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ALGEBRAIC EXTENSIONS OF DIFFERENCE FIELDS

BY

PETER EVANOVICH(l)

ABSTRACT. An inversive difference field ?J(is a field K together with a finite number

of automorphisms of K. This paper studies inversive extensions of inversive difference

fields whose underlying field extensions are separable algebraic. The principal tool in our

investigations is a Galois theory, first developed by A. E. Babbitt, Jr. for finite dimensional

extensions of ordinary difference fields and extended in this work to partial difference field

extensions whose underlying field extensions are infinite dimensional Galois. It is shown

that if X is a finitely generated separable algebraic inversive extension of an inversive

partial difference field 3( and the automorphisms of D( commute on the underlying field

of 3( then every inversive subextension of X/3( is finitely generated. For ordinary

difference fields the paper makes a study of the structure of benign extensions, the group

of difference automorphisms of a difference field extension, and two types of extensions

which play a significant role in the study of difference algebra: monadic extensions

(difference field extensions X/SX having at most one difference isomorphism into any

extension of D() and incompatible extensions (extensions X/% yi[/3( having no

difference field compositum).

Introduction. In [1], A. E. Babbitt, Jr. shows that if X is a finitely generated

normal separable algebraic inversive difference field extension of the inversive

difference field D( then there exist inversive difference fields D( G X\ Q Xx

C ... C X„ = X where Xq/3( is finite dimensional and X¡+1 /X¡, i = 1,...,

« - 1, is benign (Definition 4.1). Using this decomposition Babbitt shows X/3(

is compatible (Definition 5.1) with an extension ^4f/I7f if and only if Xq/D( is

compatible with J\MD{. Babbitt then developed a Galois theory for the extension

Xo /fK to examine further the questions of compatibility.

The Galois theory is extended in this paper to partial difference fields and,

using the Krull topology, to infinite dimensional extensions. We use the theory

in §2 to prove that if X is a finitely generated separable algebraic inversive

extension of the inversive difference field iFand the transforming operators of 3(

commute on the underlying field of D( then every inversive subextension of X/D(

is finitely generated over D(.

The remainder of the paper deals with ordinary difference fields. Propositions

5.1 and 5.2 and Theorems 5.2, 5.3 and 5.5 are restatements or extensions of
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Babbitt's results. They are discussed here in light of the new proofs and

techniques offered by the Galois theory. The most important of these is Theorem

5.2 which shows compatibility of an extension X/IK depends only on the finite

dimensional subextensions of X/% The proof given here makes no use of the

Babbitt composition mentioned above or of benign extensions.

A concept of limit group is developed in §3 and then used to examine the

structure of benign extensions. Theorem 5.7 shows that the group of difference

automorphisms of a finitely generated universally compatible extension has its

composition series equivalent to the composition series of the limit groups of that

extension. Finally, examples will be given to show monadicity does not imply

universal compatibility and there exist nonbenign algebraic difference field

extensions with trivial cores.

Notation and conventions. Henceforth all difference fields will be inversive;

that is, a difference field D(W\\\ consist of a field K, called the underlying field

of D(, and a finite number of automorphisms, at,...,on, of K, called the

transforming operators of % We will write (K; a,,..., a„) for % If G is a group,

/i,... ,fn are automorphisms of G and N C G then H /,*' .. .f„k"(N) will denote

H {/,*' • • -tf-iN) | Jfc,, ...,k„ are integers}. If n = 1 we will denote/,*^) by A^.

If ... 6-1, G0, G\,... are topological groups X Gk will denote the (topological)

direct product X^l.^ Gk. c denotes proper containment and < strictly less

than.

1. The Galois correspondence. Let JYbe a difference field with underlying field

K and transforming operators 0\,..., %. Let X, with underlying field F and

transforming operators ax,..., an, be a (difference field) extension of J(. Further,

take F to be a normal separable algebraic extension of K. Make the Galois group

G of L/K into a topological group by giving it the Krull topology [2]. G is

compact, Hausdorff, and has a basis at the identity, e, consisting of the collection

of invariant, open (and hence closed and of finite index in G) subgroups of G.

Each automorphism a¡ of F induces an automorphism (topological) f¡ of G as

follows:

fi(g) = oflgo¡.

Definition 1.1. A subgroup 77 of G is (/,,... ,/t)-stable if f. forj = 1,..., k

is an automorphism of 77. 77 is called stable if 77 is (/,,... ,/)-stable.

For each subextension M/K of L/K let G(M) denote the subgroup of G

consisting of all automorphisms which leave every element of M fixed. For each

subgroup H oï G let F(77) denote the fixed field of 77.

The following are easily verified. First, if 77 is a stable subgroup of G then, for

i = 1,..., n, a, is an automorphism of F(77). Second, if <s/H, with underlying field

M, is a subextension of £/D( then G(M) is a stable subgroup of G.
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If H is a stable subgroup of G then X(H) will denote the subextension of X/3Ç

with underlying field L(H) and transforming operators a, \L(H),... ,o„\L(H). If

JV[ is as in the preceding paragraph then G(^M) will denote the stable subgroup

G(M).

