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FREE PRODUCTS OF VON NEUMANN ALGEBRAS(i)

BY

WAI-MEE CHING

ABSTRACT. A new method of constructing factors of type II., called free prod-

uct,  is  introduced.   It is a generalization of the group construction of factors of

type II.   when the given group is a free product of two groups.   If A ,   and A-   are

two von Neumann algebras with separating cyclic trace vectors and ortho-unitary

bases, then the free product  A.* A     of/L   and A 2   is a. factor of type II.   with-

out property   Y.

1. Introduction.  In the study of von Neumann algebras, factors of type II, have

been constructed by the so-called measure-construction, the group-construction,

and the infinite tensor product (see Murray and vonNeumann [lOJ, UlJ, vonNeumann

[20]). A more general construction, called crossed product, which includes the

measure-construction and the group-construction as special cases has been studied

by Nakamura and Takeda [12], Suzuki [17], Turumaru [19], and Ching \3\. All hyper-

finite factors of type II, are isomorphic to each other (Murray and vonNeumann

[ll]), and a hyperfinite factor of type II, can be constructed by the measure-con-

struction, the group-construction, or the infinite tensor product. This indicates that

factors of type II, produced from quite different methods may actually be the same,

i.e. isomorphic to each other.  On the other hand, all nonhyperfinite factors of type

II. so far discovered and classified, are constructed by the group-construction

(see Ching [3], [4], Dixmier and Lance [5], McDuff [8], [9], Murray and vonNeumann

[ll], Sakai [14], [l5l, Schwartz [l6], Zeller-Meier [2l]).  The question that arises

then is whether all factors of type IIj can be produced by the group construction;

or put in another way, is any factor of type IIj isomorphic to Cl(G) for some discrete

group  G, where  Ct(G)  is the vonNeumann algebra generated by the regular repre-

sentation of  G.  This paper resulted from an attempt to give the above question

hopefully a negative answer.  We introduce a new method to construct a factor of

type IL, called free product, which is modeled after the free product of groups.  It

is, in fact, a generalization of the group-construction, with the given group being

a free product of two groups.  For example, we would see that the free product
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Ct(Z)  * Ü(Z)   is isomorphic  to CuíO, where Z is the integer group and <I>2  is the

free group with two generators.  We shall show that a free product of two finite

von Neumann algebras with ortho-unitary bases, one of linear dimension at least

two,  the other of dimension at least three, is always a nonhyperfinite factor with-

out property    L\  Although the motivation of this paper is to construct a factor of

type   II,  nonisomorphic to any group-von Neumann algebra (KG), we are not able, at

present,   to show that such a factor actually exists.  For instance, it is not known

whether   AL * AL, the free product of the 2 by 2  matrix algebra and the 3 by 3

matrix algebra, is isomorphic to (Íí<t>2).

Another unsolved problem concerning von Neumann algebras is whether a fac-

tor of type II. necessarily has an outer automorphism.  All factors of type I    (i.e.

n x n matrix algebra) do not have any outer automorphism (Dixmier [5, Proposition 4, p.

255]). Recently, Takesaki [18] proved that a factor of type III always has an outer

automorphism.  Any locally compact group can be represented as a group of outer

automorphisms of the hyperfinite factor of type II. (Blattner [2]).  Behncke [l]

showed that this result is still true if the hyperfinite factor is replaced by CuîO.

We shall see that these known methods of finding an outer automorphism of a fac-

tor of type II,   cannot  yield any outer automorphism of AL * M,   for us.  However,

the task to determine all outer automorphisms of AL * AL   (probably none) must be

left to further study of free products of von Neumann algebras.

All Hilbert spaces in this paper are complex and separable and all groups in

this paper are countable.  The identity operator in all von Neumann algebras is

denoted by   1, and we shall call a scalar multiple of identity simply a scalar.

The author would like to thank Professor C. Heinrich for some helpful discus-

sions.

2. Construction ol the tree product.   Let A. be a von Neumann algebra on Hil-

bert space  H. with a cyclic separating trace vector £   (of norm   1),   i = 1, 2.   Let

A = Ax ®  A2  be the algebraic tensor product of Aj   and A2.  Let A" = A   ® • • •

®  A  be the rzth algebraic tensor power of A.  Let  A = ¿(^fl, A" be the tensor

algebra of A  without the summand of the field of constants.  A general element of

A  is of the form

m      k

L Z xi,i®yx,i®-"®xk,i®yk,v
k=\ 1=1

where x .      ®   y.     e A{  ®   A 2,   1 < i <nk,   1 < / < ¿,   1 < ¿ < m.  Let  / be the

ideal of A generated by elements  [xx   ® y j   ® • • • ® x    ®   1   ®x    ,   ®  y    ,   ®

•■•®xn ® y„-x\® y 1® ■••® xi-\ ® yt-\ ® v,+i ® >,+i ® ■■• ® *„

® y„> x[ ® y[ ® ... ® x'._x ® y,'_i ® l ® y'i ® ••• ® x'm ® y'm -x[ ®
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y'O ..-®x'   ,   ® y'   ,y'    ® x '  ,   ®   y '  ,   ® . . . ®  x '    ® y ' !.  Let A = A/I be
' \ z-1 'i-l'i i + l 'z + 1 771 'm

the quotient algebra.  An element a  in A   of the form Xj   ®   yj  ®  • ■ • ® x^   ® y„

is called a monomial, which we shall write simply x yy ^ • • -x y    hereafter,  n is

called the length of the monomial, and is denoted by pía) = n.  Every element of A

is a sum of monomials.

Any element x of A   can be written as x = cl + x', where  c = tr(x) = (xcf¿|<f),

and x' = x — cl  (hence tr (x ) = 0),  i = 1, 2. A monomial *jyj • • .*nyn is said to

be irreducible it ttix) = 0 and tr(y) = 0 for all i with the possible exception of

x.  and y  , each of which is either of trace zero or a scalar. Every monomial x yy ^

• ••x y    (and hence every element of A) is equivalent to  a  finite  sum

x.y. • • • x y  , unique up to a rearrangement of summation, of irreducible monomials

each having length no more than  n.  The unique sum *iy, • • •* y     of irreducible

monomials is called the canonical form of x.y. • • -x y .  This can be readily

proved by induction.

