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FREE PRODUCTS OF VON NEUMANN ALGEBRAS(1)
BY

WAI-MEE CHING

ABSTRACT. A new method of constructing factors of type II,, called free prod-
uct, is introduced. It is a generalization of the group construction of factors of
type II1 when the given group is a free product of two groups. If Al and A2 are
two von Neumann algebras with separating cyclic trace vectors and ortho-unitary
bases, then the free product A1 * A2 of A1 and A2 is a factor of type I, with-
out property T.

1. Introduction. In the study of von Neumann algebras, factors of type II, have
been constructed by the so-called measure-construction, the group-construction,
and the infinite tensor product (see Murray and von Neumann [10], [11], von Neumann
[20]). A more general construction, called crossed product, which includes the
measure-construction and the group-construction as special cases has been studied
by Nakamura and Takeda [12], Suzuki [17], Turumaru [19], and Ching [31. A1l hyper-
finite factors of type II, are isomorphic to each other (Murray and von Neumann
[11]), and a hyperfinite factor of type I, can be constructed by the measure-con-
struction, the group-construction, or the infinite tensor product. This indicates that
factors of type II; produced from quite different methods may actually be the same,
i.e. isomorphic to each other. On the other hand, all nonhyperfinite factors of type
I, so far discovered and classified, are constructed by the group-construction
(see Ching [3], [4], Dixmier and Lance [5], McDuff [8], [9], Murray and von Neumann
[11], Sakai [14], [15], Schwartz [16], Zeller-Meier [21]). The question that arises
then is whether all factors of type II; can be produced by the group construction;
or put in another way, is any factor of type II, isomorphic to ({(G) for some discrete
group G, where ({(G) is the von Neumann algebra generated by the regular repre-
sentation of G. This paper resulted from an attempt to give the above question
hopefully a negative answer. We introduce a new method to construct a factor of
type II,, called free product, which is modeled after the free product of groups. It
is, in fact, a generalization of the group-construction, with the given group being

a free product of two groups. For example, we would see that the free product
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®(z) * @(Z) is isomorphic to @((1)2), where Z is the integer group and @, is the
free group with two generators. We shall show that a free product of two finite

von Neumann algebras with ortho-unitary bases, one of linear dimension at least
two, the other of dimension at least three, is always a nonhyperfinite factor with-
out property I'. Although the motivation of this paper is to construct a factor of
type II, nonisomorphic to any group-von Neumann algebra (@(G), we are not able, at
present, to show that such a factor actually exists. For instance, it is not known
whether M, * M, the free product of the 2 by 2 matrix algebra and the 3 by 3
matrix algebra, is isomorphic to (f(d)z).

Another unsolved problem concerning von Neumann algebras is whether a fac-
tor of type II; necessarily has an outer automorphism. All factors of type I (i.e.
n x n matrix algebra) do not have any outer automorphism (Dixmier [5, Proposition 4, p.
255]). Recently, Takesaki [18] proved that a factor of type III always has an outer
automorphism. Any locally compact group can be represented as a group of outer
automorphisms of the hyperfinite factor of type II, (Blattner [2]). Behncke [1]
showed that this result is still true if the hyperfinite factor is replaced by @(‘Dz).
We shall see that these known methods of finding an outer automorphism of a fac-
tor of type I, cannot yield any outer automorphism of M, * M; for us. However,
the task to determine all outer automorphisms of M, * M, (probably none) must be
lefe to further study of free products of vonNeumann algebras.

All Hilbert spaces in this paper are complex and separable and all groups in
this paper are countable. The identity operator in all vonNeumann algebras is
denoted by 1, and we shall call a scalar multiple of identity simply a scalar.

The author would like to thank Professor C. Heinrich for some helpful discus-
sions.

2. Construction of the free product. Let A. be a vonNeumann algebra on Hil-
bert space H, with a cyclic separating trace vector ‘fi (of norm 1), i =1, 2. Let
A=A ® A, be the algebraic tensor product of A, and A,. Let A" =4 ® ..
® A be the nth algebraic tensor power of A. Let A= E@ A" be the tensor
g\Jlgebta of A without the summand of the field of constants. A general element of
A is of the form

m "k
Z_: Z 1,i®7,,9®x, By, 5

=

~.

wherex i ® ‘EAI @ A, 1<i<n, 1<j<k, 1 <k<m Let I bethe

ideal of A generated by elements fx ®y, ®--®x, ®1®x, , ® Yig @

.®xnl®yn—x ®y1® ‘® x; 1®yl_l® 11+1®>’z+1® ?xﬂ
®)’n’x1®)’l ®"1®>’1®1®>’® ®y ]
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y{@---@xi'_l ® y ly ® le ® y ®...0® x"n ® y’;}. Let 4 = A/I be

1+1
the quotient algebra. An element a in A of the form x;, ® y; ® -+ ® x, ® y,
is called a monomial, which we shall write simply x,y,-+-x y  hereafter. n is
called the length of the monomial, and is denoted by p(a) = n. Every element of A
is a sum of monomials.

