*r DX~ .

Finally we observe

4.5. The nonrole of the augmentation. The spectral sequence does not really
depend on the augmentation, i.e. if X is an augmented cosimplicial space and Y C
X is such that Y* = X" for n> 0 and Y-1_ %, then the inclusion Y — X induces
isomorphisms E Y &~ E, X, 1 <r<oo,

This follows readily from the fact that the tower {DSY~!, 8} used to define
E Y is induced by the map Y-! = X~! from the tower {DX™!, 8} used to define
E X.

4.6. A homology analogue. It was pointed out by D. L. Rector that one can
obtain a homology spectral sequence by replacing induced fibre maps by induced
cofibrations and homotopy groups by homology groups. In [17] he shows that this
approach can be used to obtain the Eilenberg-Moore spectral sequence and to intro-

duce therein the Steenrod operations.
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5. A more convenient description of the E-term. We end this chapter with
observing that the spectral sequence of a cosimplicial space X, as defined in $4,
has an E -term which is rather inconvenient for constructing pairings and products
or studying E,X. However, a more convenient description of E X is possible
thanks to the fact, described below, that the groups ﬂt_sDSX0 are naturally iso-
morphic to certain subgroups 77; X*® Cw X*, which will be called

5.1. The normalized homotopy groups. For a cosimplicial space X its normal-
ized homotopy groups are the subgroups 771' X Ca X, t, 5> 0, defined by
ﬂt'xs =7, X5 N ker %N een ker s

A simple calculation then yields

5.2. Proposition. Let X be a cosimplicial object over S*K. Then the boundary

_lDIXS_l induce isomorphisms 77; X* 3 a! _1Dlxs_l.

s @
maps w X* =@ ;

t

Therefore we can define
5.3. The iterated boundary isomorphism. For a cosimplicial object X over
_SDSXO, t>s >0, is the com-

. . . ' Sait
S*K the iterated boundary isomorphism m X°—o m,

posite isomorphism
s _1ys-1 _1)s
axs D2, 0 pixs- MG LN CEE 5 O
t -
The signs are put in to insure

5.4. Proposition. The following diagram commutes:

S(-1)id?

rys-1 > XS
ﬂlx TTl/
9 it
d
_ 1
n DXV L ESTMX —— ESX =7 DXO
t-s+! i 1 t=s

This means that the cosimplicial object 7, X contains all the information
needed to compute E,X. In fact since (my X, (= 1)'d) is chain equivalent to
(m, X, 2(- 1)'d) by [12, p. 236] one needs only the operators @ on 7, X to com-
pute sz (cf. [7, $10).

CHAPTER II. SMASH AND COMPOSITION PAIRINGS

6. The smash and composition pairings of homotopy groups. In this section
we recall some ‘‘well-known’’ facts on the smash and composition pairings.
6.1. The smash pairing of homotopy groups. For X, Y €8, we denote by

aXAay Doa (XAY), >0
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the smash pairing (8, $10] and recall that this pairing is
(i) linear in the first (second) variable whenever t >0 (¢ >0),

(ii) associative,

(ii1) commutative with sign (- 1)“', i.e. T*(u Av)= (D" A ) for u €
nX,ven,Y and : X NY =Y A X the twisting map.

We consider some special cases.

6.2. The suspension. Let X € S*, let S € S* be the 1-sphere, let $” = §1 A
coASte 5* be the m-sphere and let i denote the generator of 7_S™. Then the

map
o"=-Niza X—ma (XA
clearly is nothing but the m-fold suspension map.

6.3. The composition. Let W, Y €8, let hom (,) denote the “‘function com-
plex with base point’’ functor [7, §7) and let

bom(X, Y) A hom(W, X) SN bhom (W, Y)

be the map which assigns to a pair of g-simplices

Al A X 25y, Algl Aw 25 x,
the composition

diag Aid
—

Alg) AW Alg) A Algl Aw 422 AL A X 2 sy,

Then the composition pairing © is the composite map

ﬂtbom(X,Y) A m, hom (W, X) A, ntﬂ,(bom(X, Y) A hom (W, X))

=, Typgt bhom (W, Y).

We end with

6.4. Expressing the smash pairing in terms of the composition pairing. For
X,Y ES* the smash pairing

7 X A nt,Y—/—\—,ﬂHt,(X AY)
admits a factorization

mX Ay 2L G o (v, X A AT Y e, (X AY)

where b: X — bom(Y, X A Y) is the map which assigns to a map u: Alg]l — X
(i.e. a g-simplex of X) the map

Alg Ay 2Dy Ay,

This follows immediately from the fact that the identity map of X A Y admits
a factorization
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XAy P (Y XAY)AY <X AY.