Lemma 1.   There exists a rewriting process to reduce every monomial x.y^

• ••xy     into a unique canonical form x,y, • • • x y  .
nJ n ' ' \J 1 77/zz

Proof.  It is trivially true for the case zz = 1. Suppose that x.y. • • -x.y,   has

been defined for k < n.  Let x.y. • • • x y    be given. Suppose

_      zi-I   nk

xi>v xn-iyn-r= ¿2 ¿2 Ajyi.i-" xk,iyk,p
k=i ¿=i

where  x.    y.   . • • • x,    y,   . is an irreducible monomial, 1 < i < n,,   1 < k < m.

Define

_ 71-1     "k       _

xi>i ••• xnyn= S Z *i.,-yi,f--- xk,iyk,ixnyn'
k=l     7=1

where each   x, ¿y, ¿-••*£_, iyk_l ¿xy      is defined as the following: first of all,

xi,iyi,i--- xk-i,iyk-i,ixnyn

= tr (y )x,   .y,  .••• x     ,   .y x  I  +   x,  .y,   .x,    ,  .y,    ,  .x y  ,
J n     \,iJ\,i k-l ,iJ k-l ,i   7i l,j-'l,i   fe-l,j'fc-l,i   rz-^Ti'

where  y   = y   - tr (y )l.  Hence, we can assume either tr (y ) = 0  or  y   = cl.  Now,
yn      Jn Jn ■ J n J n

(i) if tr(x ) = 0 and tr(y,    ,   . ) = 0, then
71 ' k— I ,Z '

x,   -y,   ■ ■ " x,    ,   .y,    ,   .x y    = x     y     .... x y x y  ;
l,i'l,z k — I.z'ze— l,i   nJ n l.z'I.z k -I ,iJ k— 1 ,z   tz'zi'

(ii) if x   = cl  is a scalar, then
77 '

x,   .y,   .... x,    ,   .y,    ,   .x  y    = ex,   .y,   . • • • x,    ,   .(y,    ,   .y ),
1, z-' 1 ,z ze-l,z'ze-l ,z   zz'ti l.z'l.z k-l,i7 k-l.i-'n
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which is already defined by our assumption; (iii) if y  _,   . = cl, then

"líVu ••- xk-i.iyk-i.ixny« = «iAi- {xk-i,ix„h„,

which is already defined.   For general  x  , x    = tr (x  )l + x   , with  tr (x   ) = 0.  And
' ° 71*        71 71 7!   ' 71

we define

'■\,iy\,i~'xk-i,iyk-\,ixnyn

= tr(x  )x,   .y     .x,    ,   .(y,    .   .y ) + X,  .y,  . • • • x,    ,   .y,    ,   .x  y  .
71      l,i'l,i   k-l,i 'k-l,iJn l,r' l,i jfe-l,i'fe-l,i   n}n

This proves the lemma.

For every element  a = ¿L a . in A, where the  a 's are monomials, let  a =

Zä •a   is a unique representative of the equivalence class of a  in A = A/l. So, we

can regard a   as the element in A   it represents. Define  c-a = c • a for complex
_    _ _     _ rK.

number c,  a • b = a • b, â~ + b = a + b,  where a • b is the multiplication in A, in the

case of the two monomials

(X,y, ...  x  y   ).  U.V.  ••>  x  y   ) = x,y,  •••  x  y  x.y,  ••• x   y
1'   1 7î' 71 I-7   1 rw'.w l'T m't7      1'   1 m7771' 771

and in the case of the two general elements it is defined by the linear extension of

the above operation.  It is easy to see that A  is the same complex associative

algebra as defined by quotient A/l.  We can regard A   as consisting of linear combin-

ations of irreducible monomials. Furthermore, we define  (x,y,...x  y )* =
-.— iJ 1 nJ n

ly***y*_j • • -x* y*x* 1  for an irreducible monomial x.y.-'-x y  . Extending the

conjugate linearly to all elements of A, * is an involution of A such that (c- a)* =

c -a*, and  (ab)* = b*a* for complex number  c, and  a, b £ A.

Define a function  /by fíxxyx---x y  ) = 0 for an irreducible monomial x.y.

m''x„y„  in ^, except for the case   n - 1   and Xjyj = cl, a scalar, for which we

define fixxyx) = c.  Extend this function linearly to all elements of A.  Note that

for a monomial of length one (not necessarily irreducible), fix.y A = tr (x,)tr (y,),

where  tr(xj) and tr(y() are the traces of A j  and A2  respectively.  We have

Lemma 2.   The linear functional f defined on A   has the following properties:

(a) fiab) = fiba) for any a, b e A,

(b) fia*a) > 0 ¡or all nonzero element a  in A,

(c) fía*) = fía) for any a eA.

Proof of (a).  It is clear that we only need to prove (a) for a = x,y, • • • x v
r _ 1 ̂  1 71' 7

and b = s.t. • • • s   t     being two irreducible monomials in A.
11 77!   771 °

Case 1. Neither y    nor s,   is a scalar. Hence'71 i

ab = x,y, ••> x y s.t, ... s   /   ,   and   f(ab)=0.
1' I Ti'Ti    11 mm' '

(i)  If neither x,   nor  /      is a scalar, then
1 171

7!' 71'
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(1) is = s,i, m. s   í  Jt.y. •■•xy, and fiba) = 0.
II Tzz zzz    1' I n'fj' '

(ii) If x,   is a scalar, but  t     is not, thenV      ' 1 '771 '

fiba) = ttixl)fislt1 • - - smitmyAx2y2 •.. xj)

- tr(xj) ttitmyl)fislt1 . .. sm_1lm_l{smx2)y2 ■ .. xny);

(2) fiba) = trU.) tr(/my,) tr(s„*2) .. . tr Un _1 + I% f+1) • • • tr (t^J tr(s,) = 0,

in case   zzz = n;

(3) /(M = trUj) tr(rmy,) tr(smx2) ... tt(tlyn_l) ttisyx) tr(yn)= 0,

in case  n = zzz + 1.   In all other cases, ba  is a sum of irreducible monomials all of

length at least two, hence fiba) = 0.

