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ASYMPTOTIC ABELIANNESS OF INFINITE FACTORS

BY

M. S. GLASER(')

ABSTRACT.   Studying Pukanszky's type III factor, M2, we show that it does

not have the property of asymptotic abelianness and discuss how this property

is related to property  L.   We also prove that there are no asymptotic abelian

II      factors.   The extension (by ampliation) of central sequences in a finite

factor, N, to M ® N  is shown to be central.   Also, we give two examples of the

reduction (by equivalence) of a central sequence in M ® zV  to a sequence in N.

Finally, applying the definition of asymptotic abelianness of  C -algebras to  W*-

algebras leads to the conclusion that all factors satisfying this property are

abelian.

1.   Introduction.   A new algebraic invariant has recently been introduced into

the study of  W*-algebras.   This is the property of asymptotic abelianness of fac-

tors.   It was first used by physicists in their study of C*-algebras and defined by

means of the uniform topology.   Sakai [ll] extended the concept to  W*-algebras

by using the strong topology.    This  extension  immediately proved to be useful in

the classification of W*-algebras.   Sakai showed that the infinite tensor product

of a II, factor is asymptotically abelian and that there are nonasymptotically

abelian II.   factors.   Thus, given a nonasymptotically abelian II.   factor, it is

easy to construct a different II,   factor.   The other finite type II factors and all

finite type I factors were then classified according to their asymptotic abelianness

([4], [ll], and [17]).   However, it proved to be more difficult to show infinite fac-

tors were either asymptotically abelian or not asymptotically abelian.   Willig [15]

proved that the I     factor was not asymptotically abelian, but the other cases, up

to now,, were not known.

In this paper, we study asymptotic abelianness of type II     and type III factors.

We prove that the type III factor of Pukánszky [10] is not asymptotically abelian

and that none of the II    factors are asymptotically abelian.   These results sug-

gest that there may not be any asymptotically abelian infinite factors.   The truth

of this suggestion is not yet known.   However, belief in it would be corroborated

if it could be shown that Powers' factors [9] are not asymptotically abelian.   We
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42 M. S. GLASER

will discuss why these factors are crucial examples by showing the relationship

between asymptotic abelianness and property L.

We also investigate two other concepts which are related to the property of

asymptotic abelianness — central sequences and uniform asymptotic abelianness.

As for the latter, we show that there are no noncommutative uniformly asymptoti-

cally abelian  W*-algebras.   The former is studied in two ways-we give suffic-

ient conditions for the reduction of a central sequence in a W*-tensor product and

sufficient conditions for its extension.

The following properties are important to all sections of this paper.   (Prop-

erties which are used briefly will be defined when they are needed.)

Definition 1.1.   Let M   be a factor.   M  is called asymptotically abelian if

there is a sequence, (p ), of «-automorphisms on M such that strong limit[p iA),B]

= 0   for each   A,   B  £ M,   where   [X, Y] = XY -  YX   for   X,   Y  £ M.

Definition 1.2.   Let M be a factor.   A uniformly bounded sequence, (A  ), of

elements of M  is called a central sequence if strong limit [A  , B] = 0 for all B

£ M.   A sequence (A  ) C M  is called  *-central if (A  ) is central and (A*) is
1 72 72 72

central.

Definition 1.3.   Let M be a W*-algebra.   Two uniformly bounded sequences,

(A  ) and (B  ), in M  are called equivalent if strong limit (A   - B  ) = 0.   A se-

quence (A  ) is called trivial if (A  ) is equivalent to a sequence (A /) where

À    £ C  for each n.
n

The distinction between «-central and central sequences is only significant

in the infinite case because if M   is a finite factor, every central sequence is

«-central.

An important fact, which will be used later, is that any sequence equivalent

to a central sequence is also central. Let (A ) be a central sequence in M and

(B ) a uniformly bounded sequence such that (B ) is equivalent to (A ). Then,

for X £ M  and  x £ H, the underlying Hilbert space,

||[Bn,X]x||<||[Bn-An,X]x|| + ||[An,X]x||

< \\{Bn - An)Xx|| + ||X!| \\(Bn -An)x\\ + \\[An, X]x\\ < 3e.

2.   The type III factor zVL.   We begin this section by constructing Pukánszky's

factor, zVI   .   Theorem 2.5 will prove that /VL   is not asymptotically abelian and

thus give the first example of a continuous infinite factor which is not asymptoti-

cally abelian.

