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LOCAL AND ASYMPTOTIC APPROXIMATIONS OF

NONLINEAR OPERATORS BY ikv • • • , ¿N)-HOMOGENEOUS OPERATORS

BY

R. H. MOORE AND M. Z. NASHED(l)

ABSTRACT. Notions of local and asymptotic approximations of a nonlinear map-

ping  F between normed linear spaces by a sum of N k -homogeneous operators

are defined and investigated.   It is shown that the approximating operators inherit

from  F  properties related to compactness and measures of noncompactness.  Nets

of equi-approximable operators with collectively compact (or bounded) approx-

imates, which arise in approximate solutions of integral and operator equations,

are studied with particular reference to pointwise (or weak convergence) prop-

erties.  As a by-product, the well-known result that the Frechet (or asymptotic)

derivative of a compact operator is compact is generalized in several directions

and to families of operators.

Introduction.  In this paper we study local and asymptotic approximations of

nonlinear operators by sums of homogeneous operators.   The unifying thread is

the notion of a locally ik j, • • • , zeN)-homogeneous or asymptotically ik,, ■ • • , k^)-

homogeneous operator defined in §1.  The conditions assumed relax the usual con-

ditions of differentiability or linear local (or asymptotic)  approximability, and are

motivated by consideration of nondifferentiable operators arising for instance in

integral equations of the Hammerstein type:

(A) xis)+ j^kis, t, xit))dt=yis).

Analogous approximation concepts are developed for families of operators.  The

results apply in particular to families of collectively compact operators studied

by Anselone [l] and others.  Such families occur in numerical analysis: for ex-

ample, one may consider approximations to equation (A) using numerical quad-

ratures:
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77

(B) x(s)+Zwnjk(s,tnj,x(tn.)) = y(s).

2 = 1

Under suitable hypotheses the integral operator X in (A) is compact, the approx-

imating operators K    in (B) are collectively compact, and H^x -K.x|| —* 0 for

each x, although   \\K    -K|| -*■+ 0.   Previous applications of the theory for collec-

tively compact operators in this context have assumed differentiability of the op-

erators (see [l], [10]).

In §2 we consider the pointwise limits of nets of operators which are equi-

locally (k,, • • • , &.,)-homogeneous and show that local ik x, • ■ ■ , /«^-homogeneous

approximability of an operator F is implied by related properties of a net of op-

erators JF   j converging pointwise to F.  The precise formulation of these results

is given in Theorems 2.1 and 2.2.

In §3 we establish relations between measures of noncompactness associated

with a (/€,,-••, /éN)-homogeneous operator and its approximating operators, and in

§4 we extend these results to families of such operators. It is well-known that the

Fréchet derivative and the asymptotic derivative of a completely continuous oper-

ator are completely continuous [7, p. 135, p. 207]. Melamed and Perov [9] re-

placed Frechet differentiability by a weaker notion of local or asymptotic approx-

imability.  Moore [10] extended the result to collectively compact and Fréchet

equidifferentiable families of operators.   Danes  [3] and Nussbaum [l3] showed

independently that the Frechet derivative of an a-set-contraction is an CL-set-

contraction; thus a property which is more general than compactness of the opera-

tor is inherited by the Fréchet derivative of the operatot.  Some of the corollaries

of §V3 and 4 unify and generalize these simple results.

1.  Locally and asymptotically (k x, • ■ • , /eN)-homogeneous operators and re-

lated notions.   Throughout this article,  X  and  V  will be real normed linear

spaces, and X.   will denote the open unit ball in  X.

Definition 1.1. A map F: X —> Y is locally (kx,-- • , k^-homogeneous at 0

(abbreviated LH(/è x , ■ ■ ■ , kN) at 0) if, in some neighborhood of 0, F can be ex-

pressed in the form

(i) Fx = IN . A x + Bx
2=1 2

where A. (i' = 1,..., N) and  B map X into  V, and

(ii) A.itx) = t  'A.x, x £ X, t > 0,

(iii) 0<kx <k2< ■■• <kN,

(iv)   lim||*M ¡Wr^U^L^, <V + Bx||}=0,  « = If ".Ar.