(iii) If t     is a scalar, but x,   is not, then
777 1

fiba)=ttit   )/(s./, • • • s      ,/      As   xAy   • • . x y )
' 771   ' 1    1 777-1   ZZZ-I       771      1   ' 1 7z' 71

(4)
= tr('J «<***!> "^-W ■ - • "Kzz-i+i^ tr('*-i>v

... tr(i1yn_1)trU1xn)tr(yn)=0,

in case m = n;

(5) /(&«) = tr(z   )tr(s   x,)tr(r     ,y,) • > • tr(s x A ttít.y) ttis ) = 0
1 777 7711 777 — 1'   1 ¿zí 1     7Z 1

in case  zzz = z2 + 1.  In all other cases, ba  is clearly a sum of irreducible monomials

all of length at least two, hence fiba) = 0.

(iv)  If both x,   and  /     are scalars, then
1 777 '

(6) ba = tt ix A tt it   ) s, t.... s   y,  ■•• x   y
1 777 1     1 777'  I 71' 77

is an irreducible monomial of length at least two in case   zzz ̂  1   or zz / 1.  Hence

fiba) = 0.  In cases  zz = 1   and  zzz = 1,

(7) ba = »(x,) tr (/,) s,y,,     and     fiba) = 0,

since   s.   is not a scalar.  Therefore  tr iba) = ttíab) in Case 1.

Case 2. s,   is a scalar, but y    is not.  In case m = n,
1 '71

fiab) = ttisA tr(y r,) trU s2)

(8)

••• tr(y„_. + Ii7.)tr(xn_;.+ i5.+ 1)...tr(y1<m)tr(xI);

(9) /(«« = tr(5j) tr(ynZx) trU^) . • ■ ttiy,^.,) tt(*,*J «(ij,
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in case   m = n + 1.   In all other cases, ab  is a sum of irreducible monomials all of

length at least two, hence  fiab) = 0.

(i) If neither Xj  nor  /     is a scalar, then fiab) - 0 by (8) and (9); also

ba = s.t. • • • s   t   x.y, • • • x y   , hence  fiba) = 0.
11 TTlTlll'l 7l' 7! '

(ii)  If  x,   is a scalar but  t     is not, then
1 m '

fiba) = trixA trit   y.)tr(s   xA • . . tr(i,y  ) tr (s.) = fiab),
1 1 771'  1 ml I' 71 1

in case  m = n.  In case   m = rz + 1,  fiab) = 0; and   èa   is a sum of irreducible mono-

mials all of length at least two, hence fiba) = 0.  In case rz = m + 1,

fiba) = tr(x,) tritmyx) uis^J ■ • . tr(/1yn_,) trGjXj triy) = 0;

and ab is a sum of irreducible monomials all of length at least two, hence fiab)

= 0.

(iii) Suppose  t     is a scalar but x,   is not.   In case  m = n, fiab) = 0  and

fiba) = trit   ) tris   x.) trit      ,yA • • • tr(s.x ) tr(y ) = 0.
' m ml 771 -1' 1 1   Ti 'ti

In case  m = n + 1,

fiba) = trit   )tris   x) trit      ,y A ••- ttis^x ) trit .y ) tris .)= fiab).
' m m   l 171-1' 1 2   Ti 1'rz 1        '

In all other cases  ba  is a sum of irreducible monomials all of length at least two,

hence fiba) = 0 = fiab).

(iv)  If both x.   and  /     are scalars, then  ba = tr (x.)tr (/   )s,t,---s   y,
lm lmll m' 1

• • -x  y     is an irreducible monomial of length at least two in case   m 4 1   or  n 4 1-

Hence ¡iba) = 0.   In case   rz = m = 1, fiba) = tr is x)tr it xy Atr ix A = fiab). Hence,

fiba) = fiab) in Case 2.

Case 3.  y     is a scalar but  s,   is not.   In case   m = n,
'71 1

(10) fiab) = tr(y ) tr(x s.) triy     ./.)••• tr (y. /      ,)tr(x.s   )tr('   );
' '71 71      1 '71-1     1 '  1   771-1 1     77! 77!   '

(11) fiab) = triy J tr (xns ,) tr(yn _,',)•• • «(x^J tr (y xtJ tr ix x)

in case rz = rzz + 1.  In all other cases ab is a sum of irreducible monomials all of

length at least two, hence fiab) = 0.

(i)  If neither x,   nor  /     is a scalar, then   ba = s.t, • • • s   t   , x,y, • • •
l m 11m 771*      1' I

x  y    and /(èa) = 0.  We also have  fiab) = 0  in this case.

(ii) Suppose  Xj   is a scalar but  /     is not.  In case  m = n, fiab) = 0, and

fiba) = trix) trit   y,)tr(s   x,) • • . tr(i.y ) tr(s ,) = 0;
' 1 Tii'i ml \J n I *

fiba) = trix A trit   y.) tris   x A • . . tr it,y ) tr is ,y ) tr (y ) = fiab),
1 1 m' t m    L l'n 1'ti Jn '
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in case  zz = zzz + 1.  In all other cases  ba  is a sum of irreducible monomials all of

length at least two, hence  fiba) = 0 = fiab).

(iii) Suppose   t     is a scalar but x.   is not.   In case   zzz = zz,

fiba) = ttitj ttismxt) tr(<m_iy,) ••• trU,*,) triyj = fiab);

fiba) = ttit   )ttis   x ) ... tr(x,y ) tr(s,)= 0,
' 777 771      1 1     77 1

in case zzz = zz + 1 as fiab) = 0 also. In all other cases te is a sum of irreducible mono-

mials all of length at least two.  Hence, fiba) - 0  as  fiab) = 0  too.

(iv) Suppose both  t     and x     are scalars.  Then  ba = tr(x.)tr(z   )s.i,

••• s   y, • • • x  y     is an irreducible monomial of length at least two in case  zz ̂  1
77l'  1 7l' 77 °

or  zzz ̂  1; hence /(¿zfl) = 0, and in case  zz = zzz = 1,  fiba) = 0  since  tr(s.) = 0.  By

(10), in case  n = zzz,  fiab) - 0, since  tr(x,s   ) = tr(x,)tr(s   ) = 0.   By (11), in case; 1      777 1 777 '

n = zzz + 1,  fiab) = 0, since  tr(y,z:   ) = tr (/   )tr(y.) = 0, and  fiab) = 0   in all other

cases.  Therefore, fiab) - fiba)  in Case 3.