7. A basic pairing of homotopy spectral sequences. We will derive the smash
and composition pairings with coefficients in a ring ($8 and $9) from the following.
7.1. Basic pairing of homotopy spectral sequences. Let X and Y be augmented

cosimplicial spaces. Then there exist unique (natural) pairings

Ef"x A Efl"lY _A, Ef+s',l+t'(x AY), 1< r< oo,

with the following properties:
(i) the pairing on E | is induced by the iterated boundary isomorphism d,,
(5.3) from the following pairing of the normalized homotopv groups
S CU e U B CL SR CL A WO 8 D

where [ is the (graded) Alexander-Whitney map [13, p. 132] given by
/(u’ v) - ((__ l)ts'ds+s'. oo dst 1u, ds-—l e dOv);
(ii) for u € Ef"’X and v € Ef""Y (1 <7<oo);

dr(u Av)= (dru Ay + D S(w A drv);

(iii) the pairing on E_; is induced by the one on E (1 <r <) and the pair-
ing on E_ is induced by the ones on the E_(1 <7 <eo);

(iv) the pairing on E_, is compatible with the smash pairing of the homotopy
groups of the augmentations, i.e. if u € F'ﬂt)('I and v € F"ﬂt,Y_l, then u A v €
Fm+ T, XA Y)-! and e, uNv)=euhe v

(v) the pairings are bilinear;

(vi) the pairings are associative;

(vii) the pairings are commutative with sign (-~ DU=S=s") g6 4 > 2.

Proof. In view of [8, 7.3], this is nothing but Theorem 10.4 of (8].

8. The smash pairing with coefficients in a ring. For X €3, and R a ring we
write (as in [7, $4]) {E X1 for {Er(X; R)} = {E RX1.

Using the basic pairing of §7 we now construct

8.1. The smash pairing with coefficients in R. For X, Y €93, let

RX ARY —= R(X A Y) = RX ® RY
be the map given by (%, y) — x @ y. The compositions

n
Ra e R a, R"+1(X/\Y)

R**1x A Ry 2, R(R"X A R™Y)

then yield a cosimplicial map RX A RY 2, R(X A Y) and we define this smash

pairing C A .,
Ef'[/\’ Q Ef ot Y—-—»E;”S (X AY), 1 <7< e,
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as the composition

A E,a
ERx®ERY — E(RXARY) —— E R(X AY).

8.2 Properties. The obvious analogues of the properties 7.1(i) through (iv)
hold. In particular on E_ this pairing is compatible with the pairing

A ,
X A 7Y — nm,(x Ay).

And as the map a is both associative and commutative, properties 7.1(vi) and
(vii) also hold.

A special case of this smash pairing is

8.3. The suspension. Let i € E‘:”"S”z (1 <7 < ) denote the element that

corresponds to the generator of nmSm. Then the smash pairing

A
EX®ES"—— E(XAS"), 1<r<m~,
restricts to the m-fold suspension
o ESEX — ESH(X A ST

givenby u — u A i for all u. This suspension has all the properties implied by
8.2. In particular 0 is compatible with the m-fold suspension (6.2) 0™: 7 X —
7rt+m(X A S™).

9. The composition pairing with coefficients in a ring. For X, W €8, and R
a ring we write (as in (7, Na)) {Er(W, X} for {ET(W, X; R)} = {Erbom (W, RX)} and
construct, again using the basic pairing of §7,

9.1. The composition pairing with coefficients in R. For W, X, Y € 5* the com-

position pairing
E(X, V) @E (M, ) ——=F (N, ¥), 1<r<e,
is defined as the composite map
A Erc
L, bom(X, RY) ® E_bom(W, RX) —— oo —— E_hom (1, RY),

where ¢ is the cosimplicial map

hom (X, RY) A hom (W, RX) —5— hom (W, RY)
constructed as follows. For

u: ,S[q] AW — R?X, v: A[q] AX — R"Y,
c(u, v) is the composition

\[7) Aw— Alg] A Algl AW — Alg]l AR"X

w
— R™Al7) AN) — R?”y —" R?Y



328 A. K. BOUSFIELD AND D. M. KAN [March

where the unnamed maps are the obvious ones (6.3) and w,_ is the map which

““‘combines the ith and (n + i)th copies of R’’, i.e. w  is the composition

¢ t 0 Rw
RZnY n+l e 2n-~1 R RZnY __S_, RZn—-lY n-1 R"Y

where w, = s® and t;: R?"Y — R?™Y is the map which “‘interchanges the ith and
(i — 1)th copies of R (counted from Y)’, i.e.
1, _;=d's'+d™lsi—id.
The proof that ¢ is indeed a cosimplicial map is straightforward (but not short).
9.2. Properties. Again the obvious analogues of 7.1(i) through (iv) hold. In
particular on E_ the pairing is compatible with the composition pairing (6.3)

m, bom(X, ¥) A,y hom(W, X) —— 7, . (W, V).

And as the map c is associative (verification of which is lengthy but straightfor-
ward), property 7.1(vi) also holds.