First, form the measure space |XQ, SQ, pA where XQ = i0, l!, SQ = the class

of subsets of X0, and nQ([0\)=p, p0(\l\) = 1 -p (0 < p < V2).   Let ÍX, 5, ¡i\ be

the completion of the Cartesian product !X   £$  X   , X   £^   S ,  X   £Í   p   ! where
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<I>2   is the free group on two generators, g1  and g2, and X   - XQ,   S    = 5Q,   p    = uQ

fot all g £ $2.   A point x e X  is denoted  (x ) where  x    = 0  or  1   for all g e $2.

Let A = {x £ X\ x   =0 except for a finite number of g\.   A   is an abelian

group under the operation (x + y)    = x    + y    (mod 2).   Form a new group L, =

(A|<I>2), the semidirect product of A and 02, with <I>2  inducing on A the auto-

morphism, Tg   , defined at the gth coordinate by (Tg   a)   = ag g  for g0 £ $

a e A.   Thus, for (a, g), (0, gQ) e (A|$2) = g,

(a, g)(/3, g0) = (TgQa + 0, gg0),       (a, g)~ » = (Tg_ ,a, g~ !)

and  (0, e)   is the identity where  0  is the identity in  A  and e  is the identity in

$2.   An element in §  of the form (a, e) will be denoted  a and (0, g)  will be

denoted g.

§  acts as a group of one-to-one mappings of X  onto itself by the rule  x —>

xa where, letting x = (x ) and a = (a, g_), (xzz)   = x„  e + a    (mod 2).   Since S> D g OÍJ g KqK g C-7

is also a group of automorphisms of 5, for each a £ C¡, we may define the trans-

lated measure p (F) = piEa), fot E £ S.   p    is absolutely continuous with respect

to p, so the Radon-Nikodym derivative dp ix)/dy. exists.

Now, for a £ §, let H   = L  (X), the Hubert space of all /t-square integrable

functions on X and form H = 2  eP©W  .   An element F £ H  is a complex-

valued function, F(zz, x) (zz e §, x e X) satisfying the condition 2 etJv-|/(fl. *)|   d¡x

< °o.   The inner product  on  H  is defined by

(F, G) = £ jx Fia, x)Gia,x)dp

ae§

tot F, G £ H.   M2  is then defined as the algebra over H  generated by the opera-

tors

iOaoF)ia, x) = iduaix)/da)V2FiaaQ, xaQ),       iLé(x)F)ia, x) = <bix)Fia, x)

where  a, aQ   eg, F e H, and ci>(x)   is a complex-valued measurable function.   Every

operator in zM     is of the form A = 2  €qL^,  (x)U    where cb (x) is bounded and

measurable for a £ g.   The infinite sum is defined by the strong operator topology.

We will denote  (A)    = d> (x).
.a       ~ a

We will use the following lemmas in this section and in §5.   For proofs, the

reader is referred to [l0].

Lemma 2.1.   // (A)   = cf>aix) and (ß)fl = if/ ix) for A, B £ zVl , then

(i)   i\A)a^kcbaix),

(ii)   (A*)a s <pa_ jka),

(iii)   (A + ß)a = cbaix) + if/aix),

(iv)  iAB)a^be%cbh_xix)<f/haixb-').
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Lemma 2.2.   If FQ £ H  is the function where FAa, x) = 0 for a ¿ e and

FAe, x) = 1, then  F.   is a separating cyclic vector for My   For (A)   = <f> (x),

ll^ol=(Z $x\<t>a(xa)\2dp\.

Lemma 2.3.   Let  U be an operator which satisfies \\[U, Ug]FA\ < f for i

1, 2 and e > 0.   Then

(i)   \(UF0, F0)\ > 1 - Ke if V  is unitary,

Hi)   \\iU - iUF0, F0)I)F0\\2 < K2\\[U, Üä ]F0| 2  (i = 1, 2) where  K  is a

constant independent of e.

Proof,   (i) [10].   This is included in the proof of Lemma 13.

(ii)  Letting iU)   = <f> (x), we note that it suffices to prove the lemma for

U .   Also, we assume  \\[U , U   ]FA\ = e.   Now
Si     u

\\w*,u ]f0w2= zfx^   -i^r^-w2^'
aeg gi   K2

so, by [10, Lemma 13], there is a constant k  with

Z f \<t>a(x)\2 dp < kt2
"6§;a*(0,e)

and a constant  k    with

f\cf>e(x)\2dpi-       f<f>e(x)dp

Now

11(1/*- (1/*F0,F0)/)F0||2 = \\U*F0\\2 - \(U*FQ, F0)\

<k'<2.