Case A.  Both  y     and  s,   are scalars. Then  ab = tr is, )tr (y   )x,y,.-.x  X, • « ■
'77 1 I'ml'l 77I

s   t   .  Hence  fiab) = 0  if n / I   ot m ¿ I, and
777    777 ' '

(12) fiab) = tr(sj) tr(yj) tr(xj) tr (/,)        if  zz = 1   and   zzz = 1.

(i)  If neithet  x.   nor  /     is a scalar, then by (1) fiba) = 0 and fiab) =

0 by (12).

(ii) If x.   is a scalar but  /     is not, then fiab) = 0.  In case  zzz = n, by

(2), fiba) = 0  since  tr(/jy  ) = tr(/,)tr(y  ) = 0.   In case  zz = zzz + 1, by (3),  fiba) =

0 since ttis,x ) = tr(s,)tr(x  ) = 0.  And  fiba) = 0  in all other cases as in Case 1
1      77 1 71 '

(ii).

(iii)  If  /      is a scalar but  x.   Is not, then  tr(ab) = 0.   In case   m = «, by
mí J

(A), fiba) = 0  since  trUjX  ) = tr(s,)tr(x  ) = 0.   In case   zzz = zz + 1, by (5), fiba) =

0 since  tr(/,y  ) = tr(/,)tr(y  ) - 0.  And  fiba) = 0  in all other cases as in Case 1
I' 71 I ' 71 '

(Ü).

(iv) Suppose both  x.   and  t     ate scalars.  Then fiab) = 0 = fiba)  if  zzz /

1 or  zz ¡t 1; and  fiba) = tr is Att it Att ix Att iy A = fiab)  if zz = 1   and   zzz=l.  There-

fore, fiab) = fiba)  in Case 4.  This completes the proof for part (a).

Proof of (b).   Let  a = S™=, S£*, Xj hy x ■,•••*,, hyk ^ be a nonzero element

in  A, where each  Vj   ,y,   ,■••*,   ,y.   ,   in the summation is an irreducible mono-

mial.  Let  F be a maximal linearly independent finite subset containing   1, of the

set \xk ,| b= 1, •• •, n,, k= 1, • • •, w} U }11.  E  is a finite linearly independent sub-

set of Aj.   Apply the Gram-Schmidt orthogonalization process to E with respect

to the inner product  ix\x ) = (xcf, |x cfj) defined on A ,, we obtain an orthonormal

set  F = |«,,flj,..i,fl  |  in A ,, where we specifically design that j.xl,  Now

let   O, = i«AlAfA,   , where the index set  zV,   is a subset of the set of all natural
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numbers containing   il ,•••, rzi, be a family of elements in A.   which is maximal

with respect to the following properties: (i) F C 0,; (ii) ía,¿;Aa,£x) = 0 if h 4 ¿»

and (a, Ja, j) =1  for h = ¿ £ Nx.  Let a subset  CL = i^tLeN    of A? be constructed

similarly from the set  ly,   , | h = !,••■, n,, k = 1, • • • , m\.  Let a = j z  , • •., z  S be

an ordered set of rz elements from  A/,   such that  i, 4 1» if  ' > 1, and let  a   = \i

• • • , i   | be an ordered set of rz elements from /V,  such that  i, 4 1  it I < n. Let
71 ¿ I

S be the family of all such couples  (a, a ) of ordered sets with elements from /V,

U N2. For notational simplicity, we shall write a for (a, a ) and  i,   for  i. .

Let  en = e.      ,   = a . b .   • • • a    b .  , a e 5. We shall show that /(e*e ) = 1
a        (a,a ) n    ii in   in '      a   a

and fie*aeA) = 0, where  e „ = ö;I6y, • • • a;   è;   ,a4ß,a,ßeS.

Case 1. a .   = ¿>.   = 1. Then <?? = a* ¿>*       • • • a* b* , and
'i       'ti a      !ti 'ti-i        n n

f(eleJ = f(a* b*       ••• a*, ib* b.)a. b.   ..-a.  1)
'7,   !7i-l '2    '1   '1     '2   '2

= tr(¿. ¿. )/(a. è*       ... (a* a. )è.   ... a.  l)
M   M Z7i   'Ti-i '2   !2      '2

I l 7!

(i) Suppose a.   = 1. If « = m = 1, then  b     4 1  since a 4 ß. Hence

fie*eß) = tr (l ■ b . ) = 0.  If rz = m > 1, then

f{e*ea)= fia* b*       • • • a* ib* b. ) a. b.   ...a.b.)
'     a  ? ln   'n-l '2     'I   >\      '2   '2 '771   'm

= u(b* b. )tr(fl* a. )••• tría* a.   ) trib.   ).
'I   >\ '2   '2 'n   'm 'm

Since   0,   and  0?   are orthornormal sets in the inner products defined by traces,

either one of  Str (¿>* b . ), tría* a . )!  is zero or tr ib     ) = 0.  Hence  fie*e A = 0.
•k   ¡k 'k   !k Im 'aß

If n = m + 1, then

fie*eA^ trib* b. ) tría* a. ) •■• tr(a* a.   ) trib*   b.   ) tría* )= 0
a  ß '1   '1 '2   '2 '71   }m 'm   >m

since  tr (a .  ) = 0.  In all other cases  e*e Q is a sum of irreducible monomials all

'71 I \
of length at least two, hence fie*eß) = 0.

(ii) If a .   4 1, then e*e„ = a* b*       • ■ ■ a* b* a . b    • • • a     b    . Hence
71 a   P ln   !7i-l !2    '2   Jl    II lm   >m

fie*ae ß) = 0.

Case 2. a.   =l,b.   = 1.  Then e* = lb* a* b*       • • • a* b* , and
'1 'n a 'n   'n   'n-l !2    'l

fie*e ) = filb* a* b*       • •• a* ib* b. ) a. b.   ..-a.b.)
'      a.   a.        ' iii, 1        1 -,    1 -,      1 ->   1 ~ 11

n     n     n-l nil        22 n     n
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(i) Suppose  ö     =1.   If  n = zzz,

fiele») = ttib* b. )ttia* a. )••• trU>* b. )= 0;
a ß A   'I '2   '2 ln   'n

since a ^ ß, one of the factors must be zero as  0.   and  CL  are orthonormal sets.