Any element x of Ai can be written as x = cl + x', where ¢ =tr(x) = (xfilfl),
and x' = x — ¢l (hence tr (x')=0), i=1,2. A monomial X1yt X,y, is said to
be irreducible if tr(x,) =0 and tr(y,) =0 for all i with the possible exception of
xy and y_, each of which is either of trace zero or a scalar. Every monomial xy,
-+-x_y_ (and hence every element of A) is equivalent to a finite sum
X1y ***%,Y,> unique up to a rearrangement of summation, of irreducible monomials
each having length no more than 7. The unique sum x,y, .- -x y, of irreducible
monomials is called the canonical form of x,y, - x_y,- This can be readily

proved by induction.

Lemma 1. There exists a rewriting process to reduce every monomial X154

s++Xx y into a unique canonical form xy, - XY e

Proof. It is trivially true for the case n = 1. Suppose that X1yt %,y, has
been defined for k <n. Let x,y,.+-x y be given. Suppose

cee X

1,1, k,iVk,i

uM;..

B DA TR D T Z

where XVt e Yk is an irreducible monomial, 1 <7< ns 1< k < m.
Define
n-1 "¢

XYoo XYy = Z Z 1,91, 0 %,V i 0V

where each X F et i k1. 5, 1S defined as the following: first of all,

1,iY1,0 0 X1,k -1,i%0Yn

=tr (yn)xl,iyl,i cee xk-l,iyk—l.zxnl + xl,iyl,ixk—l,iyk—l,ixnyn’

where y =y, -t (y )1. Hence, we can assume either tr (y )=0 or ¥, = cl. Now
(1) if tr(x )=0 and tr(yk )_0 then

I

e X

*1,i%1,i k=16 ~1,i%2Yn = *1,i%1,i *"" Fk-1,iVk -1, n)

(i) if x = cl is a scalar, then

cee X

*1,i%1,i k=1,i7k~1,%2Yn = X1 ,iY1,: " "k-l,i(yk-l,iyn)’
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which is already defined by our assumption; (iii) if y _, ,=cl, then

LY, 00 k1,1, %00 = %1, Y1, 0 ("k-l,i"n)yn’

which is already defined. For general x_, x_ =tr(x )1 + x', with tr(x') = 0. And
n n n n n

we define

1,71, *e-1,ik-1,i%n7n

1]
= “("n)"l,iyl,i"k-l,i(yk—l,iyn) XYt %k, Ve -1,i% YR

This proves the lemma.
~
For every element a = 2 a; in A, where the a/s are monomials, let @ =
— — . 3 . . e g
2a ;*@ Iis a unique representative of the equivalence class of a in A = A /1. So, we

can regard a as the element in A it represents. Define c-@ = c-a for complex
~

number ¢, @-b=a-b,a +b =a + b, where a-b is the multiplication in A, in the

case of the two monomials
( oo x ) (xl I..'xl I)_x x " xl '
*1Y nYn 1”1 m¥m’ - 1 2Yn* 171 mYm’

and in the case of the two general elements it is defined by the linear extension of
the above operation. It is easy to see that A is the same complex associative
algebra as defined by quotient A/I. We can regard A as consisting of linear combin-
ations of irreducible monomials. Furthermore, we define (xlyl <o xnyn)* =

ly*x*y* ,-+-x3y}x}1 for an irreducible monomial x,y, ++-x y . Extending the

conjugate linearly to all elements of A, * is an involution of A such that (¢- a)* =
¢ -a*, and (ab)* = b*a* for complex number ¢, and a, b € A.
Define a function [ by /(xly1 .. -xnyn) =0 for an irreducible monomial x,y,
+++x_y_in A, except for the case n=1 and x,y, = cl, a scalar, for which we
n’'n
define /("1)’1) = c. Extend this function linearly to all elements of A. Note that
for a monomial of length one (not necessarily irreducible), /(xlyl) =tr (xl)tr (yl),
where tr (xl) and tr ()’l) are the traces of A, and A, respectively. We have

Lemma 2. The linear functional [ defined on A has the following properties:
(a) flab) = {(ba) for any a, b €A,

(b) f(a*a) >0 for all nonzero element a in A,

(c) /(a*)§7(a_)/or any a €A.

Proof of (a). It is clear that we only need to prove (a)_for a=xy -eoxy,
and b=s,t +-+s t being two irreducible monomials in A.

Case 1. Neither y, nor s, is a scalar. Hence
ab=xyy;ceex y st eves ¢, and f(ab)=0.

(i) If neither x,; nor t_ is a scalar, then
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1) ba = Splycee S b Xy e Xy, and f(ba) = 0.

(i1) If x, is a scalar, but ¢_ is not, then
1 m

f(ba) = e (x )f(s 2 v ees (1 y)xyy, oo xy )

sele) ey (st eees gt (s %))y, 000 xy,);

@) fbd) = ulx) el y ) eels x) et x )0 ety )er(s)) =0,
in case m = n;
(3) f(ba) = tr(x ) ez y ) eels x,) e uleyy, Julsx ) uwly )=0,

in case n=m + 1. In all other cases, ba is a sum of irreducible monomials all of
length at least two, hence f(ba) = 0.