(Z Jx\*¿*)\2j¿\- Jx^u)^

\ae§;aA0,e) /       \

<(k + k')(2 = K2\\[U*,Uo]FQ\\2    where  K = (k + kAVl.
s¿

Lemma 2.4.   Let  (U  ) be a central sequence of unitaries in  M  .    Then there
72 l

is a subsequence (again called iU )) and a scalar A such that   \\\ = 1   and

strong limit U   = A/.
6 72
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Proof.   Since the unit sphere of a W -algebra is weakly compact, there is a

subsequence (called  ((/  )) and an operator U £ M     such that  weak limit U    = U.

Thus weak limitfC , A] = [U, A]    for each A eil,,   But  U    is central, so
72 ¿71

strong limit [U , A] = 0.   Thus [U, A] = 0.   Since M  is a factor, this  means U =

A/  for some scalar À.

According to Lemma 2.3, if U    is unitary and satisfies  \\[U , Ug ]FA\ <c,

i = 1, 2, then  \iil F_, FA\ > 1 - Kc, where K is a constant independent of f.

Since  limit ill  F Q, F A = (AFQ, F A = A, we have  |A| > 1.   But the U    ate unitary,

so  |A| < 1, i.e. |A| = 1.   Since  U    is a sequence of unitaries which converge

weakly to the unitary XI, the convergence is strong.

Theorem 2.5.   M?   is not asymptotically abelian.

Proof.   Suppose  (p )  is a sequence of *-automorphisms on /VL   such that

strong limit[p (A), B] = 0 for all A, B e/VL.   Let E ¿ I be a nonzero projection

in M2  and let  F = I - E.   Since any two nonzero projections in /VC   are equivalent

there is a partial ¡sometry  V in M2  such that F = VV   and F = V  V.   E, F, V

and  V    ate a set of matrix units for a  I2  factor U.   Take  (V   )  a finite sequence

of unitaries, closed under multiplication and taking adjoints, which generate U.

For each  V   , ip ÍV   ))  is a central sequence of unitaries in  M..   Thus, we can
771 "n 777 ^ 2 '

find a subsequence (called again (p ))  of *-automorphisms and a set of scalars,

(À   ), with  |A   I = 1   such that strong limit p (V   ) = A   /for each m.   This defines
771    ' '     77) ' ° r71 771 771

a function ti on ff by the rule that it A £ & and A = 2W   , a   V   , then ¿>(A) =r ' 771= I      771      771 ' "

2     , zz   A   .   a is linear and multiplicative.   But this is impossible in a I,  factor.
771 = l771771r *■ r ¿

3.   Property L.   The fact that zVL   is not asymptotically abelian is consistent

with what one might guess.   To see this, consider the following definitions.

Definition 3.1.   Let M  be a factor.   M   is said to have property L if there is

a central sequence  ill  ) oí unitary operators in M  such that weak limit U    =0.

Definition 3.2.   Let AI  be a factor.   Then  M   is called asymptotically abelian

with invariant state if there is a sequence, (p ), of *-automorphisms on M  and

a faithful, normal state, <b, on M  such that

(i)   p (A)  is a central sequence for A £ M.

(ii)  cb(pn(A)) = 0(A) for A e M.

Numerous examples exist of infinite factors both with and without property

L.   In particular, Powers' factors, M , 0 < p < l/2, have property L and Pukánszky's

M2 does not have property L [10],   Also, Willig [15] proved that the I     factor does

not have property L.   In type IIj  factors, classification has been limited to the

study of property  T.   But property  V  is equivalent to property L [16].   Thus the

reader can find IIj  factors with and without property L by consulting the papers

[3] and [4] as well as the standard texts [2], [12], and [13].   We will discuss these

cases in the next section.
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It is obvious that if a factor is asymptotically abelian with invariant state,

then it is asymptotically abelian.   Also, if M   is a finite factor, since we can take

the trace as 0, asymptotic abelianness with invariant state and asymptotic abelian-

ness are equivalent properties.

Proposition 3.4 will relate Definitions 3.1 and 3.2.   First, we need

Lemma 3.3.   Let M be a factor which is either continuous or infinite and let

cp be a faithful normal state on M.   Then, there is a unitary, U £ M, such that

<f>(U) = 0.

Proof.   Let A  be the positive hermitian operator defined by Ax = Y2x lot x

£ H (where H  is the underlying Hilbert space for M).   Then 0(A) = H0(/) = lA.