We end with

9.3. Expressing the smash pairing in terms of the composition pairing. For X,
Y €8, the smash pairing EX® E Y’ E(XA Y), 1 <7 < oo, admits a factorization

Eh®id o
EX®EY ——— E(Y,XAY)®EY—E(XAY)

where h: RX — hom (Y, R(X A Y)) is the map which assigns to a map u: Alg] —

R™X the composition

Algl A Y A,

R"X AY — R™X AY)

where the second map is the obvious one.
This follows directly from the commutativity of the diagram

RX/\RY—hAid—-+ bom(Y, R(X A Y) ARY

R(XAY)

the verification of which is, as usual, lengthy but straightforward.

10. The (composition) action of E S™. Here we discuss how E S™ acts on

(most of) E X by means of composition (for fixed R, of course). First a

10.1. Lemma. For X € 5* the map

ES,[(Sm X) _r" Es,l*l'mX 1<r< o0,
’ ’ r ) ==

obtained by restricting the composition pairing
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0 ° +
ESH(S™, X) ® E)"S™ — ES X

to the generator i € ES’”‘S’" (8.3), is an isomorphism if t — s > 1.

The proof is easy.

Now we can define

10.2. The action of E S™ on E X. The (composition) action of ErSm on
E'X

[o]
ESmx @ ESt'sm DL EStsx 1< <e,

is the composition (defined only when ¢t — s > 1)

-1 .
ES,t+mx ® Esl,t'Sm _f_@;ld’ ES,I(sm, X) ® Esl,t'sm _i, ES+S’,H’!'X'
r 14 r r T
On E_ this action is clearly compatible with the unsual action of n,S™ on
m
l+mx ® ﬂt's - +t'X‘
On X A S™ this action is closely related to the smash pairing. In fact 9.3

ﬂ*X, m

readily implies
10.3. Proposition. The following diagram commutes for all 1 <r < co:

.
Ex®Esm ——24 g (xAsm) ® E sm

N

E(XAS™)

CHAPTER III. WHITEHEAD PRODUCTS

11. The homotopy spectral sequence of a cosimplicial simplicial group. Let
X € 5* and let G be the loop group functor [13]. Then (up to a possible sign) the
Whitebead product in m X corresponds under the boundary isomorphism to the
Samelson product in w,GX. The latter is the more natural notion (it adds dimen-
sions) and handles easier. In order to construct, for a ring R, a Whitehead product
in E’RX we will first introduce a Samelson product in ErGRX and then translate
the result to ETRX. Hence we start with explaining what we mean by

11.1. The homotopy spectral sequence of a cosimplicial simplicial group. The
approach of $4 applied to an augmented cosimplicial simplicial group B causes
problems in dimension 0. To get around this we define {ErBi by requiring that
{E B} be isomorphic with fErWBi, where W denotes the classifying functor [13].
To be precise we require

Let o: 77“1WB$ ~ m B° be the boundary isomorphism [13] and let

301 = (-1)%9: ntH—WBS ~ ﬂtBs
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be the ‘‘other’’ boundary isomorphism. Then there exist for all t> s> 0 (i.e. even

if t — s =0)unique isomorphisms

D

ESTB & ES'B,  1<r<e
such that

(i) the isomorphism on E, is the composition

-1
aot 1] ait

771+1-sDSWBO = ET’HIWB — 77;+1WBS——) 7, B> —— Ei,tB = "z—stBo’

(i1) if u € Ef’HIWB, then 0y du=d0d;u,

(iii) the isomorphism on Er+1 is induced by the one on E, (1 <r<o) and
the isomorphism on E  is induced by the ones on the E (1 <1< o),

(iv) u € FSWH_IWB'l if and only if d, u € antB'l and in that case
e 0y u =0 u

11.2. Remark. One readily verifies that the above definition coincides in
dimensions > 1 with the one of 4, justifying the use of the same notation. This
would 7ot have been the case if we had used d instead of am.

For later reference we mention an immediate consequence of the above defini-
tion.

11.3 The case B = GX. Let X be an augmented cosimplicial space, let G be
the loop group functor [13] (applied to the component of the base point), /et 0:

7,,1X° & 7,GX® be the boundary isomorphism [13] and let
9y, = D: 7, X =7 GX°

again be the ‘‘other’’ boundary isomorphism. Then there exist unique isomorphisms
iy
ES'X & EJIGX, 1<r<w,

which on E| are the compositions

ai“ll 1 60t ' ait
[ QRN R N A Sy 0

and for which the obvious analogues of 11.1(i1), (iii) and (iv) hold.

12. The Samelson and Whitehead products for homotopy groups. In this section
we recall some “‘well-known’’ [4] results about Samelson and Whitehead products.