(ii1) If ¢t is a scalar, but x; is not, then
m 1

/(ba) = tf(tm)/(sltl coe Sm—ltm—l(smxl)yl con xnyn)
(4)

=l )uls x)) ey e uls ek ul y)
ces tr(tlyn_l) tr(slxn) tr(yn) =0,

in case m = n;
G)  fba) = (e ) eels %) eele, _1y,) e tels,x,) ultyy Jeuls)=0

in case m =n + 1. In all other cases, ba is clearly a sum of irreducible monomials
all of length at least two, hence f(ba) = 0.

(iv) If both X and t  are scalars, then

(6) ba-_-tr(xl) tr(tm)sltl ...Smyl ...xnyn

is an irreducible monomial of length at least two in case m £ 1 or n # 1. Hence

f(ba) = 0. In cases n=1 and m=1,
) ba=tr(x) tult) sy, and [(ba)=0,

since Sy is not a scalar. Therefore tr (ba) = tr (ab) in Case 1.

Case 2. s, is a scalar, but y  is not. In case m=n,

® flab) = tr(s ) ey t) tulx, s,)

ceetrly t)elx s ) ety ) e(x);

n—-i+174

9) f(ab) = tr(s)) ey, ty) tr(x s,) oo tr (yyt, )t (xs,) tr(tm),
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in case m =n + 1. In all other cases, ab is a sum of irreducible monomials all of
length at least two, hence f(ab) = 0.

(i) If neither X, nor t_ is a scalar, then f(ab) = 0 by (8) and (9); also
ba=sty+-+s t Xy ---%y_ ,hence f(ba) = 0.

(11) If x, isa scalar but t, is not, then
[(ba) = tr(xl) tr (tmyl) tr(smxz) v tr(tlyn) tr (Sl) = f(ab),

in case m=n. Incase m=n+1, f(ab) =0; and ba is a sum of irreducible mono-

mials all of length at least two, hence f(ba) =0. In case n=m + 1,

f(ba) = te(x ) (e y ) erls x)eev ey, Jeuls x)uly)=0;
and ab is a sum of irreducible monomials all of length at least two, hence f(ab)
=0.

(iii) Suppose ¢ _ is a scalar but x, is not. In case m =mn, f(ab) =0 and
f(ba) = er(t Ver(s x et _y)eev (s x ) ey )= 0.
In case m=n+1,
f(ba) = tr (tm) tr (smxl) tr(tm_lyl) ceetr (szxn) tr(tlyn) tr (51) = f(ab).

In all other cases ba is a sum of irreducible monomials all of length at least two,
hence [(ba) = 0 = f(ab).
(iv) If both x, and ¢ are scalars, then ba = tr (xl)t-r (tm)sltl R
Xy, is an irreducible monomial of length at least two in case m# 1 or n # 1.
Hence f(ba) =0. Incase n=m=1, f(ba) = tr (s Jer (t,y e (x,) = f(ab). Hence,
f(ba) = f(ab) in Case 2.
Case 3. y_ is a scalar but s, is not. Incase m=n,

(10) fab) =ee(y Ver(x s )eely o) eeeeely e Deeleys ) ez );

(11) f(ab) = tr (yn) tr(xnsl) tr(yn_ltl) coe tr(xzsm) tr(yltm) tr(xl)

in case n=m + 1. In all other cases ab is a sum of irreducible monomials all of
length at least two, hence f(abd) = 0.

(i) If neither x; ‘nor ¢_ is a scalar, then ba =s¢,-- S oL, Xy
x y, and {(ba) = 0. We also have [(ab) =0 in this case.

(ii) Suppose x, is a scalar but ¢ is not. In case m = n, f(ab) = 0, and
fba) = tr(x ) e (e y ) s x)eeverleyy ) ee(s)) =0

f(ba) = erx ) ey ) ee(s x,)eee ey )ec(s)y )er(y )= [(ab),
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in case n=m + 1. In all other cases ba is a sum of irreducible monomials all of
length at least two, hence f(ba) = 0 = f(ab).

(iii) Suppose ¢  is a scalar but x; is not. In case m=mn,
[(ba) = ez ) ee(s x)) el yy) s x ey ) = f(ab);

f(ba) = ez ) ue(s x) - wley )uls))=0

in case m=n+ 1 as f(ab) = 0 also. In all other cases ba is a sum of irreducible mono-
mials all of length at least two. Hence, f(ba) =0 as f(ab) = 0 too.
(iv) Suppose both t, and x, are scalars. Then ba = tr(xl)tr(lm)sltl
S Yy tXLY, is an irreducible monomial of length at least two in case n # 1
or m# 1; hence f(ba) = 0, and in case n=m =1, [(ba) = 0 since tr(s;) = 0. By
(10), in case n = m, /(ab) =0, since tr (xlsm) =tr (xl)tr (sm) =0. By (11), in case
n=m+1, flab) =0, since tr(y;z )=t Jer(y,) =0, and [(ab) = 0 in all other
cases. Therefore, f(ab) = f(ba) in Case 3.
Case 4. Both y  and s, are scalars. Then ab = tr(s Jte(y Jx y - ox 1)
s .t.- Hence flab) =0 if n#1 or m#£1, and