If n /: m,  e*eg is a sum of irreducible monomials all of length at least two.  Hence

fie*aeß) = 0.

Case 3.  b.   = 1, a.  i 1.  Then <?* = a* b*  ••■a* b* a* 1, and
'ti '/ a        <n   'n '2    '1    '1

fie*e) = tr(a* a. ) ttib* b. ) • • • tr ia* a. ) = 1.
'     o.  a t,   i, i,   i, ii

II 11 77       71

(i) If an = 1, then  e*eß =«*/*,_." -tffä*„«,„*,„' a"d

fie*aeß)-0.

(ii) Suppose  zz     ^ 1.  If  zz = zzz, then
r zi

jie*eA = ttia* a. ) ttib* b. ) ••• tr(a* a. ) ttib.   )= 0,
a  ß A   A A   M ln   >n 7m

since  a ,ti ß, one of the factors above must be zero.   If zz = zz; + 1, then

fie*eA= ttia* a. ) ttib* b. )••• tr(fl* a.   ) ttia* )= 0,
a ß A   A MM 'ti   'm

since  a.   ¿ 1.   In all other cases, c*e„ is a sum of irreducible monomials all of
'77 P

length at least two, hence  fie^c„) = 0.

Case A.  a     4 1, b     / 1.  Then  e* = 1/z* a* b*  • • • a* b* a* 1, and
'1 '77 a '77   '77   '71 <2   M   'I

/(e*e)= trU* a.  ) ttib* b. )••• tr(tz* b. ) = 1.'    a a M  M MM

(i) If «., = 1, then e^= I*J .. -^^^ ...,    *        Hence

/(<**) = 0.

(ii) Suppose  cz     ^ 1.   If zz = zzz, then

/(e%»)= tr(«* a.  ) tr(/z* ¿z. ) ... tr(¿>* ¿z. ) = 0,
a ß MM M  M 'zz '77

since  a t ß, so one of the factors above must be zero.   If  zzz = zz + 1,

fie*aeß)=ttia* ai)...ttib*b]  )fia    b    ) = 0,
II n   'n 'm   'm

since a      ^ 1.   In all other cases, pjp. is a sum of irreducible monomials all of

length at least two, hence  fic*eß) = 0.  We have proven that fie*ea) = 1   and

fieleß) = 0  if a ¿ ß for all a, ß £ S.

Now, let <3 = Sae5,r(1ca, where ca's are nonzero complex numbers and S'  is

a finite subset of S.  Hence

/(.%>-/( Z,cac^e/3)= x, kJ2>o
Wei'        ^       ^       aei

for any a £ A.
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Proof of (c).  For ea 4 1, we have fiej = fiej = 0 and /(l) = fil*) = 1.  For

a general element, a = 2 ca<?a in A.  /(a*) = /(2a cae*) = /(a). This completes

the proof of the lemma.

Now, we define

(a|6)= fib*a),    for  a, b eÄ.

It is clear from the previous lemmata that this is an inner product on A  satisfying

the following properties:

(i)    ia\b) = ib*\a*) for a, b eÄ,

(ii)    iab\d) - ib\a*d) for a, d, b e A.

In order to prove that A   is a Hilbert algebra, it only remains to show that the

multiplication al-»   b • a is continuous on A  in the norm topology defined by the

inner product for each b £ A .

Lemma 3.  For each b e A,  a   r->   b • a  is a bounded linear operator on A   in

norm defined bv the inner product.

Proof.  Since any element   b  in A   is a finite sum of monomials, and any opera-

tor in a von Neumann algebra is a linear combination of four unitary operators in

that von Neumann algebra (Dixmier [5, Proposition 3, p. 4]), every element in  b is

a linear combination of elements of the form  u = u.v, • • • u v , where   u ., v. are
11 r   t l'      l

unitary operators in A.   and A2  respectively, z = 1, • • •, r. Hence we only need

to show that   L   : a —> u -a  is a unitary operator on  A.

Let a be given as in Lemma 2.  Let the orthonormal set  [ea\aeS be construct-

ed as in Lemma 2, and let  e a, e g be given as in Lemma 2. Then

iuej ueß) = fießU*u*ea)

AIL*,.*!.* *;***** **!*\ i ■>
lb.   a.   b.    •••a.  b.a.vuv    , • > • a,v ,(u,u,)v, • •• u v a. b.   • • • a. b. )

lm   ]m   lm 1 -,   7,   7,   r   r   r-l 2    1111 r T i.   i. i     im    m    m ¿     i     i IItiti

= /(le.   a.   b.    ...a-b.(a.a.)b.   • • • a.  ¿>. ) = (e„ I eA.
7_   7_   ;„ 7-,   7,     7,    z,      7, !      i a1    p

771        771     'm '21111 71        71

Henee,

(«fl|«fl)=(   £(    caaea|    X,   ca"ea)=   Z   c^ß^uea \ueß) = <fl I «)•

v aeS aeS '       a, /3

This shows that  zz  is unitary on A, and completes the proof of the lemma.

It can be proved similarly that R, : a   h->   a-è is a bounded linear operator on

A. Since A  has an identity, A   is a Hilbert algebra (Dixmier [5, Chapter 1, §5]).

Let H be the completion of A  under the defined inner product. Let  Oj = !zz  j,fW

and  0? =\b,\,eN     be maximal orthonormal sets in  A.   and. A2  respectively, and

let  [e   L,c  be the orthonormal set in  A   constructed from   0    and  CL   as in Lem-

ma 2.  Then every element  x  of  H can be represented as  2-aeS caea' which may

have infinite many coefficients  ca being nonzero, such that   ||x||    = ^aeS lccJ    <

+ °°. The left multiplication  L,: a —* b-a by an element b in A  can be extended
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to a bounded linear operator  L,   on  H.  This is also true for multiplication by ele-

ments of A   on the right.  We call the vonNeumann algebra on H generated by all

left multiplication operators   L      b £A, Aj * A y the free product of Aj   and  A2.