12.1. The Samelson product in 7,GX. For X € 5* the Samelson product
[,

7,GX N a,GX ——nm, +GX, 1 t'>0,

is the composition
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/\ c
7,GX A m,GX —m, ,(GX AGX)— m, . F(GX A\ GX) - o 7, 0 GX

where F is Milnor’s “‘free group on’’ functor [9], the unnamed map is the obvious
one and ¢ is the homomorphism which sends each generator (a, b) into the commu-
tator aba~'5~1. It has the properties
(i) it is linear in the first (second) variable whenever t>0 (¢' > 0),
(i1) it is commutative with sign (— 1+t
(iii) it satisfies the Jacobi identity with signs (— 1)'", (= l)tlt and (- 1)

whenever t, t', t" >0, i.e.

. , "t
(-n# ' Ma, v), wl+ Do, w), dd + 1D [[w, 4], v]=0
for u € ﬂtGX, v E nt,GX, w € ﬂt,,GX and ¢, t', 5 0.
Similarly one has
12.2. The Whitehead product in 7, X. For X € S* the Whitebead product
[,]

’ 1
nXANm, X — 7 . X, Lt 2>1,

is the composition

£V [,1 a-1

7rtX A ﬂt,X — 7, ,GX A "t’—lGX —2 ”t+t'—26x — 70X
or equivalently (11.3)
XA ,x 0o GX A L.} G ‘o
m, Tpd =™ T CX = w0 X —— 70 X

Clearly it has the properties of 12.1 with everywhere t — 1, — 1 and ' — 1 in-
stead of ¢, t' and #".
12.3. Remark. The above definition of the Whitehead product differs from the

“‘usual’’ one by a sign [4].

13. The Samelson and Whitehead products in E,. If, in order to construct a
Samelson product in E,;GRX, one defines a Samelson product in 7, GRX in the
obvious manner (7.1(i)), then one gets a trivial product. To get around this we
make

13.1. Some observations.

(i) The map c: F(GX N GX) — GX obviously admits a factorization
, .
F(GX A GX) = T,6x —2L. Gy
where l"2 denotes the commutator subgroup functor.
(ii) There is a commutative diagram



332 A. K. BOUSFIELD AND D. M. KAN [March

I',GRx — I',GRX > %

q; incl

proj

F’_,GRX —>  GRX GRX T,GRX = QZRX

9, = Py
D'GRX ———  GRx —» ORRX
A
[‘75 l” P3
DIGRX ——>  GRxX ¢ — > VGRX= GRRX

where () denotes the standard loop complex (i.e. the fibre of the standard path
fibration [7, §21), P, is induced by the ring (with unit) homomorphism Z — R, P
sends the generator corresponding to a simplex y € RRX into y — 504,y the hori-
zontal maps on the left are fibre maps induced from a path fibration by the ones on
the right, and the vertical maps on the left are induced by the ones on the right.

(iii) As p; induces isomorphisms of the homotopy groups, so does g, and
hence composition of q,,>q4,, and q;i yields a natural homomorphism q.:
=, I’ ,GRX — 7, DIGRX.

Now we are ready to construct in a nontrivial manner

13.2. The Samelson product in 7, GRX. The Samelson product

L,

A GRXTA 7, GRxs' —— ,

s+s'+1
t+z’+1GRX

will be the composition (with f as in 7.1 and 9 as in 5.2)

" (GRXS*s' A GRxS*s')

A
I GRX® A !, GRX*'—Ls of GRx=*" A n!,GRx=+" Dot

)
——'ﬂ;+t,F(GRXS+s’ A GRXs+s')____*_, 17;+t,FZGRXs+S' .

(_1)s+s'+la—-l

! GRXS+S’+1.

q '
—> 7, ,.D'GRXs+s L

t+t!

And similarly we get
13.3. The Whitehead product in 7, RX. The Whitehead product

RxS A 7 Rxs L, o pystster

will be the composition
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309, Nag,
_——

7 RX* A ! RX*' n'_GRX® A a),_ GRx*’

-1
90¢

'
' s+s'+1 ' s+s'+1
Pt GRX —

l+tl—1 t+tl RX

(.1

_—

For later use (§19) we mention here
13.4. A more direct construction of the Whitehead product in E;. For Y € S,
lec w: RY A RY — R?Y denote the composite map

RY A RY —= R(RY x RY) —X), 2y

where, for all (u, v) € RY A RY,
C(u, v) = Wu, v) - 1a, *) - 1(x, )

and + denotes the ‘‘addition map’’ RY x RY — RY. Then, for X € S*, w induces

maps
w,: m(RX ARX)*-1 7! Rx*,
and a long but straightforward computation shows
13.5. Lemma. The Whitehead product (13.3)
[,]

’ 1
mRX* A ), RXS ——— a! JRXS*S +1

is (- D51 times the composition

'Rxs " Rys' ' +s' Yo +s'+1
7 RX® A nt,RX - nm,(Rx A RX)sts' —*, nm,Rxs s

where the first map is as in7.1.

14. The Samelson and Whitehead products in E . Now we use the E,-level
results of $13 to construct a Samelson product in ErGRX and the desired Whitehead
product for E RX.