F is weakly locally  (kx,~ ■ • , ¿^-homogeneous at 0 (abbreviated

llLHU,, • • • , kN) at 0) if the limit in (iv) holds weakly as   ||x|| —* 0.  A map

F: X —>Y is  LHU j, ..., kN) at z £ X if the map h —. F(z + b) - F(z) is
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LHÍk., ■ ■ • , kN) at 0; ÎOLH(&,, • • • , kN) at z £ X is similarly defined.

Definition 1.2.  A map F: X -^> Y is asymptotically (zej,-.-, kN)-homogeneous

(abbreviated  AHÍk^,- • •, kN) at °») if (i)-(iii)  hold for ||x|| sufficiently large, and

(W« H«n|,x|,^ooJ||x|r*»||^;}A^ + Bx||] = 0, »-1.....N.

The notion of  u)AH(ze., • • • , &..) at  °°  ¡s defined using the weak limit.   (Of course,

here and elsewhere, sums   £._     ,   or  S?~,   are empty if n = Ai  or  tz = 1, respec-

tively, or if  Ai = 1.)

The proof of uniqueness of the representations in each of the preceding defini-

tions follows the same pattern as its counterpart for differentials and asymptotic

differentials.

Remark 1.1.  If the A. satisfy

(v)  ||A.x|| <zM.||x||*', i=l,...,N,x £X,

then conditions (iv) follow from the single condition

(vi) lim||x||^J|B*||.||*|f*N«0

because of (iii).  Conditions (v) and (vi) are in fact those assumed by Melamed and

Perov in [9], in lieu of (iv) in Definition 1.1.  Similarly, if (v) and

(vi)'   limN|^J|Bx||.||x|rM=0

hold, then conditions (iv)^ hold for  AH(¿j, • • • , kN) at  °°.

It is easy to show that a positively homogeneous operator A   of degree  k > 0

(i.e., Aitx) = t Ax, t > 0) is bounded (i.e. maps bounded sets into bounded sets)

if and only if

(vii)  ||Ax|| < M||x||* for some  M > 0 and all x £ X.

A family  Cl  of operators  A   is uniformly bounded if for any bounded set S,

U/ierJ AÍS)  is bounded.  Fot a family  U  of operators  A   all homogeneous of degree

k, (vii) holds with a uniform  M   if and only if the family is uniformly bounded.

Remark 1.2.   If  F  is Frechet differentiable at z, then it is locally 1-homo-

geneous at  z, but not convetsely.   But if  F  is   LH(1)  at  z, then the conditions

satisfied are exactly those for  F  to have a bounded differential in the sense of

Suchomolinov (see for instance [ll, p. 135]): F  is said to have a bounded differen-

tial at z  if there exists a bounded but not necessarily linear operator Biz; ■ ) such

that

lim   \\h\\-1 . \\Fiz + h) - F(z)- Biz; h)\\ = 0.

||A|h0

This implies of course that  Biz; h)  is homogeneous of degree one in  h. Similarly

if  F  is asymptotically Frecher differentiable, i.e. if there exists a bounded linear

operator  L  suchthat  limn   m    x I ||Fx - Lx||/||x|| i = 0, then  F  is  AH(1)  at  <*>, but

not conversely.

For later reference we state the following easily proved propositions:

Proposition 1.1.   Let %  be a directed set.  Let the operators A  and A   im £

3l0  be homogeneous of degree  k.  If lim    ||A   x - Axil =0,  x £ X, and \\A   x\\ <6 ' ° ' 772   "      772 "      772     "   —



296 R. H. MOORE AND M. Z. NASHED

M||x||fe, m £ % x £ X, then  \\Ax\\ < Ml|x||fe.

Proposition 1.2.   Let F be LH(/e) at 0 with F = C + D, where C(tx) = tkCx,

t > 0, x £ X, and ||x||      ||Dx|| —► 0  as   \x\ —>0.  If F  is bounded in some neighbor-

hood of 0, then there is  M > 0  such that  \\Cx\\ < M\\x\\k.

Proposition 1.3.   // F  is  LH(/éj, • • • , &„) at 0  (or is  AH(¿,, • • • , kN) at  °°)

and is bounded, then there are numbers  M . > 0,   i = 1, • • • ,N, such that  \\A .x\\ <

AL||x||k/, i=l.IV.xeX.