Let A  be the subset of H consisting of all elements  x with the property that there

exists a constant  K(x) such that  ||x.a|| < K(x)||a||  for all a £ A C H. Hence, for

each  x £ A,  a   \-*  x-a  can be extended to a bounded linear operator  L     on  H.  if/:

x <-»  L     is a one-to-one correspondence between A   and A, *A,.  For let x =
x *        ^

Sae„ ca£ae/l, and let x. = ^-afF. ca<?a, where  F. is a finite subset of 5,  z = 1,

2, • • • , such that  ||x-x.||=2cX      Ici    —»0; then x . £ A    z = 1, 2,. • •,  L    —>
ii i" ati \z-.  '    a ï xz

L    strongly, i.e. L   eA.* A . On the other hand, it can be shown that \L  \ x £ A \

= \R   I x € A\    is already a vonNeumann algebra, i.e.  A} *A2 C i/r(A).  By the prop-

erties of a Hilbert algebra, we have

(i) XL    + U.L    = L,     ,,  , for x, y £ A, and complex numbers À, u.
N x       n    y a x +¿/.y ' ä   ' ' r '

(ii)  L  L    - L      , for x, y e A, where  x • y  is the extended multiplication.
x    y x-y' ' / ' r

(iii) (L )* = L    , for x eA, where  *  is the * operation of A   extended to A.
X X*

For simplicity, we identify  L     in A .  * A     with x  in  A, and write  x for  L   .

A    * A2   is a finite vonNeumann algebra with trace ttia) = ia\l), tot a£A. * A2.

3. Factors of type II..  Let A  be a vonNeumann algebra on Hilbert space H

with a separating cyclic vector tf.  A countable set  0 = i(/a!ae, of unitary operators

in A   is called an ortho-unitary basis provided (i) ÎUa£\Uo£) = 0 if a ¿ ß; (ii) for

all a £ L  U* = c U   tot some  U   £ 0 and a complex number c   of modulus 1, and

for every pair a, ß £ I, UaU „ = c  U    tot some  Li    £ 0 and a complex number c

of modulus 1; (iii) the set of all linear combinations of elements from   0  is weakly

(hence strongly) dense in A.  Hence, every element  T  in  A   can be expressed as

a.ei ca^a uniquely, where the series converges unconditionally in strong-operator

topology.   If  T £ A   is such that ÍT¿¡\Ua€) =0  for all  a £ I, then  T = 0.  In other

words, ÍL/aSae,  is a maximal orthogonal set in A.

Remark 1.  Let  G  be a discrete group, then the vonNeumann algebra  die)  on

/ (G) with 8g  as a separating cyclic vector has an ortho-unitary basis  \U   \    c,

where   U     is the unitary operator corresponding to the translation by g.  Conditions

(i) and (ii) are trivially satisfied, and u(G)  is the vonNeumann algebra generated

by  \U   |   er.'        g gee

Remark 2.   Let  M     be  zz x zz  matrix algebra, i.e. the factor of type I  , zz = 1
77 y r 71 7

2,---.  Then  M     is isomorphic to the vonNeumann algebra  M    = BÍH  ) ®   C  on

H     ® H  , where  H     is the zz-dimensional Hilbert space, BÍH )  is the algebra of
77 71 77 l H °

all linear operators on  W  , with  f = (rfj, • • • , cf 2) as a separating cyclic vector,

where  ¿f, « £2+-« f3+2w-• • - f4+(fc_ 1)n-• • "-«f^ « 1   and all other  if. = 0.   Let

W = a ®   /, and  V = è ®  /, where a = (a..), a  , = «,, = a-, = a.      ,,   =1  and
7/ 71 1 12 2 3 (71- 1 )71

all other a     = 0   (z, / = 1, • • •, «), and  Zz = (/>..),  b .. = 0   ii / i), and
7; ' r; 77 z
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z,    = e 2 "Hi- 1 )/n ( ■ = ,   ...    „) are two operators on W  .  Let  (7. . = Wk V',  k =
;; ' 7i e; '

1, • • • , rz,  j = 1, • • • , rz.  We claim that  if,   . Î?  ._,   is an ortho-unitary basis for  Al   .
ft » 7   ft 17 — n

Each  U, .  is clearly a unitary operator.  If  k 4 ¿ , then obviously we have

ÍUk 4\Uk,  ,¿A =0; if k = ¿', but ; ¿/', then

ÍU,   4 | /J,, .,£) = 1 + e2"***-*'*-1'" = 0.
» ft »7 * >7

We note that WV = e2ir("_ 1)!/"WV, (V-0* - V""', (W*)* = IV"-*, /, k = 1, 2,. • ■ , rz.

Hence   U*  . = ÍVA*ÍWk)* = yn-iyn-k = e2"i{n-l)(n-j)(n-k)/nv^^

U.   U,,  .,'=WkV'Wk,V'' = e2r,i(n-l)k,iV.   ,,  ...» /fe,/=l,2,...,». Andas Al
ft,;    ft   »7 « + Ä  ,7 + ; ' n

is a w  -dimensional linear space, \U,   . Í?  .  «   spans  AI   .  Therefore, \U,   .!?  .  ,   is
*^ w    * >/ ** n *>J  *i/~

an ortho-unitary basis for AI   .

Remark 3.  Let A.   and A 2  be two von Neumann algebras with separating cyc-

lic trace vectors  ¿f,   and  ¿;2.  Let   0, =\aß\ßf, , and  02=\b \    .    be ortho-unitary

bases for A.   and A     respectively.   Let   0 = [ea\aes  'De tlie ortbonormal set of

operators in  A, * A.   constructed from  0.   and  02  as we did in Lemma 3.  ea's

are, in fact, unitary operators in  A ,  * A2.  Conditions (i) and (ii) of an ortho-uni-

tary basis can easily be verified, and the linear combinations of ea's form a dense

set in A. * A      Hence, 0 is an ortho-unitary basis for A, * A 2.

Theorem 1.   Let A.   and A 2  be two von Neumann algebras with separating

cyclic trace vectors ¿j\   and <f?   on Hilbert space  H.   and H2  respectively, where

the linear dimension of A.   is at least two and that of A?   is at least three. Sup-

pose that A.   and A2   have ortho-unitary bases  0,   and CL   respectively.   Then

the free product ^ j * ^2   °f A i   and A2   is a factor of type IIj.