14.1. The Samelson product in E GRX. Let X € S, and let R be a ring. Then
there exist unique natural products
ES**GRX A ES"*'GRX L.l EStsULAH™IGRY, 1< r<w,

with the following properties.

(i) The product in E | is induced from the Samelson product in m, GRX (13.2)
by the iterated boundary isomorphism (5.3).

(ii) For u € E3*'GRX and v € EZ"*"GRX (1 <1< o)

d [u, v] = [dru, v+ (=1)"5%[q, d,v].

(iii) The product in Er+1 is induced by the one in Er (1 <r< ) and the prod-
uct in E_ is induced by the ones in the E, (1<7r<e).
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(iv) The product in E_ is compatible with the Samelson product in 7,GX,
i-e. if u€F'mGX and v € F"'n,,GX, then [u, o) € F"*"'*la  GX and e, [, 1]
= [e’u, er,v].
(v) The product is linear in the [irst (second) variable whenever t > 0 (' > 0).
(vi) The product is commutative with sign (— 1)(t=s)tr=s1)+1 for r>1.
(vii) The product satisfies the Jacobi identity with signs (- 1)(t=s)er=sm)

(= DW=sDU=9) gpq (= )= ypenever t, t', ' >0 and 7> 1.

Proof. Parts (i) through (iv) follow readily from the fact that
(i) the maps c, » g, and (- 1)S+5'+19 of 13.2 induce spectral sequence

maps which are compatible with the augmentations, and

(ii) the remaining (composite) map in 13.2 induces (in view of [8, Corollary
4.3 and Theorem 10.8]) a spectral sequence pairing which is also compatible with
the augmentations, while (v) through (vii) are consequences of 12.1(i) through (iii)
and Theorem 10.8 of [8] or can be proved using [3].
s Finally we get, by applying to 14.1 the “‘other’’ boundary isomorphism d,
(311),

14.2 The Whitehead product with coefficients in a ring. Let X €, and let R

be a ring. Then there exist unique natural products

L)
ES''X A ESOUX. L1 ES+HLux 1 <<

K

such that

(i) the product in E, is induced from the Whitehead product in n’: RX (13.3)
by the iterated boundary isomorphism (5.3), and

(ii) the obvious analogues of 14.1(ii) through (vii) hold.

CHAPTER IV. APPLICATIONS

15. The rational spectral sequence E (X; Q) and its Whitehead product. As
one might expect from the simplicity of rational homotopy theory [16], our rational
spectral sequence E (X; Q) is already “‘well known’’. In fact, we will show below,
that our rational spectral sequence E (X; Q) (with a Lie algebra structure induced
by the Whitehead product) coincides, from E, on, with

(i) the rational version of the lower central series spectral sequence [9)

(with Lie algebra structure induced by the Samelson product), and

(ii) the primitive elements in the rational cobar spectral sequence [1].

This allows us to give a homological description (15.6) of E,(X; Q).

15.1 The lower central series spectral sequence. Let X €8, be connected,
let G be the loop group functor [13] and let

oo C1' LGXCT GX Cove CTN.GX = GX
s+1 s 1
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be the (integral) lower central series filtration of GX [9]. The associated homotopy exact
couple gives rise to the lower central series spectral sequence {E7X} [9] with

~1
E, X= 7L GX/T_, ,GX)

and this spectral sequence has a Samelson product [6, 9]

A A [.1 -
' T 2 r
Es,tx ® Es’,t'X Eorstinr
compatible with the differentials. Now we can state
15.2. Theorem. For X € 5* connected, the natural spectral sequence map

%0t B
ES$''GLX — E X, r>2,

stl,t-s""

ES’HI(X' Z): ES,!+1ZX
r ’ r

(where 30‘ is as in $11 and the second map is the one described in (7, S6)) carries
Whitehead products in E (X; Z) into Samelson products in EfGZX and E'X. More-

over the induced map

ES(X; 0) &~ Q @ ES**H(X; 2) —Q ® X, r>2,

s+l,t-s
is an isomorphism.

Proof. Using the dual (i.e. cochain) version of the Barr-Beck acyclic model

Theorem [3], it is not hard to prove that the (cochain) maps

E,GZX ® E GILX L1, E,GLX — E'X,

E,GLZX ® E,GIX —— E'X ® E'X L., Elx

are (cochain) homotopic. This, together with 14.2, yields the first part of the
theorem.

To prove the other part observe that

(i) Q0 ® E'X depends functorially on QX;

(ii) Q ® E2X collapses to 7, X whenever X is a simplicial Q-module.

Hence [7, 10.7] we can use the arguments of (7, §10] to show that the map
Er(X; Q) —» Q0 ® E'X is an isomorphism for 7 = 2 and hence for all 7> 2.

15.3. The rational cobar spectral sequence. For X €3, connected, there are
several essentially equivalent constructions for its rational cobar spectral sequence
E"(x; Q) ({11, [6], [11]), of which we will use the one of [6, $10] (with 0 instead
of Z,).