Proof.  Apply Proposition 1.2 successively to F, F — A.,... , P - ~S.m~. A ..

Remark 1.3.  Condition (iv) in Definition 1.1 is equivalent to the following

condition:

(viii) lim     nt~k"{lN      ,   A. (th)+ Bith)\ = 0, 22= 1,. -.,N, uniformly with
t— U l =77 + 1 7 ' y

respect to h in the set  {h: ||i|| = 1 ¡.

Variants of Definition 1.1 can be given by requiring the limit in (viii) to hold

uniformly with respect to h £ S for each set S in a given system ß of subsets of

X. For example if we take for ß the system of all finite sets in X, then we get

a Gâteaux-type notion of local (/e., • • • , /e.,)-homogeneous apptoximation. Another

interesting choice for ß is the system ß of all sequentially compact subsets of

X. If F is Hadamard differentiable at z (see, e.g. [21, p. 124]) then F is LH(1)

at z relative to the system jS    but not conversely.

The class of LH- and AH-operators falls in a hierarchy of other notions that

are useful in the local and asymptotic approximation of nonlinear operators. We

shall say that a mapping  F: X —» V  is k-inner (outer) bounded, it there exist posi-

tive numbers  a, y, k such that   ||Fx|| < y||x||     if  ||x|| < a (respectively   ||x|| > a).

The subclass of 1-outer bounded operators was introduced by Granas [6] under the

name of quasibounded operators.   It is easy to show that  F  is /e-outet bounded if

and only if

inf
0<p<oo

sup

Ml - p

\F(x)
= lim  sup

|Fx|

is finite.   |F|,   is the usual quasinorm of a quasibounded operator.  The various

(for a bounded operator)

AH(/é,, • • • , kN) operator     «-    Melamed-Perov operator

k-outet bounded operator

Asymptotically Fre'chet differentiable operator

Quasibounded operator
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implications among these notions of asymptotic approximations are given in the

diagram.

Counterexamples for each of the reverse implications can be easily given.

As an example of an  AHUj, • • • , k ) operator, consider the Hammerstein oper-

ator defined in ¿L. [0, l] by

Fx= J* Ki ■ , Agit, xit))dt

where we assume the following conditions hold:

(Al)  KÍs, t) is measurable in s and t with

K\\2:=flil\Kis,t)\2dsdt< oo.

(A2) g(t, u)  is continuous in  u, measurable in  / and satisfies for some  a. £

X-, [0,l],  i = 1, • • • , 72, and 0 < k, < k-, <■ ■ ■< k , the conditionZ I 2 72

git, a)-£a;(z)H   i

z = l
< Z *f(')|«

2 = 1

1-b-
+ g0it)

for 0 < t < 1  and - °° < u < °°, where gn £ £.,, g. e £, ,, , 0 < b. < 1, k, > 1 - b.,
—     — ö0 2     öz 2/bj il 7

Z =   1, • • • ,   777.

(A3) Suppose the functions  a. in (A2) are such that

A .x :=  J1 Ki-, t)a.it)\xit)\   ldt,        0 < k. < 2, i = 1, • • • , «,

map i2   into =L2.  (For  ze. > 2, one must use X    spaces, p > 2.  For sufficient con-

ditions under which (A3) holds, see Krasnoselskii [7, pp. 27 and 52]).

From (Al)—(A3) it follows easily (as for instance in [12]) that F is

AH(/é,,-.., k ) at «i.
1 72

It is also possible to impose conditions so that  F  is  AHÍk., • • • , k ) from

i      into i     , or from a Banach space E into £ . An interesting situation in in-

tegral equations which calls for an asymptotically quadratically null operator Q:

E -*£v i.e.  limi^ll^JlÉHg j/Nl! =0, is given in [17], [18].