Proof.   Let  0 = i^alaec  De trie ortho-unitary basis of A,  *A2  constructed

from  0.   and   02.  Let  T = £aeC caea be an arbitrary element in the center of A.

* A     where the ca's are complex coefficients. Suppose that T is not a scalar.

By rearrangements, we can assume that  r - \ca  \ 4 0 and  e     4 1. Let ea   = a„ b„

•••aß bß , where  rz > 2  if a„   =1   and  bß   =1.   Let  p = max ip(ea)|  |cj > rj.

Case 1. a o   ^ 1  and  è^   4L  Let a^    be a nonidentity element of  0.   and let

bß    be a nonidentity element of 0,  orthogonal to bß .  Let  (7 = a „ bß .  Let a*n

= c'r,  a    ,  b%   = c"n   b    , where   \c'n   | = 1.  \c"n   | = 1,  a     e 0.,  b     e 0,.  Then
PO   r0        PO PO   r0 P0„ ^0 'O »        '0 2

(7* = Co  le    a    1, where  cfl    = tr    c„ .   Let  i>„ è     = c    b    , where  b     4 1   since
po    'o 'o -l      °      ^o ^o pn ro      ro n n

b      is orthogonal to  bZ>   .  We have
r0 6 Pti

UkTÍU*)k = cr icß )kca iaß bß )kaß bß   •■■aßbr (a, bf )k~Xar  1
r0 . P0 1    P0 P0      Pl   Pl Pn   Tl     r0   T0 r0

*       Z        ^keaiU*)k.

aeS.a^a.

The first term has a coefficient with absolute value  r, and the length of the irre-
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ducible monomial is 2k + n. And the second term is orthogonal to the first term

because the trace is unitary invariant. But U TÍU*) = T for all k = 1, 2, • • • ,

and when  k> l/aip - zz), we arrived at a contradiction by the definition of p.

Hence  c„. =0.

Case 2.  aß   =1  and bß   =1.  Let aß   ¿ l, aß   eOj, and bß    be a noniden-

tity of 02 orthogonal to b*ßy" Let  U = a ßb ßy Then  ii* = Ibß^l = c^lb^a^l,

where  I^J = 1, and  bfQ £ 02, a^ £ 0,. Let bßfbßi = c^, where  k^l = 1

and b     4 l,  b     e O,,  We have
r\ r\        2

UkTiU*)k = c   cckRíaRbR)k-lanb   aRbÑ   • • • aAb a )k'1 a   I
M  al   ß0    ß0   ß0 ß0   M   ß2   ß2 ßn   r0r" r0 r0

Z caUke¿U*ík> *=1.2,'

The first term has a coefficient with absolute value r, and the length of the irre-

ducible monomial is  2k + n — I; the second term is orthogonal to the first term.

But  UkTÍU*)k = T, k= 1, 2,..., and when  k > l/2Íp - n + l), we have a contradic-

tion by the definition of p.  Hence  ca   = 0.

Case 3. aßi = 1 and ¿^ ¿ 1. Let fl/% ¿1, ¿^ ¿ L ^ 6 0,, fc^ 6 02. Let a*Q =

c'a    ,  b*n   = c" Z>    , where   \c'  I = |c" I = 1, a     e 0.,  Zz     eO,.  Let  U =
z-fj   r0        PO r0   r0 ' '   f 0 '    TJ /0 „       1        r0 2

lZz„ a,, 1; hence  (7* = c   a    b    , where  c     - c   c    .  We have
PO   PO r0   r0   r0' r0 r0   r0

ai   T0     ß0     ß0   ß0 ß0   ßl   ß2   ß2 ßn   ßn     r0   T0

+        Z CaUkeaiU*)k, k=l, 2, ....

The first term has a coefficient with absolute value  r and the length of the irre-

ducible monomial is  2ze + n; the second term is orthogonal to the first term.  As

U TÍU*)   = T, k = 1, 2,..., when k > l/2Íp - zz), we have a contradiction by the

definition of p.  Hence  c      = 0.

Case 4.  aß   j¿ 1   and  Zz^   = 1.  Let  a«    and  b ß    be nonidentity elements of

0,   and  0    respectively.  Let  at   = c' a    ,  b%   = c" b    , where   |c' I = \c" I = 1,
1 2 «" > ß0 r0   tq'      ß0 r0   r0 ' '0 '0

%   e °1'   è70   £ °2-   Let   " = aß0bß0' hen«   ^* = W^   We h3Ve

UkTÍU*)k = ca ck iaß bß )kaß bß   ..,aßb   ía    b   )k'la    1
"i   '0     ^0   ß0        ß\   ß\ ßn   r0     r0   r0 T0

+        Z      caUkeaÍU*)k,       4=1,2,3,....

By the same reason as in the previous cases, when we let  k > l/2ip - n), the equal-

ity  U TÍU*)   - T together with the definition of p implies a contradiction. Hence
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This proves that if T is in the center then  T is a scalar. Hence Ax * A     is

a factor.  Since  Aj * A2   is clearly an infinite-dimensional vector space, Ax * A

is a factor of type II,  since Ax * A2  has a trace vector.  This completes the proof.

Let   0 = \ea}aeS be the ortho-unitary bases for the von Neumann algebra A,  *

A      constructed from   0,   of A,   and  CL   of A   . We define a multiplication on S by

a . ß = r, if ea- e ß- c e , where  c    is a complex number of modulus 1.  This multi-

plication is uniquely defined.  For if  e   ■ e „  = c, e    with  e„ 4 e , then   1 = (e„ •
* ^ 13 LL     Ll LL y CL

eß\ea- eß) = c c (e   \e A = 0  a contradiction.   If  eaeg = c^, and  (e  eu}~cxex'

where   \c \ = |c. | = 1, then  (a ß)r = À.    Let  e^e   = c e i, and  eae  i = c^ie.i,

where   \c  \ = \cA = 1.  Then  a(ß r) = k .  But  c c.e.  = cx'cueX'' ^^ trie same argu-

ment as before, we have  e^i = e^  or À = A .   If  e   = 1, then  t  is clearly the identity

of S. Also, we have  a~    = ß if e* = c»e», where   |co| = 1. Hence 5 is a group.