Thus, according to a result of Dye [5], there is a projection, P £ M  such that

0(P) = l/2.   Let  U = (I - P) - P.   Then  Í7  is unitary and <f>(U) = 0.

Proposition 3.4.   Let M  be a factor with dim(zVl) > 1.   If M  is asymptotically

abelian with invariant state, then M has property  L.

Proof.   Let (7 be a unitary element in M  such that 0(17) = 0.   (If M  is a dis-

crete finite factor, we may assume that the invariant state, 0, is the normalized

trace.)   Define iU ) by  U   = p ((/).   This gives a sequence of unitaries such

that strong limit [U , A] = 0 for all A £ M.   We need only show that weak limit (7

= 0.

The sequence ((7 )  is uniformly bounded so, by weak compactness, there is

a subsequence (again called ((7 )) and a UQ £ M  such that weak limit U    = UQ.

Then weak limit[i7 , A] =[UQ, A]  for each A eM.   Since strong limit[l/n> A] = 0,

we have  [U., A] = 0  for all A £ M.    This means  UQ = A/  for some scalar A.

We know 0(1/  ) = (pip ill)) = <f>ill) = 0.   But 0 is weakly continuous.   This

means   limit 0(1/  ) = 0(A/) = A.   Combining, we have  A = 0  or weak limit [7=0.

Corollary 3.5.   Let  M  be a finite factor, with  dim(M) > 1.   If M   is asymptot-

ically abelian, then  M has property  L.

Proof.   This is an immediate consequence of the equivalence of asymptotic

abelianness with invariant state and asymptotic abelianness in finite factors.

We may now conclude that any factor which does not have property L is not

asymptotically abelian with invariant state and a finite factor without property L

is not asymptotically abelian (if dim(zVl) > 1).   It is probably also true, though it

has not yet been proven, that infinite factors without property L are not asymptoti-

cally abelian.   The converse is false in the IIj  case because the factor II ($2 x II),

where $2   is the free group on two generators and  II  is the group of all finite per-

mutations on the integers, satisfies property L but is not asymptotically abelian.

(We will show in the next section that the converse is also false in the II     case.)
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Pukánszky [10] has shown that M2  does not have property L.   Using Proposi-

tion 3.4 we can immediately conclude that A12  is not asymptotically abelian with

invariant state and tentatively guess that it is not asymptotically abelian.   Theorem

2.5 proved that /Vl   , indeed, is not asymptotically abelian.

If we carry this line of thought further, we may also guess that if there is an

asymptotically abelian infinite factor, it would probably be a factor that has prop-

erty L.   Also, we will see in the next section that it must be a type III factor.

Powers' factors, M  , 0 < p < V2, satisfy both these conditions and thus are the most

likely candidates.   Conversely, if Powers' factors are not asymptotically abelian,

it is reasonable to assume that no other infinite factor is asymptotically abelian.

4.   Factors of type 11^.  In this section we will prove that the 11^ factors are

not asymptotically abelian.   Thus, there are infinite factors which satisfy property

L but which are not asymptotically abelian.   Also, we can conclude that if there are

any asymptotically abelian infinite factors, they must be type III.

Each factor of type  11^ is  spatially isomorphic to a factor   M ® Bin)

where   M   is a factor of type  IIj   and   Bibi)   is the  1^ factor.   We will there-

fore  identify our type  11^ factors with   M ® Bin)   and use this  notation.   The

other notation used  in this  section  is  as follows:    K   will be the underlying

Hilbert space for   M   and   K   is  the  Hilbert space for   Bin);  {e \°°_l    denotes

an  orthonormal  basis  of   K,  and   ¡E.J00  _.    is  the  corresponding  basis  for

B(K).   An operator, A, in M ® B(K) can be written as an infinite matrix (A . )

whose entries are elements of M.   For matrices with a finite number of nonzero

entries, we will use the tensor product notation, i.e. X ® E.. is the matrix with

X  in the i, /-entry and zeroes elsewhere.

Definition 4.1.   Let A = iA . ) be an operator in M ® B(K).   If A.. = 0 for

z ^ ;, then A   will be called a diagonal operator.

Lemma 4.2.   Let  M  be a W -algebra and (A   ) a central sequence in M ® B(K).

Then there is a central sequence of diagonal operators (B   )    in   M ® B(K) which

satisfy  \\B  \\ < \\A   ||  and such that  strong limit(A    - B  ) = 0.