Recall that E’(X; Q) is actually a Hopf algebra spectral sequence (i.e. each
(E’, &) is a differential graded Hopf algebra). Hence, in view of [16, p. 280] and
[14], the primitive elements PE’(X; Q) of E'(X; Q) yield a Lie algebra spectral
sequence, and the results of [6, §10] then readily imply:
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15.4. Theorem. For X € 5* connected, the natural spectral sequence map
Q ® E'X - E"(X; Q), r> 1 (constructed as in [6, §10], with O instead of Z)),

induces a Lie algebra spectral sequence isomorphism Q ® E"X = PE"(X; Q),
r>1.,

Combining this with 15.2 we get

15.5. Corollary. For X €8, connected, the natural spectral sequence map

ES» (X, 0) - 0 ® E7 X — B (X; 0, r>2,

s+l,t=s +lts

induces a Lie algebra spectral sequence isomorphism Er(X; Q) ® PE"(X; Q), r>2.

15.6. Corollary [15]. For X € S, connected, there is a natural Lie algebra

isomorphism

E,(X; Q) ® P Cotort's*iQX g, 0).

13 J. Remark When H,(X; Q) is of finite type, then the Hopf algebra
Cotor * X (Q, Q) is equivalent to the classical cohomology Exty« X, Q)(Q 0),

of the algebra H*(X; Q). It is thus highly computable (see [sDh.

16. The rational spectral sequence E (W, X; Q). In this section we will
(i) prove that the rational spectral sequence E(W, X; Q) is completely

determined by E (X; Q) and H «W; Q)

(ii) use (i) to show the essentzal triviality of the rational composition pairing,
and

(iii) use (i) to recover a result of Arkowitz-Curjel on the rank of certain groups
of homotopy classes [2].

16.1. Reduction of E (W, X; Q). For W, X € S*, X connected, and t > s> 0
there is a natural isomorphism

ES(w, x; 0~ [1 H'(W; ESt*(X; Q)), 7> L.

nz20

Proof. For t > 1 there is a natural isomorphism

7, bhom (W, QX) ~ n ’ﬁ"(W; ﬂthX)
n20
of cosimplicial Q-modules, which implies the cases 7 = 1, 2. The cases r>2
then follow by a straightforward induction using 10.1 and the facts
(i) if M and N are graded Q-modules, then any additive cohomology opera-
tion of the form

[T Hny;m)— [T B*(v; N),  ves

*’
n=20 n20

is induced by coefficient homomorphisms M_ — N_, n>0,
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(i1) for W, X € 5* and any ring R (though we only need here R = Q) there

exists a natural spectral sequence {big E (W, X; R)} such that
big ES*'(W, X; R) = n°m, hom(W, RX), t>s>0, >0,

~ 0, otherwise,

big ES*(W, X; R) = ES*(W, X; R), t>s>0, r>2.

The existence of this enlarged spectral sequence can be proved using the approach
of [8]; its only usefulness is for studying Ef"(W, X; R) on its “‘fringe”” t — s =1

(71

16.2. The essential triviality of the rational composition pairing. For W, X, Y
€ 5* with X, Y connected, the composition pairing (§9)

. ! . °, pstshedt! .
ES'H(X, Y; Q) ® ES»H(W, X; Q) — ES**»*0(W, v; Q), 122,
is trivial if s' > 0.
Proof. The inclusion ¢: X — QX induces, by 16.1, an epimorphism
ES*HQX, Y; Q) — ES*Y(X, Y; Q) and by [7, $4] the group E;"**'(W, QX; Q) vanishes
for s' >0 and r> 2. The desired result now follows by a naturality argument.
16.3. Remark. The composition pairing for s’ = 0 has an obvious description

using 16.1 and the canonical inclusion E:”*(X; Q) CH_(X; Q). The details are left

to the reader.
For our second application of 16.1 we need
16.4. The rank of a group. A group G is of finite rank if there exists a finite

filtration

G=N,D¢eeDN.DN., ,D¢eeeDN, =1
1 1+

0 1 ]

such that each N, ; is a normal subgroup of N, and each N, /N, , is either infi-
nite cyclic or periodic. For G of finite rank the number p(G) of infinite cyclic
N,/N,,, is called the rank of G and depends only on G. This notion of rank
coincides with the usual one for abelian groups, and is discussed in detail in [2].

Now we can formulate

16.5. The Arkowitz-Curjel result. Let W €S, be finite dimensional and let
Xe S*K (3.2) be simply connected. Then the group [SW, X] (of homotopy classes
rel. * of maps SW— X) has rank
plsw, X1= 3 p(H_(SW; 2))p(7_X).

n>0
Proof. Combine 16.1 for r = e with the convergence propertities of the integral

spectral sequence [7] and the isomorphism [7]
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E (W, X; ) ~ 0 ® E_(W, X; 2).