(12) f(ab) = tr(sl) tr(yl) tr(xl) tr(ll) if n=1 and m=1,

(i) If neither x, nor t_ is a scalar, then by (1) f(ba) =0 and [(ab) =
0 by (12).
(i1) If x, is a scalar but t_ is not, then f(ab) = 0. In case m = n, by
(2), f(ba) = 0 since tr (Ilyn) = tr(ll)(r (yn) =0. Incase n=m+ 1, by (3), f(ba) =
0 since tr (slxn) =tr (sl)tr(xn) = 0. And f(ba) = 0 in all other cases as in Case 1
(i1).
(1i1) If t is a scalar but x, is not, then tr(ab) = 0. In case m = n, by
(4), f(ba) = 0 since tr(s X )— tr (s )tr(x )=0. Incase m=n+1, by (5), [(ba) =
0 since trlryy ) =els )tr (y )= 0. And /(ba) = 0 in all other cases as in Case 1
(11).
(iv) Suppose both x, and f  are scalars. Then flab) = 0 = {(ba) if m #
1 or n#1; and /(ba) = tr(s])tr(ll)tr(xl)tr(yl) = /(ab) if n=1 and m = 1. There-
fore, f(ab) = f{(ba) in Case 4 This completes the proof for part (a).
Proof of (b). Let a = X7

in A, where each XU KoYk, D the summation is an irreducible mono-

n
k 1 ?kl:, Xy pY1.b"" Xk pYr.p D€ a nonzero element

mial. Let E be a maxnmal linearly independent finite subset containing 1, of the
set hk,b‘ h=1l-wyn,k=1-.., m} Uil E is a finite linearly independent sub-
set of A . Apply the Gram-Schmidt orthogonalization process to E with respect
to the inner product (x|x') = (x¢, |x'§l) defined on A,, we obtain an orthonormal
set F=laj,a,:++,a L in A}, where we specifically design that a, =1. Now

let O ={a ;bsN , where the index set N, is a subset of the set of all natural
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numbers containing {1,--., n}, be a family of elements in A, which is maximal
with respect to the following properties: (i) F C 0y; (ii) (a,&,1a, &) =0 if b £k,
and (abllakl) =1 forh=k€N,. Let a subset O, = {bk*keNz of A, be constructed
similarly from the set ly, [ h=1,++-,n, k=1,.--, ml. Let a=tij,---, i} be
an ordered set of n elements from N, such that i, ;é 1, if />1, and let ad = {zl,
nl be an ordered set of n elements from N, such that i, £1 if I<n. Let

\) be the family of all such couples (a, a') of ordered sets with elements from N,
U N,. For notational simplicity, we shall write a for (a, a') and i, for iy

Let e, = €q a1y=a; b, -+ a, b oa € S. We shall show that /(e*e )=1
and /(e*eﬁ) = 0, where e = a”b,l ca; b; , a#pB,a,BeES.

Casel. a,_ =b. =1. Then e} —a*b* «ea* b* , and
i1~ %, in—1 iy i1

sk ENE
fle,e) = /(ainbin T a (bzlbl )alzb e ainl)

* TEFE 3
tr(bilbil)/(ainbi l--- (ai a; )bi ceea 1)

n- 2 "2 2 n

I, EllPla; €407+ Na, £17 =

(i) Suppose a; = 1. If n=m=1, then bil #1 since a# . Hence
/(e:eB) =l -bil) =0.If n=m>1, then

/(e:eﬁ)=/(a;'.‘nbjn_lma (] b Va; b, --va; b )

11]1 12 m ‘m

* * *
= “(bilbil) tr (aizajz) ceetr (ainaim) tr(b].m).

Since O, and O, are orthornormal sets in the inner products defined by traces,
: * * : _ * _
either one of {tr (bikbik)’ tr (aika,.k)} is zero or u(bim) = 0. Hence f(e}es) =0

If n=m+ 1, then

/(e )—tr(b b )tr(a a )-ntr(a a, )tr(b b )tr(a )—

m m
since tr (ai ) = 0. In all other cases eaeB is a sum of irreducible monomials all
n

of length at least two, hence /(e*e )=0

_ ok bk * % .
) (u) If a ;él then e "’ﬁ— ainbin—l .a* 2bl2 ”b,l aimbim' Hence
fle ap) =
Case 2. a., =1,b. =1. Then e} = 1b* a* b* .a* b* , and
3 n In n ’n—l 12 11

* * % % * (oK ‘
f(ele,) = /(lbinainbi veva, (by b )a, b, +iva. b))

n-1 n 1 °1 "2 °2 n 'n

= ||b,-I§2||2!|a,~2§1|l2 lla,-ntflll2 =
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(i) Suppose a;, =1 1f n=m,
* * *
/(eaeﬁ) = tr(bilbjl) tr (aizaiz) cee tr(binb].n) =0

since a £ f3, one of the factors must be zero as 0, and O, are orthonormal sets.