Proof.   Let A    = (A(.n)) and define  B   = (5..A(.b)).   Clearly B     is diagonal

for each n.   Take  X    = / ® E        € M ® ß(H)  where  /  is the unit in M  and t^ke
m mm

x    = / ® e     6A0K where / is an arbitrary element of K.   Then it suffices to
m       ' m ' J

prove that  limit ||(A    - B  )x   11 = 0 for all m.r " 71 71       771 "

We first note that X   x    =x     and Ax    = 2°°   , A(n) f ® e ..   Then, using the
m   m m n   m i  =1     im ' i ' &

fact that A     is central, we have, for large  n  and for all  zzz,

O II (A   X     -X   A   )x ( T. AMf®e.)-iA(r>)fi
\  *^       im ' i / mm'

\ i; 1 /
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Thus, for large n  and all 727;

Ifc.-B>
72 72.      777 '

2=1

Y AMf®e.) -(A("V® e   )
*-*       im' 1 I mm' m

<e.

To show the boundedness property, we note that  \\B   II = sup    ||A("' I
r    r      > ' "    n" rm »    mm'

x     as above so that  ||/|| = 1.   Then sup    IU   x   II < ||A   II.   But,
722 '" " r772   "      72    772 "   —   "      72 " '

|2 oo

Choose

M, Y A("V®e.
t-^ 2772 ' I

1=1

V ||A("V||2> l|A(n)/ll2-
V    M      !m Z II       _   II      mm2 II

1 = 1

So,  sup||A^/|| < \\A   ||   and since   ||/|| = 1   is arbitrary

|BJ=sup/ l|A(">/sup   \\Al«lf\\\<\\Aj.
\II/Il = l /

Lemma 4.3. // (B ) is a central sequence of diagonal operators as in Lemma

4.2, there is a sequence (F ) in M ® \I\ satisfying \\F || < ||B || for each n and

such that strong limit (B   - F ) = 0.

Proof.   Let (B ), /, and x     be as in Lemma 4.2.   Define  Y    = / ® (E.     +
II        " 171 772 1t72

E   A £ M ® BiK) and y    = / ® (e, + e   ) £ K ® K.   We assume T/2 ̂ 1.   Then Y  y
ml -^ 772 '   ^ 1 772 772/772

= y   , y  x    = x,,   Y   x. =x     and B y    = A(.",V ®e. + A(n)/® e   .   So, for largey772 772    772 1 772      1 772 77^772 II' 1 772772'    **      772 ' 6

72  and an arbitrary  m ^ 1, we have

e> ||(B  Y    - Y   B  )y   H
11 72      772 772      77.   'm"

= ||(A("1V®ei+A^/®eJ-(A<"1V®em+A^/®ei)||

Now, defining Fr = A ̂  ® / e M ® {/}, we have

IICS   -F)x   \\ = \\(AMf®e   )-(A("V®e   )||" 22 72       772 " " 772772'    w      777 11' 772 "

= ||A("V-A("Vli <f/V2il      w i mmi 11 V

which proves  strong limit (B   - F ) = 0.

The boundedness is easy to verify since

M,\\\FJ=    sup   \\<Au®l)x\\=   sup HA«»
x 1=1

<   sup   /sup ||A<»V||\ < \\BJ.
11/11 = 1 V¿ /
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Thus, any central sequence in M ® B(K)  is equivalent to a sequence in  M.

This enables us to prove.

Theorem 4.4.   // M  is a II,  factor, then M ® B(K) is not asymptotically

abelian.

Proof. Suppose M ® Bin) were asymptotically abelian. Let (p ) be a se-

quence »-automorphisms of M ® Bin) such that (p (A)) is central for all A in

M ® B(K). Choose A{ and A arbitrary elements of M ® B(K). Then (p (A j))

and (p iAA) ate central sequences. Thus, combining the results of Lemma 4.2

and Lemma 4.3, we can find sequences, (F ) and (Fl '), in M which satisfy

strong limit(pn(A.) - F^0) = 0 and strong limit (pn(A.)*- F(J)A) = 0 for z = 1, 2.

This means that for x eK ® K and n  large,

|((pn(A1A2)-F|31)F<2')x,x)|

= \ipniA2)x, pniAy)*x) - iFl2)x, F'^*x)\

=  \{{Pn{A2> - Fn2))x< Pn{A 1]*X) + {Fn)x' Wf- ^ *)*)\

< iKP7i^2)-pii2^mip^i^ii+ K^WpJao*-^*^

súp^.n^iF^wcKcWpu^uwpu^c

Thus, weak limit (p U.A.) - F(   'F(   ') = 0.   The same reasoning will show

that weak limit(p (A ,A , ) - F( 2 >F( ! ') = 0.
r71 2       1 71 71

Now let   i/z be a normal state on B(K) and tr the trace on M.   Then cb. =

tr ® i/z is a normal state on M ® ß(H).   This means, since cb.   is weakly continu-

ous on bounded sets, that

l'W^-Fl1^)!^        \cb0iPniA2Ay)-Fi2^)\<c

for large tz.   Also, since  d>n  is the trace when restricted to M, we have OÀF     F    )

-^i2)"il>).