17. A homological description of the smash and composition pairings for
Ez(; Zp)' In [7, $11 and $12] we considered the category CQ® of (connected) un-
stable coalgebras over the Steenrod algebra and observed that

(i) the Zp-bomology functor is actually a functor H,(; Zp): S*C —CQ
where S*C C S* is the full subcategory of connected complexes, and

(i1) for W € S*, X e S*c and t > s >0 there are natural isomorphisms

Syt y. ~ s t, .
ES'H(X; zp) ~ Extpq(H, (S ,zp), H (X; zp)),

ESHW, X; 2,) = Exzé@(H*(S’ AW; Z,), H(X; Z)

where the Extéa are, in some sense, the right derived functors of Hompg.

This suggests that it should be possible to give a homological description
of the smash and composition pairings for EZ(; Zp), and we devote this section
to showing that this indeed can be done, in fact by merely mimicking our construc-
tions for spaces of Chapter II. But first a

17.1. Notational convention. Throughout the rest of this chapter we will freely
use the notation (and results) of [7], except that from now on we will write H,
instead of H,(; Zp).

17.2. A smash product in CH. For C, De C let C AD € CQ denote the quo-
tient object of C @ D € C&@ such that J(C A D) = JC ® JD. Clearly, for X, Y €

S*r, there then is a natural isomorphism
H XA HYy = H(X AY) e CQ

17.3. The functors Extse'é. Let C@" O CQR denote the category defined in the
same way as CQ [7, $11] but with connected replaced by co-augmented. Then, for
B €CR" and t>1, H*S' A B is in CQ and has trivial comultiplication, and hence

we can define functors

Exz‘z:,b’(B, y: CA — (Zp-modules)
by

St ~ Ext° t > > 1,
Ext(,a(B, ) Fxtea(H*S AB,) s>0, >

As HW € e’ forall W e S*, the isomorphisms at the beginning of this section

now can be written

E;'Z(X; Zp) ~ Extg,’el(H*So, H*X), E;'I(W, X; ZP) ~ Extz,b‘(H*W, H*X).

17.4. The smash pairing for Exté’é(H*SO, ). For C,D €C{ let TC ATD 3
T(C A D) € C& be the adjoint of the obvious map
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J(TC ATD) = JTC ® JTD = JVJC ® JVJD — JC & JD = J(C A D).
Then @ induces, as in $8, a cosimplicial map TC A TD % T(C A D) and we

define, for s, s' >0 and ¢, ¢' > 1, the smash pairing

A
Exty, ‘(H 9.0 ® Ext (H s% p)— Exﬁ*s “‘(H s% c A D)

as the composition
#[H, s, TC) ® 7°'[H,st", TD) —Ls 7o*'((H,st, TC] ® [H, s, TD))

. ﬂs+s'[H st+t’ Tc A TD) —aiqns*"[H st+’ T(C A D)]

where [, ] denotes Hom ( ), [ is the (graded) Alexander-Whitney map (7.1)
and the middle map is the obv1ous one.

Clearly this definition implies that, for X, Y € g*c and t>s>0, ' >s">0,
the pairing

A
ExtSl(H, $% H,X) ® Exts t'(H, S, H,Y) — Extits SH(H SO H (X A Y))
coincides with the pairing §8)

) A '
St y. sht'(y. +s' e+t .
ESHX; zp) ® E5 (Y, Zp) —— EST (X A Y, zp).
Similarly we deal with

17.5. The composition pairing for Extg'@‘. For BeCA', ¢, D €CQ and s,

s' >0, t,¢' > 1 we define the composition pairing
Exts t(C D) ® Ext " (B, ¢) —» ExtéZfs Ty (B, D)
as the composite map
n*[H, ' A C,TD] ® »*'[H s*" A B, TC) L, ... =, #+<'[H 5t A H,S'A B,TD]

where again [, ] denotes Home@ (,) and f is the (graded) Alexander-Whitney
map, while the map

(H,$' A C,TD] ® [H,S" A B, TC] —— [H,S' A H,S*' A B, TD]
is defined in the same way as the map ¢ of $9.

Clearly this definition also implies that for W, X, Y € S o and t>s>0, >
s' > 0 the pairing

Ext3; ‘(H X, H,Y) ® Exts"(H W, H x)—»Exts'&‘ T (H W, H,Y)
coincides with the pairing (39)

E3UX, Y; Z,) ® B, X; 2,) —— E3* 4 (, v; 2,),
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18. The composition action of E,(S™; Zp) in the Massey-Peterson case. We
now combine 17.5 with the results of [7, S13] to give a useful simple description
of the composition action of EZ(S”'; Zp) on E,(X; Zp) for ‘‘very nice’’ X in terms
of the classical Yoneda product.