2. Pointwise convergence of equilocally (equi-asymptotically)  ik., • • • , kN)-

homogeneous operators. We denote by M a directed set indexing the nets of opera-

tors studied in this section.
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Definition 2.1.  A family A = {F  , m £ M\ of maps from X into V is equilocally

(&,,• • • , kN)-homogeneous at 0  (abbreviated  ELH(/é,, • • • , &.,)  at  0)  if, in a

neighborhood of 0,

N

F  x = y A      x + B  x,      272 e 511, x e X,
777 t-~l        777,   I 777     '

1 = 1

where the A     . (z = 1, • • ■, zV) and B     satisfy (ii)—(iv) of Definition 1.1 for m £
m,l 777 ' N

JH with the  k. (i = 1, • • • , N) independent of m and with the limits in (iv) holding

uniformly with respect to  m.

The family is equi-asymptotically  (k,, • • • , k^-homogeneous  (abbreviated

EAH(/ej, • • • , kN)   at   °°)  if (iv)^ holds in place of (iv), again uniformly with re-

spect to  //z.  The notions of weakly equilocally  (kx, • • • , kN)-homogeneous at  0

(abbreviated  UJELH(/e., • • • , kN) at  0)  and of weakly equi-asymptotically (k.,

• • • , /eN)-homogeneous  (abbreviated  (l'EAH(/e. ,- • • , &.,)  at  °°) ate defined analo-

gously.

Remark 2.1.   By the observation preceding Remark 1.2, the operators  A

will satisfy for a fixed  i,

(2.1) \\A      .x\\ <M.\\x\\k',       x £ X, m £ %,"      777,   7       I'   — 7"      II        ' '

if and only if the family  fA      ., 722 £ JTÍÍ  is uniformly bounded.  On the othet hand,
1 J m ,1 J

by analogy with Proposition 1.3, if the family  ÍF  , m £ W\  is uniformly bounded

and  ELH(&,, • • • , kN) at  0, then thete are numbers  M . > 0,   i = I, • • • , N, indepen-

dent of  m, such that (2.1) holds.

We recall that a family  A   of operators on  X  into   V  is called collectively com-

pact if for every bounded set  ß C X, the set   (j{F(B): F £ J j has compact closure.

This notion is useful in the study of approximate solutions of integral and opera-

tor equations (cf. [l], [*10]).

Theorem 2.1.   Let  {F   , m £ m\, where M  is a directed set, be a net of opéra-
nt '    r

tors on X   into  Y  which is  Emu,, • • • , k.,) at 0: F x = 1N , A      x + B   x.   Let
IN 777 7 = 1 777,7 777

the family  {A      ., m £m, 0 < i < N\  be collectively compact.  Suppose the space   Y

is complete  (or that UiF  (X): 722 £ M\  is complete) and F  is the pointwise limit

of \F   \  in some open set S about 0,

(2.2) lim \\F  x- Fx\\ = 0,       x £ S.
m

Then F  is  LH(&., ■ • • , kK.) at 0: Fx = X    , A x + Bx and moreover
1 N i=I       i

(2.3) lim \\A      .x-A.x\\=0,       x £ X, i = 1, ... , N."      777,   I I       " '

777

Proof.  We proceed inductively.  Suppose for  1 < i < n — 1   operatots  A    homo-

geneous of degree  k. have been found satisfying (2.3).  (We begin with  n = 1   and

nô such  A ; then  ^."Z i   below is empty.)  Let  h £ X..  Let  e > 0 be given.  Since



APPROXIMATIONS OF NONLINEAR OPERATORS 299

\A       , m £ JUj  is collectively compact, there is a subnet A and a point, de-772,72 ' r ' 772;',72 r

noted by A   h, such that

(2.4)

We have

lim ||A
7

772 . ,  72
7

A  ¿I

72-1

(2.5)

F(S¿)- £ A .(SÄ)- S "Anh

< ||F(Si)-Fm (5A)||

72-1 72-1

LV. ,•<**>- £ ^,H
i i=i 2 = 1

+ \\A        (8b) -8 "A h\\ + \\F    Í8h) -y A"      772 .,  72 77     " 772 . i—I 1
A8h)

2 = 1

The last term here is equal to   \\2 .       , A       A8h) + B     Í8h)\\  which   by (iv) of
' "     2=77 + 1   , my,2 mj " '

Definition 1.1 can be made less than  eS  " for all  ttz . by taking 8 sufficiently small.