Define a sequence (<p ) of normal states on M ® B(K) by <p (A) = tp (p (A)).

Then, by weak »-compactness of bounded sets in the dual, icb )  has an accumula-

tion point, cb.   Thus, for arbitrarily large n., there exists a positive integer n

such that n > n    and

|^(A1A2)-<p0(pn(A1A2))|<i,       \4>iA2AyA-cbQipniA2Al))\<c.
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Thus  0 is a state on M ® B(K) which satisfies 0(A XAA = (f>(A2A ,) for all A .,

A 2 e /M ® B(H).   But zVI ® B(K) is infinite.   Hence, there is a nonzero projection,

e, such that e ~ / - e ~ /.   Let Vj  and  K2  be partial isometries in M ® B(K)

such that  V XV*X = e and  V^V* = / - e and V*Vj = V*V 2 = /.   Then

0(e) = $(VXV*) = #(V*Vj) = 0(/) = 1,       0(/ - e) = 0(V2V*) = 0(V'2*V2) = 0(/) = 1.

Thus, 0(/) = 0(/ - e) + 0(e) = 2  which is a contradiction.

Using this theorem, we can exhibit infinite factors which satisfy property L,

but are not asymptotically abelian.   Consider first, the following result of

Tomiyama [14].

Theorem 4.5.   Let M and N be factors and suppose that M  or N has property

L.   Then M ® N has property  L.

Now, let M be any II,   factor with property L.   An example would be the hyper-

finite factor zVI = ll(II) where II is the group of permutations on the integers.   (For

otrfer examples, see those factors in [3] and [4] which have property T.)   Then

11(11) ® B(R)  is an infinite factor with property L, but 11(11) ®B(K), being II   ,

is not asymptotically abelian.

One other interesting result of Lemmas 4.2 and 4.3 is that every central se-

quence in Bin.) is trivial.   This is easy to see if we let M be the I,   factor.

Then, every central sequence in  M ® B(K)   is equivalent to a sequence in M

which is, in this case, a sequence of scalars.

5.   Central sequences in tensor products.    Lemmas 4.2 and 4.3 led to the

conclusion that any central sequence in M ® B(K) is equivalent to a sequence in

M.   We now look at another case where a central sequence in a tensor product is

equivalent to a sequence in one of the tensored factors, namely the algebra zVL

® N where  zVL   is the type III factor constructed in §2 and N  is a II,   factor such

that N = 11(G)  for some group, G, with infinite conjugate classes.

First, we point out that AC ® N has L (X) ® / (G) as its underlying Hubert

space with Fn ® 8 a separating cyclic vector. We will use the notation from the

paper of Ching [l]  to prove our theorem.

An element F ® / of L2 (X) ® /2(G) will be denoted ifig)F)  i.e. (F ® /)   =

fig)F.   A sequence of operators (W ) C zM2 ® N will be of the form W'   = (W( "')  £G

where W( n) £ zYL  for each g £ G and (W( n))   = 0(n) (x) for a £ g.   Also, W

acts on L  (X) ® I iG)  in the following manner
7*

(WB(F 0/))g =  Z WÍn)f(gb)F.

Theorem 5.1.   // (W  ) is a central sequence in M 2 ® N, there is a sequence

(f ) in N such that strong limit (W   - I ® / ) = 0.
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Proof.   For n fixed, let the function / : G —» C be defined by / ig) =

/<p(")_1(x)zizi = (W(n_)1F0, F0).   Note that

^n(F0 ® §A = Z <n)Se&K = Wg-iF0
¿EG

so

||(Wn-/®/n)(F0®zSe)||2

= \\i^JL\F0 - ^-1F<P Fo>FoWI2 = E  'K"' - K"^ F0)/)F0||2.