If n#m, etey is a sum of irreducible monomials all of length at least two. Hence

/(e:eﬁ)=0
Case 3. b, =1, a, #1. Then e}=a* b* ...a% b* a* 1, and
in iy In Ip 12 11 11
/(e e)_tr(a a )tr(b b )u-tr(a a; )= 1.
n ’l
(1) Ifa =1, then e*e —a*b* ca*b*a*b.a. b. ,and
o A X N R T Mg
/(e*eﬁ)"

(ii) Suppose a; ;él If n=m, then
fle eg) = tr(a % )tr(b b ) . tr(a’:.‘na’.n) (b, )=0

m

since a # 3, one of the factors above must be zero. If n = m + 1, then
* * * * *
[(ezeq) = tr (aila’.l) tr(bilbil) cee tr(ainaim) tr(ain) =0
since a, # 1. In all other cases, c;‘;eﬁ is a sum of irreducible monomials all of
n

length at least two, hence /(e;cﬁ) =0

Case 4. G £1, b, # 1. Then e*=16* a* b* ...a* b* a* 1, and

n

In In In 12 11 11

* * * *
fleje) = “(ailail)“(bilbi )eeeu(b; b, )= 1.

n n
ere) (i) If a, = 1, then e}e = Ib’l'.‘"-- sz‘l"la’l“lb” ”aimbim' Hence
cae‘B =
(u) Suppose a; # 1. If » = m, then
* % *
/(eaeﬁ) = tr(ailail) tr(b’.lb].l) ces tr(binbin) =0

since @ # 3, so one of the factors above must be zero. If m=n+ 1,

/(e:eﬁ)=tr(a:.: a.) --tr(b b )/(a b, )=0

m m
since al # 1. In all other cases, c¢* a3 is a sum of irreducible monomials all of
length at "least two, hence f(c* ",3) = 0. We have proven that f(c*e,) =1 and
[(e*e ﬁ) 0if a #8 forall a, B€S.
Now, let a = Eaeslcaca, where c¢'s are nonzero complex numbers and s'is

a finite subset of S. Hence

(D= /( T, Gepele)- T, lal?>0

q, (€S a€S

for any a €A.
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Proof of (c). For e, # 1, we have f(e,) = @ =0 and f(1) = /(T*) =1. For
a general element, a = 2 cqee, in A, f(a¥) = [(Z c e¥) =7(zz_). This completes
the proof of the lemma.

Now, we define

(a|b) = [(b*a), for a, b€ A.

It is clear from the previous lemmata that this is an inner product on A satisfying
the following properties:

(i) (a]b) = (b*|a*) for a, b € A,

(ii) (ab|d) = (b|la*d) for a, d, b € A.

In order to prove that A is a Hilbert algebra, it only remains to show that the
multiplication @ b b.a is continuous on A in the norm topology defined by the
inner product for each b € 4.

Lemma 3. For each b €A, a + b-a is a bounded linear operator on A in

norm defined bv the inner product.

Proof. Since any element b in A is a finite sum of monomials, and any opera-
tor in a von Neumann algebra is a linear combination of four unitary operators in
that von Neumann algebra (Dixmier [5, Proposition 3, p. 4]), every element in b is
a linear combination of elements of the form u = u v, --+u v , where u; v, are
unitary operators in A, and A, respectively, i=1,--.,r. Hence we only need
to show that L :a — u-a is a unitary operator on A.

Let a be given as in Lemma 2. Let the orthonormal set {eaiaes be construct-

ed as in Lemma 2, and let e, e be given as in Lemma 2. Then

(ue, | ueﬁ) = [(e; u*u*ea)

= (B & b o dF B N Cu) v uva b, ceia b))
im Im Im lzlljlrrr-l 2717717177 rrdy iy i

¥ ¥ ¥ ¥
= /(lb].mal.mg;.m ees aizl;;l(ajlail) b].] e ainbin) = (e, | eﬁ)'

Hence,
(ua| ua) = ( Z' c ue, | Z, cauea> = ca'c'ﬁ(uea| ue'B) = (a| a).
a€s aeS a, B

This shows that # is unitary on A, and completes the proof of the lemma.

It can be proved similarly that R,: @ — a-b isa bounded linear operator on
A. Since A has an identity, 4 is a Hilbert algebra {Dixmier [5, Chapter 1, $sh.
Let H be the completion of A under the defined inner product. Let Ol = t“},‘beNl
and O, = {bk*kGNz be maximal orthonor_mal sets in A, and. A, respectively, and
let {eaiaes be the orthonormal set in A constructed from O, and O, as in Lem-
ma 2. Then every element x of H can be represented as Eaes €,€4» Which may
have infinite many coefficients ¢, being nonzero, such that lxl|? = 2es Ical2 <

+ o, The left multiplication L,: a — b-a by an element b in A can be extended
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to a bounded linear operator L, on H. This is also true for multiplication by ele-
ments of A on the right. We call the von Neumann algebra on H generated by all
left multiplication operators L,, b € A, A *A,, the free product of A| and A,.
Let A be the subset of H consisting of all elements x with the property that there
exists a constant K(x) such that ||x.a| < K(x)|a| for all a € A C H. Hence, for

each x €A, a b x-a can be extended to a bounded linear operator L _on H. y:

x «» L_ is a one-to-one correspondence between A and A, *A,. For let x =
Eaes €y 6/3 and let x = zaeFl a€q> Where F, is a fmlte subset of §,1=1,
2,+++, such that ||x-—x||_ aes\F, |c| — 0; thenx €A, i=1,2,-- L‘-—-»

L strongly, i.e. L €A xA,. On the other hand, it can be shown that {L | x € A}
={R, | x € Al is already a vonNeumann algebra, i.e. A} %A, C ¥(A). By the prop-
erties of a Hilbert algebra, we have
(i) AL+ l‘Ly = Lxx#ty,
(i1) LxLy = Lx.y, for x, y € A, where x .y is the extended multiplication.

for x,y € /i, and complex numbers A, p.