18.1. The description in terms of the Yoneda product. For X € S*C and t >
s>0, ' >s' >0, the composition action (§10)

M (X, 2,) @ ESY(S7, Z,) —— BT h(X; Z,)

corresponds, by 17.5 to the composition

(ii) Extyg(H,S™, H,X) ® Ext33t'(H, %, H,S™) —— Ext3ts ' (H,S°, H,X)

But, if X and S™ are ‘‘very nice’’ (i.e. if there is an M €M@ such that H.X ~ UM et
and either m is odd ot p = 2), then H,S™ = UH,S™ and hence [7, 13.6] the composition

(ii) corresponds to a composition

i) Extza(H, 5™, M) @ Extgl (H,S°, H,s™) — Extghs ' (H,s°, M)

where the Ext;’é are defined in terms of the E'xt;(i in the same manner as the
Extgy were defined in terms of the Extgq (17.3) and the composition pairing ©
for the Extyg
J" and V" instead of | and V). Finally, as Q& is an abehan category we can

is constructed as the one for the Fxt (17 5) (using the functors

(and will) 1dent1fy Exl]d with the Yoneda group of s-fold extensions using the
correspondence { of [12, p. 96] and a straightforward calculation then yields that

)ssl +ts!

the composition (iii) corresponds to (- 1 times the composite map

Exty (H sttm M) ® Exzm(H s, H,s™)
(lv) [V ~
— Exty (H sHm M) ® Exz;@(ﬁ*s‘“, H, ST™) — Extyrs "(H, s, M)

*

where the first map is induced by the operation H H H,S' ® — and the second map is

the Yoneda product [12, p. 82] in the abelian category Q.

19. A homological description of the Whitehead product in E,( ; Z,). Using
our second construction for the Whitehead product in E, (13.4) we will
(i) show that the Whitehead product in E,( ; Zp) corresponds to a certain
homological product in Extyq (H,5°,), and
(ii) use this to show that the Whitehead product in E,( ; Zp) (and hence in
E (3Z) for r> 2) vanishes for ‘‘very nice’’ spaces (i.e. in the Massey-Peterson

case).
19.1. The homological Whitehead product. For C € C®@ and s, s' >0, ¢, ¢’
1, we define the homological Whitebhead product

e 0 41,0+’ 0
Exté'G‘(H*SO, 0 ® Extgé‘ (H,S?%, €) = Extgg® ¥ (H,S7, C)

as the composite map
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7SLH,$t, TC) ® 7'[H, ", TC) —Lo 7%, s, TC] ® [H, 5", TC)
_ ﬂs+s'[H*St+t', TC A TC) IR ﬂs+s'+l[H*St+l" TC)
where again [, ] stands for Hom o (,), f is the (graded) Alexander-Whitney map

(7.1) and the middle map is the obvious one, while w, is induced by the composite
maps

{

ThC ATRC —*, T(ThC ® TRC) — 10,

TR*1C, k> 1,
where ( is the adjoint of the obvious inclusion
J(TRC ATRC) = JT*C @ JTRC — J(T*C ® T*C)
and x: T*C ® T*C — T*C is the “‘multiplication map’’
TRC ® TEC = VJTR=1C ® VJTE='C = V(JTE-1C @ JTh~1C) — s yyTh=1c ThC

induced by the “‘addition map” +: JT*~1C @ JT*~'C — JT*~!C. A lengthy but
straightforward calculation shows that w, is well defined, and it then follows
readily from 13.5 that, for X € S*C and t>s>0, t' >s' >0, the homological
Whitebead product

ExtSil(H,S°, HX) ® Exzfg'é"(H*sO, H X) — Exté&s'”’”"(H*So, H,X)
corresponds to (— !5~ times the Whitehead product (S14)
W x. sht'(y. [,1 s+s'+1,04t(y.
ESHX; 2,) @ ES*H(X; Z)) ——— E3 (X; 2,).

19.2. The Massey-Peterson case. If X € S*C is “‘very nice’’ (i.e. there is an
M eNQ such that H X m UM € CQ), then the Whitebead product in E (X; Z ) is
trivial for 2 <r < oo,

This follows readily from 19.1, the fact that UM € CQ® is an ‘“H-object’’ (i.e.
there is a map UM ® UM — UM € CQ which restricts to the identity on Z,® UM
and UM ® Zp), and the following

19.3. Lemma. If C € CQ is an H-object, then the homological Whitebead prod-
uct in Exte&(H*So, C) is trivial.

For the proof of this lemma (which is similar to the proof that in an H-space
all Whitehead products are trivial) one needs

19.4. Proposition. For C, D € CR and s >0, t>1, there is a natural isomor-
phism

s,t 0 ~ St 0 s,t 0
ExtGG(H*S ,C®D) Extea(H*S , 00 ExteG(H*S , D).

This follows from [7, 12.2] using the natural isomorphism
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Home@(H*S‘, TC ®TD) =~ Home@(H*S', TO & HomeG(H*S‘, TD)

and the fact that TC ® TD is a cosimplicial resolution of C ® D.
19.5. Remark. Another interesting consequence of 19.4 is the fact that, for

X,Y € S*C, there is a natural isomorphism

EXxY;Z) = ENX; Z)® E,(Y; Z).
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