Now

g g^G

iwßgi ® Se)(F0 ® Se))g = iWniügF0 ® Se))g

= y W[n)8 igh)U   Fn = W(").[/   F,
^      A      e o        g¿   0 £,-1   g,   i

fceG

and

a-  «i °

«¿7 ® Oe)wn(F0 ® se))g = iwgi ® î,x(»«:1p0))),

= ((8(iK/ W^(n)iFo^P = Z 8 (A)i/ <"\_,f = (7 iy("),Fn.
e g¿ Ze<TG       £-1    0      g        ^-      e g,   (gZi)   '    0 g     „-1    0

ieG s

Hence, using the fact that (W ) is a central sequence, given c > 0, we can fi

n  such that

i>||[Wn, L7g¿®5e](F0®§e)||2

= \\ÍWMÜg.PQ-ÜW™F0)\\2=  Z ll^"-i^g>oll2-
g &I 516 ^, S '

g£(j

Now, using Lemma 2.3,

||(^»> _ iW^F0, F0)1)FJ2 < K\\[Wg"\ 0gi]F0\\2

so that

limit ||(Wn - (/ ® /„))(F0 ® ¿îJ2

= limit £   ||(VV^M^n)F0,F0)/)F0||2

<K limit j;  ||[Wg">, i7gjFj2
geG

= K limit ||[W , Ü    ® 5 ](Fn ® zS )||2 = 0.
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It remains to show that fn £ U(G) for all 72.   This means, given / £ l2iG),

we must show   ||/*/J|2 < K||/||2   where   ||-||2  is the trace norm.   We may assume,

without loss of generality, that  ||1VJ| < 1  and  K - 1.   Take X and  Y  in L2(X)

® l2iG) defined by X = FQ ® / and  Y = F0 ® f*fn.   We know that (W„X,  Y) <

WWnX\\ Il y II < 11*11 ll^ll-   Computing, we get

and

so that

|F0®/ll = H/ll2'       IMI = llF0®/*/J = H/*/JI2

k£G

iWnX, Y) = £ ( L Kn)feh)Fo> (/*/t2)(«)FoN)
g£G \heG I

= Z ^iJ^lZ <n)f&)F0,FSQ
geG \heG

geG \fceG

= £(/*/„)(«) £ f(gb)(„(h-1)
geG heG

Combining gives

=   1   (/*/J(«)V*/n>(«)=ll/*/Jl2-
g£G

/J|22<ll/ll2ll/*/JI2     or     ||/*/J2<

Thus, a central sequence in M2 ® N   is equivalent to a sequence in N  and

we may reduce any discussion of central sequences in M2 ® N to a discussion

of sequences in N.   (Just as in the previous section we were able to consider a

sequence in M  in place of a sequence in M ®B(K).)   Does the opposite work?

That is, may we extend a central sequence in  N to a central sequence in /VL ®

N.   The answer is "yes" and is covered by the following.

Lemma 5.2.   Let M  be a finite  W*-algebra.   Define  C° = (® JW//0)n(p(AÍ)'),

where vt^ z's í¿e direct sum of a countable number of copies of M,  /0 = t(An) £

©ooM| ||A„||2 ""* OL M = [(A„) £ ©„o/Ml A„ = A for all n\ and p is the canonical

map of 0^/Vi  onto ©JW//,,.   Then C°M  is a finite  W*-algebra.

Proof.   [8, §4].
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Lemma 5.3.   Let M be a W*-algebra and T a hermitian element of M.   If f

is a continuous function on the real numbers, then f(T)  is in  M.

Proof.   [2, Chapter I, §1.2].

Lemma 5.4.   Let M and N be factors.   Suppose (U  ) is a sequence of unit-

aries in N such that  strong limit U*AU   - A  for all A in  N.   If U   = / ® (7 ,

then  U     is a sequence of unitaries in M ® N such that  strong limit (7   XÍ7    = X

for all X in AL® N.

Proof.   [14].   This is included in the proof of Theorem 2.

Lemma 5.4 answers our question if we assume that the central sequence is a

sequence of unitaries. In the next theorem, we will remove this condition (which

is essential to Tomiyama's proof). However, in order to do this, we must impose

another condition:   One of the tensored factors must be semifinite.

Theorem 5.5.   Let N  be a finite factor and M an arbitrary factor.   If (A  )

is a central sequence in N, then (I ® A  ) is central in M ®N.

Proof.   Our method will be to reduce the A   's to unitary operators.   First,

An = VAAn+A*) + i(VAiA*-iAn)).

Since N  is a finite factor, (A  ) is a central sequence if and only if (A   ) is cen-

tral.   Thus, (A  ) is central if and only if both V2(A    + A   ) and V2(iA   - iA  ) are' 72 ' 72 72 72 72

central.   This means that the theorem is true if and only if it is true for hermitian

operators.   Assume, therefore, that A     is hermitian.