Consider any such  8 which also satisfies  8X    C S, where   X     is the unit ball in

X. The limit with respect to / in the other terms of (2.5) is  0. Hence for sufficiently

small 8,

«-I )

\Fi8h)-  Y^A.m» -S "Anh
:1

k
<e8 ".

This implies  A   h  is the unique limit of all subsets of  \A       h, m £ DHL and hence
r n ^ m,n        ,

is the limit of the net.  For any point   th, t > 0, define  A   ith) = t  "A  h.

Since the above holds for any  h £ X., this defines  A     as a homogeneous oper-

ator of degree  k     on  X.  (Consistent values are obtained if distinct linearly depen-

dent points  h., h7  are used to define  A   .)  Furthet, (2.3) holds for  i = n by (2.4)

and the uniqueness of the limit.

In this manner, the operators  A .,  i - 1, ■ ■ • , N, ate defined.  Define   Bx = Fx -

2 ,_j Ax.  To show (iv) holds, consider tz  such that   1 < n < N, and let  e > 0 be

given.  We have

N 72

V    A .x + Bx   =    Fx - y^A  x

2 =72 + 1 2=1

(2.6)

< IIFx - F x| f x~yA
772 *-^        7

1=1

V (A       x-A.x)
i—i 772,   2 Z

¿=1

for all  ttz e JÏÏ.  Since by hypothesis for the  F   , (iv) holds uniformly with respect

to ttz:  there is <5 > 0  such that   ||x|| < 8  implies

N

x - y A      .:
1 £—i 772,   2

7 = 1

ZA     x + B x
772,   I 772

2=72+1

< 2 11*1
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Consider any  x  such that   ||x|| < 8.  Then on the right side of the inequality (2.6),

the first and third terms can each be made less than (e/4)||x||   ", whence

£   Atx + Bx\\<e\\x\\  »
=72 + 1

so (iv) holds. Thus  F  is  AH(ze ,

Remark 2.2. Since the operators A

, kN) at  0.

are collectively compact, they are uni-

formly bounded and hence satisfy (2.1).  Thus by (2.3) and Proposition 1.1 we con-

clude   ||A.x|| < M .||x||   ', x £ X,  i = 1," • , N. We now give an analog of Theorem

2.1 for weak convergence.

Theorem 2.2.   Let \F  , m £JÍÍ\ be a net of operators on X  into  Y which are772 ; r

(ÏÏELH at 0.   Let \A       x: m £%\ be bounded for each x eX.  Suppose that F  is772 ,77 ' rr

the pointwise limit of \F   \  in some open set S about  0 and that the space   Y  is

reflexive.  Then F  is uJLH(ze., ■ • • , kA) at 0  and for each x £ X

(2.7)  \A      x\ converges weakly to A x,  i = I, • • • , N.
772 ,2 ° J 2

Proof. We proceed inductively. Suppose for 1 < z' < «— 1 operators A homo-

geneous of degree k. have been found satisfying (2.7). Let h £ X.. Let ( > 0 be

given.  Since  \A       h\ is bounded, there is a subnet  \A \ and a unique point,
& 772 ,72 772 j, 7! ir

denoted by A  h, such that  /(Am      h - A  h) —> 0 for all  I £ Y*, the dual space of
J 72     ' 772y,72 « *

V. Consider / £ Y* such that  ||/|| = 1.  Then for 5 such that 8h £ S, we have

I
72-1

FiSh)- X A.i8h)-8 "Anh
V 2 = 1

(2.8) <||(F-F   K5MII +
i

7Z-1

/(  Y ÍA       . -A.)(8b)
\   *—•       m . . i i

i = l

+ |/(A (8b)-8 "A b)\ +
;

/  F    (5¿)- I>m    ,-(S*)\     772 . *—*       m -,  I

2=1

for all  m . £ M.  By hypothesis there is  S. > 0  such that  0 < 8 < S.   implies  8h £

S and for all  m £ Til,

l[Fi8b)-YA     .(8b)
\     772 ¿^,       772,   Z

1 = 1

<e\8h\" <e8k".