Let  E    be the subset of  0 consisting of all  ea ending in  a„ 1, where an    £ 0.,

% ¿ *■  Let  F = «f9- e/3  6 Ei-   Let  er0 = aß0X'  e7, = lè/3,>   er2 = 1^2, where

bßy bß2 £02,  bßx 4 1,  ¿^ ¿ 1.  WehaveWFUr/r"1 = Aid  (ü)  F, ^Fr"1

and  r2FrZ     are three disjoint subsets of S\Ui.  The following is a slight variation

of Lemma 10 in Pukanszky [13].  The proof, which we omit, is exactly the same

after replacing  fig ag~   ) by  c f ig  ag~   ), where  c     is a complex number of mod-

ulus 1.

Lemma 4.   Let S  be a group with identity  I. Suppose there exists a subset

F C S\\i\ and three elements in S such that (i) F (j g.FgZ    = S\|iS, (ii)  the sets

F * gi^S?   i S->^ë7     are pairwise subsets of S\fi|.   Let f be a complex-valued

function on  S such that "2.aeS \f ia)\    < + °°,

(Z  Kf^agZ^-fig)]2)1'2 <(      (,-1,2,3).
\aeS I

Then  (£aesNlti|/(«)|2)*<14f.

Theorem 2.   Let A.   and A2   be two von Neumann algebras with separating

cyclic trace vectors.  Suppose A}   and A     have ortho-unitary bases  0.   and CL

respectively, and that the linear dimension of A,   is at least two, that of A .   at

least three.   Then, the free product Ax * A     is a factor of type II, without property

r (Murray and von Neumann [ll, Definition 6.l]).

Proof.  It is proved in Theorem 1 that Ax * A2   is a factor of type IL.  Suppose

A. * A    has property V.  Let  1/14 > ( > 0, and let T. = e   ,  z = 0, 1, 2, be given,

where  e     ieO = ie„L„r., the ortho-unitary basis of A ,  * A ,   constructed from   0,
r¿ a lei J I 2 l

and  02),   i = 0, 1,2, are as described in the discussion preceded by Lemma 4.  Let

U = X eS fir)e    be a  unitary  operator in A.  * A2   such that
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(i)    tiíU) - 0, or fit) = 0, where et = 1,

(ii)    \\U*T.U - T.\\2 = \\T.UT* - U\\2 <(,  i = 0, 1, 2, where   ||- || 2  is the trace

norm of A j * A 2.

Let  e* = c'e    ,,  e    ,e  = c  e    , , e    ,   -e    = c  e    ,     , i = 0, 1, 2, r £ S, S is
rz        ri T1      T1  r       r   T1' .  zT-L     z-,       r   rj-^rr,-

given the group structure as described in the paragraph immediately before Lemma

4, c   , c  , c    ate all complex numbers of modulus 1.  We have  Z    _\ c  t|/(r)|    = 1,

and by (ii)

1 £ icrfir)e - f(r)e)\    - i £  | cjir.rr.1 ) - fir)]2}"2 < 6,
llreS '¿    "•,• H 2        \reS '

i — 0, 1, 2. Let F be the subset of S described in the paragraph immediately be-

fore Lemma 4. Then, by Lemma 4, we have  ^reX\ jtj|/(»")|    < 14e< l,a contradiction.

This completes the proof of the theorem.

Remark 4.  Let G,  and G2 be two discrete groups, and let Gj * G2  be the

free product of G,   and Gy  Then S(Gj * G2) = 6.ÍGA * aÍGA.  In fact, let  U    be

the unitary operator in  Ci(G)  corresponding to the translation by g fot g £ G .,  i =

1, 2.  Then   0. =|(i   I  r,    is an ortho-unitary basis for (ÍÍG A,  i = 1, 2.  The ortho-
< é? é?eC; at      \ l

unitary basis   0 = S<?a!a(r£  for (ÍÍGA * u(G2)  constructed from   0,   and  02   is just

If   !   ,,- o. ̂     because  e„'s   are in one-to-one correspondence with the reducedg geGj* C<2 a r

sequences among all words in the free product   G.  * G2  (Magnus, Karrass and Sol-

itar [7, Theorem 4.1]).  Hence  â(C,) * Ö(G2) = Ö(G, * G2).  For example,   cb? =

Z * Z, the free product of two integer groups.  Hence, u(<J>2) = (l(Z) * u(Z), the

free product of two infinite-dimensional abelian vonNeumann algebras.

In the case of u(í>2) = u(Z) * u(Z), there are three known types of outer auto-

morphisms: (i)  Interchange the two isomorphic free factors, i.e. cf>: a *-* b, where

a  and   b ate the two generators of ÍL.  This is first pointed out by Kadison [5, p.

308, Example 15].  (ii) Map a  into ab, b into  b, and extend this map into an auto-

morphism of (l(<I>2).  (iii)  Any outer automorphism of Cl(Z)  can be extended to an

outer automorphism of (l(Z) * Ct(Z).  This is pointed out by Behncke [l].  Now, let

M2  be the  2x2  matrix algebra with a separating cyclic trace vector on a four-

dimensional Hilbert space, and let  M,   be the  3x3  matrix algebra with a separat-

ing cyclic trace vector on a nice-dimensional Hilbert space.  Let  AL * AL   be the

free product of Al2  and  AL.  AL * AL   is a factor of type II.   without property  T as

we remarked before, A12    and    AL    have ortho-unitary bases. We can see that the

three known types of outer automorphisms do not occur in the case of AL * AL   for

(i) Al2  and  AL   are nonisomorphic, so they cannot be interchanged by an isomorphism;

(ii)  if o  is a generator for Al2,  b a generator for  AL,  ab would generate an infinite-

dimensional algebra, hence cannot be isomorphic to M2; (iii) all automorphisms of
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AL  and  Al,   are  inner.  We cannot determine all outer automorphisms of  AL * AL

at present.  It may turn out that  AL * AL   is a factor of type II. without any outer

automorphism.  AL * AL   is also a possible candidate for a factor of type II. non-

isomorphic to any factor of type II, constructed from group construction.
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