(i) (L )*=L _,for x € A, where * is the * operation of A extended to A.
x" A
For simplicity, we identify L in A} * A, with x in A, and write x for L.

A, * A, is a finite vonNeumann algebra with trace tr (@) = (a|1), for @ €A, *A,.

3. Factors of type II|. Let A be a vonNeumann algebra on Hilbert space H
with a separating cyclic vector £. A countable set O ={U,},,, of unitary operators
in A is called an ortho-unitary basis provided (i) (Ua§|Uﬁ§) =0 if a # fB; (ii) for
all ael, Uk = c,U_ for some U, e O and a complex number c, of modulus 1, and
for every pair a, B €1, UUg=¢c,U, for some U, €0 and a complex number cu
of modulus 1; (iii) the set of all linear combinations of elements from O is weakly
(hence strongly) dense in A. Hence, every element T in A can be expressed as
Eae’ c,U, uniquely, where the series converges unconditionally in strong-operator
topology. If T € A is such that (T¢|U,€) =0 for all a €1, then T = 0. In other
words, {U }

a’ael
Remark 1. Let G be a discrete group, then the von Neumann algebra ((G) on

is a maximal orthogonal set in A.

1*(G) with 8 as a separating cyclic vector has an ortho-unitary basis {U } g€G
where Ug is the unitary operator corresponding to the translation by g. Condmons
(i) and (ii) are trivially satisfied, and ((G) is the von Neumann algebra generated
by ngigeG.
Remark 2. Let M, be n x n matrix algebra, i.e. the factor of type L.n=1,
2,+++. Then M _ is isomorphic to the von Neumann algebra M, = B(Hn) ® C on
H, ® H_, where H_ is the n-dimensional Hilbert space, B(H ) is the algebra of
all linear operators on H 2 with € = (fl, cey rf ) as a separatmg cyclic vector,
where ‘fl = §2+n = f3+2n §k+(k-—1)n =€ 2= I and all other fl. =0. Let
W=a® I,and V=6 ® I, where a = (a, ), @, =ay=a,;=a,_; =1 and

all other a; =0 (i, j=1,-++,n), and b (bij)’ b,i=0 (i £ ), and
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= 2ri(j=1)/n (j =1,-.+, n) are two operators on H, . Le U, = whyi, k=
l,--<,n, j=15--+, n. We claim that {Uk p ‘k j=1 is an ortho-umtary basis for M_.
Each U, . is clearly a unitary operator. If k £ k', then obviously we have

(Uk,jfwk:‘j:f) =0; if k=4k', but j £], then
(U, i‘f I Uk',-'f) =14 2ili=im=l/n _ o

We note that VW = 2™ "= Di/nyy (yiyx - =i (WeY = W™k, j k=1,2,-++,n
Hence U} = (V) (Why* = yn—iyn—k o 62“("_1)(" Nn=k)/ny Eon—i
k. n—k,n—j’
Uk,jUk . = Whyiwk'yit 2 lerz(n—l)lc'JUlHk, oy kyj=1,2,--,n. And as Mn
isan —dxmensmnal linear space, {Uk,j }k,/zl spans M_. Therefore, {Ulc,j}:,;el is
an ortho-unitary basis for M .
Remark 3. Let A, and A, be two vonNeumann algebras with separating cyc-
lic trace vectors &, and ¢, Let 0] —{aﬁ} ey and O, {br;relz be ortho-unitary

bases for A; and A, respectively. Let 0= {ea} be the orthonormal set of

aes
operators in Al * A2 constructed from O, and O, as we did in Lemma 3. e/’s

are, in fact, unitary operators in A, * A,. Conditions (i) and (ii) of an ortho-uni-
tary basis can easily be verified, and the linear combinations of e,’s form a dense

setin A, * A,. Hence, O is an ortho-unitary basis for A xA,.

Theorem 1. Let A and A, be two von Neumann algebras with separating
cyclic trace vectors rfl and 'fz on Hilbert space H, and H, respectively, where
the linear dimension of A, is at least two and that of A, is at least three. Sup-
pose that A, and A, have ortho-unitary bases O, and O, respectively. Then
the free product A, * A, of A, and A, is a factor of type II,.

Proof. Let O ={e,}, s be the ortho-unitary basis of A, *A, constructed
from O, and O,. Let T = Zaes c,e, be an arbitrary element in the center of A,
* A,, where the c,’s are complex coefficients. Suppose that T is not a scalar.