Pick and fix any such 8.  Passing to the limit with respect to  ttz    in (2.8) we

obtain, for any   / £ Y*  such that   ||/|| = 1,

77-1

l[Fi8h)-  Y, A.i8b)-8 "Anh
\ r=0

k
<eS "
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whenever 8 < 5„. Hence, as a consequence of the Hahn-Banach theorem,

F(8h)- Z A  (8b)-8 "A h
7=1

< (8 n    for 5 < 8r

This proves that A  h does not depend on the choice of the subnet, so A  i  is the

unique weak limit of the net JA       h\. The rest of the proof is the same as in

Theorem 2.1, replacing norms in (2.6) by continuous linear functionals and using

weak limits in the arguments following (2.6).

3. Measures of noncompactness related to LH(kx, • • • , kN) operators.  Let S

be a bounded set in  X.  The measure of noncompactness of S, denoted  k(S), is the

infimum of all numbers  e > 0 such that S can be coveted by a finite number of f-

balls in  X.  The following known properties are needed for the proofs of the theorems

below:

(a) k(S) = 0  <=> S  is precompact (i.e. totally bounded).

(b) k(Su T) = max(K(S), k(T)).

(c) S C T =* k(S) < k(T).

(d) k(S(T, e)) < k(T) + (, where S(T, e) = {x £ X: distance (x, T) < e\.

(e) k(S + T)< k(S) + k(T).

(t) k(XS)= \X\k(S), A real,

(g) KÍS) = k(S).

(h) k(X.) = 0 if X  is finite dimensional; k(X.) =1  if X is infinite dimensional.

Here and in the following X,   denotes the open unit ball in X.

The definition  of measure of noncompactness used here seems to be due to

Goldenstein and Markus oJ.  Closely related notions of measures of noncompactness

have been introduced by Kuratowski [8], Darbo [4], Sadovskii [16] and others (see

[2], [14], [15]).

Theorem 3.1. // F: X-* Y  is LH(fe) at z,

(3.1) F(z +h)= F(z) + A(z)h + B(z, b),       \\h\

then there exists

k(F(z +f.VI))

<   (r

(3.2) lim k(A(z)Xx).

Proof. The proof of Theorem 3 of Danes [3] or Lemma 4 of Nussbaum [l3l can

be adapted to this setting since the additivity of A   assumed there is not really

essential.

Corollary 3.1.   // F  is  LHUj,---, kN) at z, then there exists

lim+/<ÍF(2 +fX,)- Z AAz)((Xxy\<rk> = KÍA¡(z)Xx)   for j = 1, 2, ■ ■ ■, N.
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Indication of Proof.  Apply the theorem to the operators  F(z + h) - X;~, A.iz)h

and use (iv).

A mapping  F: X —» Y  is said to satisfy a Holder condition of order k  in the

sense of measure of noncompactness with constant a > 0, briefly called  a-mcH

mapping,  if for any bounded subset S  of X, kÍFÍS)) < a[/<(S)]  .

Corollary 3.2. Let Í2 be an open subset of X and let the mapping F: 0, —> Y

be LH(&) at z £ 0. If F is an a-mcH mapping, then so is the operator A(z) de-

fined in (3.1) and k(A(z)Xj) < a.

Proof.  This follows easily from (3.2) and the properties above.

When  F  is an a-set-contraction ([3], [14], [l5l) which is Fréchet differentiable

at z, Corollary 3.2 reduces to a result of Danes [3, Theorem 3 and Corollary] and

Nussbaum [13, Lemma 4].  From this result also follows the well-known fact that

the Fréchet derivative of a compact operator is compact  (since  T is compact if

and only if  k(T(X.)) = 0).  Note, however, that Corollary 3.2 yields the stronger

result that the bounded derivative (which is not necessarily a linear operator; see

Remark 1.2) of a compact operator is compact.

Other corollaries can be given which are specializations to a single operator

of the corollaries to Theorem 4.1 below.

4. Measures of noncompactness related to equilocally or equi-asymptotically

homogeneous families of operators and collectively compact operators. We begin

with a generalization of Theorem 3-1 to families of operators.