Lemmas 5.2 and 5.3 imply that if (A ) is a hermitian central sequence, then

(/(A  )) = ((/ - A2)^)  is a central sequence.   Now (we may assume  ||A   || < l)

A    =V2iA    +i(l-A2)vA + VAA-i(l-A2yA.
72 72 72 72 72

So, the theorem is true if and only if it is true for unitary operators.   But, accord-

ing to Lemma 5.4, the theorem is true for unitary operators.

I am indebted to P. Willig for suggesting the following.

Theorem 5.6.   Let N  be a semifinite factor and M an arbitrary factor.   If

(A  )  is central in N, then (I ®A.) is central in M®N.
72 72

Proof.   Let N = B(K) ® N with N a finite factor.   Then, using the results of

§4, there is a central sequence (F ) in zV such that the sequence (/ ®F ) is

equivalent to (A  ).   But (/ ® A  )  is equivalent to (/ ® (/ ® F )) = ((/ ® /) ® F )
A n n *■ n r\, n

which, according to Theorem 5.5, is central in (M ® ß(K)) ® N = M ®N»   Thus'

(/ ® A  ) is central in M $ /V.
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Thus, an arbitrary central sequence in a semifinite factor, N, is still a central

sequence when extended to the tensor product, M ® N.   Can this be generalized to

the case where N is purely infinite?   Obviously, if a purely infinite factor, N,

satisfies the property that every central sequence is trivial, the answer, for N, is

"yes".   In general, however, the answer to this question is not known.

6.   Uniform asymptotic abelianness.   Finally, we investigate another aspect

of the property of asymptotic abelianness.   Algebras with asymptotic abelianness

in physical situations are  C -algebras and not  W -algebras.   If an algebra, M, is

a C -algebra, but not a W -algebra, convergent sequences are considered to be

those which converge uniformly.   Therefore, in discussing those properties of

C -algebras which relate to convergence of sequences, one would confine oneself

to the uniform topology.   It is natural to wonder whether this property would be

useful in the case of W -algebras.

We will first formally define the property under consideration.

Definition 6.1.   Let M be a W -algebra.   M  is called uniformly asymptotically

abelian if there is a sequence, (p  ), of »-automorphisms on M  such that

limit ||[pn(A), B]|| = 0 for all A, B £ M.

Obviously, any uniformly asymptotically abelian algebra is asymptotically

abelian.   However, the converse is not the case.   This fact will be a trivial con-

sequence of the theorem in this section.

The following is a result of Kallman ([6], [7]).

Lemma 6.2. Let M be a W -algebra on a separable Hilbert space. If <bin)

is a sequence of *■automorphism s of M such that limit __ ||çS(«)(T) — T|| = 0

for all T £ M, then

limit /    sup   ¡||<p(7z)(T)-T|||\ =0.

•—• \hti*i )

We use this lemma to show that  W -algebras are not uniformly asymptotically

abelian (unless they are commutative algebras).

Theorem 6.3.   Let M  be a noncommutative W -algebra.  M  is not uniformly

asymptotically abelian.

Proof.   Suppose M were uniformly asymptotically abelian.    Let (p ) be the

sequence of automorphisms of Definition 6.1.   Then if U  is a unitary operator

in M, p W)  is a unitary operator for each n  and  (p ill))  is a central sequence

in M.   Thus,

limit \\PniU)*TpniU) - T\\ = limit   \\TpiU) - pniU)T\\ = 0.
72— oo rj—oo
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Let cb of Lemma 6.2 be defined by <p(/z)(T) = p (I/) Tp iU).   Then, using

Lemma 6.2, we have

limit/  sup   S||p„iU)*TpiU)-T\\\ 1=0.

"-~Vl|T||£l /

But

\\pniU)*TpniU) - T\\ = \\p„iU*p-HT)U- p-nHT))\\ = \\u*P;liT)u - p-nKT)\\.

Thus, given e, there is an nQ  such that

sup    ||L/*p-1(T)f;-p-1(T)|| <f.

l|T||sl

But p        is a »-automorphism and, in particular, preserves the unit ball.   So,

given i,

sup    \\U*TU —7*|| < *

IMI<i
i.e. \\U*TU - T\\ = 0 for all T £ M  such that  ||T|| < 1.   But this means [U, T] = 0

for all T £ M which is impossible.   Thus, there are no uniformly asymptotically

abelian noncommutative  W -algebras (even though there are many algebras which

are asymptotically abelian) and we can consider this property as one that is

special to C -algebras.
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