By rearrangements, we can assume that r = |c, l #0 and e, #1.Lete, = a,B 8
r+-ap bg ,where n>2 if ag =1 and by = 1 Let p= maxlp(e 2l |c | >l

Case 1. ag #1 and bﬁ #£1. Let s, be a nonidentity element of O; and let
b.B be a nonidentity element of O, orthogonal to b,B Let U= g, b/3 Let aB
—Cﬁo ro’ b,30=c,30 +o» Where |c,3 |_1 lcﬁ =1, a EO b’OGO Then

U* = C,Bolb, a 1 where B4 Let bﬁ crobrl, where bn # 1 since

,30 ﬁ
b'o is orthogonal to bB We have
k k_ k k . k-1
U T(U*) = C’O(Cﬁo) Cal(aﬁobﬁo) aﬁlbﬁl aﬁnbrl(afobro) a'ol
+ Z caUkea(U*)k.

a.eS,a.;ta.1

The first term has a coefficient with absolute value r, and the length of the irre-
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ducible monomial is 2k + n. And the second term is orthogonal to the first term
because the trace is unitary invariant. But UST(U¥)® = T forall k=1, 2,...,
and when k> 1/a(p — n), we arrived at a contradiction by the definition of p.
Hence Cay = 0.

Case 2. ag, =1 and bB =1, Let ag, £1, ag, €0y, and bﬁ be a noniden-
tity of O, orthogonal to b,B Let U=ag bB Then U* = 11)"}‘3 aB 1= Cﬁolb a 1
where |c |_1 and b, €0y, a, €0 Let bgbg =c b, where ‘C'll =1
and brl 941 rl €0,. We have
)k

UkT(U*)k—c c c b apb, cvvay(ba )l
1 By B, B 770 “

'BO(a’BO’BO 0

+ Z caUkea(U*)k, k=1,2,000.
aes, aza >
The first term has a coefficient with absolute value r, and the length of the irre-
ducible monomial is 2k + n — 1; the second term is orthogonal to the first term.
But URT(U*)k = T,k=1,2,...,and when k> 1/2(p — n + 1), we have a contradic-

tion by the definition of p. Hence ¢, =0.
= 1. 1 *
, Case 3. ag 1 and bg #1. Let ag £1, bg ;él ag, €0,, bﬁo €0,. Let %
c_a *—c”b,where]c |—|c"|—1 a €O , b, €0,. LetU—
roro’ “Bo~ Tro 1o 70 70
1b,a, 1; hence U¥=c_a_b where c_=c' c We have
Bo" Bo 70" 10 10’ 0 ro 70’

URT(U*)k = lb( g ) lag b by covay,byla b )k
‘a C Bo “s By a'Bo ,/31“/32 A, a'Bn A, a’o 7o

X caUkea(U*)k, k=1,2,-..

aeS,a;tal

The first term has a coefficient with absolute value 7 and the length of the irre-
ducible monomial is 2k + n; the second term is orthogonal to the first term. As
URT(U*)* = T,k=1,2,...,when k> 1/2(p —~ n), we have a contradiction by the
definition of p. Hence c, —O

Case 4. ag, #1 and b!3 =1. Let aB and b,B be nonidentity elements of

0, and O, respectively. Let aB =c' =c'b_, where |c |—| "]

ro%ro? bBo 70 70
9. 60l,b €0,. Let U=a bﬁ,hence U*—c lb o%r 1 Wehave

URT(U Y = ¢, c* ( )k bs,ttrag -1
c aﬁo ,80 ag ,8 ag ( 0) arol

+ Y qURe (UM, k=1,2,3,....

aes,axa,
By the same reason as in the previous cases, when we let k> 1/2(p - n), the equal-
ity URT(U*)® = T together with the definition of p implies a contradiction. Hence

c . =0.

a1
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This proves that if T is in the center then T is a scalar. Hence A| * A, is
a factor. Since A, * A, is clearly an infinite-dimensional vector space, A; * A,
is a factor of type II, since A, * A, has a trace vector. This completes the proof.

Let O= {ea}aes be the ortho-unitary hases for the vonNeumann algebra A, *
A,, constructed from O, of Al and O, of A2. We define a multiplication on § by
a-B=r,if ey - eg=c.e, where c_ is a complex number of modulus 1. This multi-
plication is uniquely defined. For if e -e5 =c, e, with e#;é e, then 1 = (e -

e,B‘ea'e,B) = C,C,u(er‘ep) =0 a contradiction. If €5 =c,e, and (ere )=c e

3 AN
where |c | =|c,| = 1, then (@ B)r = )\.I Let ege =ce,i, and eqe,s = cyie,,
where |c#| = Ic)‘| =1. Then a(Br) =A". But €,60€x = C\1CLENs by the same argu-

ment as before, we have ey, = e, or A = ALIf e, =1, then ¢ is clearly the identity
of S. Also, we have a=l- B if e = cgeps where |c/3| = 1. Hence § is a group.
Let E' be the subset of O consisting of all e, ending in aBOI, where ag, €0,
ag, #1. Let F=1{B: eg € El. Let €0 = aﬁol, e, = llb,Bl, ¢y =lbg,, wherel
bﬁ]’ b,Bz €0,, b,Bl £1, bﬁz #1. We have (i) F urFrot = s\id. (i) F, r Fry

and r,Fr; " are three disjoint subsets of s\{c}. The following is a slight variation
of Lemma 10 in Pukanszky [13]. The proof, which we omit, is exactly the same
after replacing /(giag;.' h by caf(gl.agi’ 1), where c, is a complex number of mod-

ulus 1.