Theorem 4.1.   Lei JF   , m £ m \  be a family of maps from a neighborhood of

z £ X  into  Y.  If the family is  ELH(fc)  at z:

F  (z + b)=F (z) + A  (z)h + B(z, h),       \\b\\ < t0,

and

"(il       ̂ «O,
(4.1) \me% /

then there exists

(4.2) lim+ *(   U  Fjz + (XX)\ A* = k( U  AM(z)X1) .
e-0+    W(J // \me% I

Remark.  Condition (4.1) holds in particular if )K  is a directed set, and the

generalized sequence \Fm(z), m e^l converges to some point or is a Cauchy

sequence (in case  V is not complete).

Indication of Proof of Theorem 4.1.  For 0 < e < e    let

8(f) = sup Jl|ßm(z, b)\\/ \\h\\k: h £ X, \\h\\ < f, m £ %\.
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Then Sie) —» 0 as e —> 0 since the condition (iv)

\\BAz. h)\\
lim

1*11-0

= 0

holds uniformly with respect to  m.  Also,

F   (z + eX.) Fjz)
771 1u c U U   Am(Z)X1+z5(()XI

and

U  Ajz)X, C   U
FJz)

u
F   iz + eXA

772 1

ek ~™ ek
8ie)Xl

since for each  ttz e M, the corresponding inclusion relations hold.  Thus, by (4.1)

and the ptoperties of k,

«(u^^x.^-k^u^^x,) < Sie),

which proves the theotem.

Corollary 4.1.   // in addition to the hypotheses of Theorem 4.1 there is  a > 0

such that, for any bounded set S C X, k( I J    F ÍS)) < a[i<ÍS)]k, then k(| J    A   (z)X.)
'  ; J *—'772       772 — v-7 772 772 I

< a.

Proof.  Since  kÍz + eX A = e we have

(U  ^ + '*,))  <«U
(z + eXl)]k = aek

so Theorem (4.2) yields the tesult.

Corollary 4.2.   // z'tz addition to the hypotheses of Theorem 4.1  the family

\F  , m £ m\ is collectively compact, then the family  \A   iz), m £ M\  is also col-
772 y ' J 772

lectively compact.

Proof.   In this case  a = 0.

Corollary 4.3.   // the family  \F  , m £ M |  is collectively compact and Frechet

cquidifferentiable at z, then the derivatives  \F   iz), m £ m\ form a collectively

compact family.

Proof.  The  equidifferentiability  assures that the limit in (iv) will be uniform

with tespect to m.  Also (4.1) clearly holds. Hence Corollary 4.2 applies.

Corollary 4.4. Let \F , m £ M\ be a family of operators from a neighborhood

of z £ X into Y. if the family is collectively compact, and ELH(zL,- • • , kAl at

z, then  \A     ., m £ m, i' = 1, • • • , AiS and \B.  , m £%\ are collectively compact.
772 ,2 772 J r
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Indication of Proof.  Apply Corollary 4.2 successively for  j = I, • • • , N  to the

families  JF  (z + h) - 1'.'] A (z)h, m £%\.
777 7= 1        2

Corollary A.A reduces for the case of a single bounded operator (see Remark

1.1) to the theorem of Melamed and Perov in [9].  Corollary 4.4 also generalizes a

result of Moore [10, Theorem 2].

We conclude by stating an analog of Theorem 4.1 for  EAH(/e)  mappings.

Theorem 4.2.  Let ¡F  , m £ M \ be a family of maps from X  into  Y.  If the

family is  EAH(/s) at  «=, F  (x) = A   (x) + B   x, for   llxll   greater than some  a, theni J 777 777 771 °

there exists

A-Cy/.«.))/«*--^.«,).
Indication of Proof.  For t > a, let

8(t) = sup j||Bmx||/||x||fe: x £ X, \\x\\ > t, m £ %\.

Then 8(t) — 0 as  Í —» ~. Also for each  m e %, if Sj = jx: ||x|| = 1 ¡, then FmitSx)

QA   itS,) + B   itS.) and A   (tS,) C F  (tS,) + B   (tS,).  Hence
ml m       1 ml ml ml

rkFm(tSx)C  AjSx) + 8(t)Xx    and     AjS x) C t-kFjtS x) + 8(t)X x.

The remainder of the proof is as in Theorem 4.1.

Corollaries analogous to those for Theorem 4.1 can be given.
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