Lemma 4. Let S be a group with identity (. Suppose there exists a subset
F C S\{L} and three elements in S such that (i) F ugng;l = S\h}, (i1) the sets
F, ngg;l, ngg;I are pairwise subsets of S\{dh. Let [ be a complex-valued
function on S such that Eaes ]/(a)|2 <+ oo,

1/2
(ZS Ica/(giag{‘)—/(g)lz) <e (i=1,2,3).

Then (Zg s\ I/ (@)]2) < 14e.

Theorem 2. Let A, and A, be two von Neumann algebras with separating
cyclic trace vectors. Suppose A, and A, have ortho-unitary bases O, and O,
respectively, and that the linear dimension of A | is at least two, that of A, at
least three. Then, the free product A * A, is a factor of type I, without property
[ (Murray and von Neumann (11, Definition 6.1]).

Proof. It is proved in Theorem 1 that A, * A, is a factor of type II;. Suppose
A, * A, has property I'. Let 1/14>¢> 0, and let T = e, i=0,1,2, be given,
where e (€0 = {e }, ¢ the ortho-unitary basis of A * A, constructed from O,
and 0,), i=0,1, 2, are as described in the discussion preceded by Lemma 4. Let

U=% s [(r)e, be a unitary operator in A} * A, such that
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(i) e (U) =0, 0r () =0, where e, =1,

(i1) HU*TiU - T, I, = |T.UuT* - Ull, <€ i=0,1,2, where [|-], is the trace
norm of A *A,
,1—0 1,2,7€S5,8 is

glven the group structure as descnbed in the paragraph 1mmed1ately before Lemma

Let e*_c e_l,e 1€ cre_l,e 1, ce

r ri —l

4, c » c", cr are all complex numbers of modulus 1. We have zres\hﬂ/(r)l =1,

and by (i1)

2 (e, f(ne - - [(De)

r€S .

1/2
= {Z ‘Cr/('i"z‘-l)_ f(r)lz} <e
2 resS

i=0,1,2. Let F be the subset of S described in the paragraph immediately be-
fore Lemma 4. Then, by Lemma 4, we have Zres \Ml/(’)lz < 14¢< 1, a contradiction.
This completes the proof of the theorem.

Remark 4. Let G, and G, be two discrete groups, and let G, * G, be the
free product of G, and G,. Then &G, * G,) = AG)) * AG,). In fact, let U be

the unitary operator in @(G) correspondmg to the translatlon by g for geG,, i=

1, 2. Then O, {U i is an ortho-unitary basis for @(G ), i=1,2. The ortho-
unitary basis O fe } €s for &(G ) * @(G ) constructed from 0, and O, is just
R because e, ’s are in one-to-one correspondence w1th the reduced

g'g€G1* Gy
sequences among all words in the free product G, * G, (Magnus, Karrass and Sol-

itar [7, Theorem 4.1]). Hence @(Gl) * @(GZ) = @(Gl * GZ)' For example, ¢2 =
Z * Z, the free product of two integer groups. Hence, @(@2) = A(Z) * @(Z), the
free product of two infinite-dimensional abelian von Neumann algebras.

In the case of @(CDZ) = @(z) x @(Z), there are three known types of outer auto-
morphisms: (i) Interchange the two isomorphic free factors, i.e. ¢: a « b, where
a and b are the two generators of ®,. This is first pointed out by Kadison (s, p.
308, Example 15]. (ii) Map a into ab, b into b, and extend this map into an auto-
morphism of @(‘51)2). (iii) Any outer automorphism of ((Z) can be extended to an
outer automorphism of A(z) « Q(2). This is pointed out by Behncke [1]. Now, let
M, be the 2 x 2 matrix algebra with a separating cyclic trace vector on a four-
dimensional Hilbert space, and let M, be the 3 x 3 matrix algebra with a separat-
ing cyclic trace vector on a nice-dimensional Hilbert space. Let M, * M, be the
free product of M, and M,. M, * M, is a factor of type II; without property I' as
we remarked before, M, and M, have ortho-unitary bases. We can see that the
three known types of outer automorphisms do not occur in the case of M, * M; for
(i) M, and M, are nonisomorphic, so they cannot be interchanged by an isomorphism;
(ii) if a is a generator for Mz’ ba generator for MS’ ab would generate an infinite-

dimensional algebra, hence cannot be isomorphic to M,; (iii) all automorphisms of
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M, and M; are inner. We cannot determine all outer automorphisms of M, * M,
at present. It may turn out that M, * M, is a factor of type II; without any outer
automorphism. M, * M, is also a possible candidate for a factor of type II; non-

isomorphic to any factor of type II, constructed from group construction.
P y y 1 g
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