If H is a closed invariant stable subgroup of G then each / induces an

automorphism (topological) h¡ on G/H as follows: for g G G, h¡(gH) = f¡(g)H.

We will denote h¡ by / if no confusion arises.

Theorem 1.1. Let X, D(, L, K, G, a,,..., o„,/,,..., f„ be as above.

(a) The mapping JV{ —» G(JH) establishes a 1-1 correspondence between the set of

(inversive) subextensions of X/J( and the closed stable subgroups of G. If J\J[ is a

subextension of X/3( then X(G(JW)) = J\l{ anœdf H is a closed stable subgroup of

G then G(X(H)) = H.

(b) Let JW.be a subextension of X/EK with underlying field M normal over K. If

G' is the Galois group of M/K and gx,..., g„ the automorphisms induced on G' by

0\ \M,... ,o„\M respectively then there is a natural isomorphism op : G/G(<=M) —* G'

(of topological groups) such that for i = 1,..., n, <ph¡ = g¡cp where h¡ is the

automorphism of G/G(JH) induced by f¡.

2. Finitely generated extensions. Let X be a difference field extension of the

difference field % L, K the underlying fields of X, Irrespectively, and a,,..., a„

the transforming operators of X.

Let 5 be a subset of L. We denote by D( <5> the intersection of all

subextensions of X/D( whose underlying fields contain K u S. Let 2 be the set

of all products of integral powers of the a, and S' = [r(a) | t G 2, a E S}. The

underlying field of ^«5» is K(S'). If S = {a<'\ ... ,a<">} is finite we write

K «a<'>,..., a<">» for 3(<^S^>.

Definition 2.1. X is finitely generated over I^if there exists a finite subset 5 of

L such that X= D( <5>. If the underlying extension of X/3( is Galois with

Galois group G and induced automorphisms /,,..., f„ we say (G;f,... ,f„) or

simply G is of finite type if and only if X/IK is finitely generated.

Note that Definition 2.1 is not equivalent to the definition of a finitely

generated difference field extension given by Cohn in [4]. X/D( is finitely

generated in the sense of Definition 2.1 above if and only if it is the inversive

closure of a finitely generated, in the sense of Cohn, difference field extension of

%

Now, suppose L/K is an algebraic extension and L* is the normal closure of

L over K. For each /' = 1,..., n we can extend a, to an automorphism t, of L*.

Denote by X* the difference field with underlying field L* and transforming

operators t,,...,t„. X* will be called anormal closure of X/% U X/J(is

finitely generated then ^*/I^is finitely generated.

Proposition 2.1. Let X be a difference field extension of the difference field J( with

underlying extension L/K Galois, G the Galois group of L/K, f,... ,fn  the
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respective automorphisms induced on G by the transforming operators a,,..., a„ of

X, and 2 the set of all products of integral powers of the a,. A subextension &>H/J(

of X/J( is finitely generated if and only if there exists an open subgroup N of G such

that fi {f(N) | t G 2} = GMT) where if t - of .. .<$ then t = fk> .. ./<*».
Further, if for each pair (ij) of integers with 1 < i < n and 1 < j < n inere is a

g¡j in G such that af] a~i a¡Oj = g¡j (i.e. the transforming operators ax,..., a„

commute on K) then ¿J\A/D( is finitely generated if and only if there exists an open

subgroup N of G such that G(JVi) = D /,*' .. -fk"(N). If the underlying extension

of J\l{/3( is normal then N in both cases above can be chosen to be an invariant

subgroup of G.

Proof. Suppose J\\/3(is finitely generated, say ¿M = D( <S'» where S1 is some

finite subset of M, the underlying field of JW.. Using the notation of Theorem 1.1,

let A = G(K(S)). A is closed and since [K(S) : K] < oo, (G : A) < oo. B

= H {g~xAg | g G G] is a closed invariant subgroup of finite index in G. Since

G is compact B is open. Denote G(^\) by 77.

77 = G(K(U {K(r(S)) | r G 2})) = H {G(K(t(S))) | t G 2}

= H {fr(A) | r G 2} D  H {/T(F77) | r G 2} D 77.

Hence, N = BH is open in G and D (/r(A) | t G 2} = 77. If M/K is normal

then 77 is an invariant subgroup of G and N is invariant.

Now, suppose the transforming operators a¡, Oj commute on K. If t G 2 then

t = t, ... rm where t, = af1 for some transforming operator ak. If ï G {1,..., m

- 1} there exists g G G such that t,t/+, = T,+1T,g. fT(N) = fr(B)H

= /afcl Tri(fß(B))riri+])H where « = t, . . . t,-_, and /? » tí+, ... rm (a = e or ß

= eiîi=\orm-l respectively). Hence

fr(N)  = /„(T,"' Vi g-'fpWgJM T,.)7i = /„(T,."' Vl/^F)^, T,.)

since B and thus/^(F) are invariant. Thus f(N) = fa(B)H = f(N) where y

= t, ... tí+iT, ... Tm. It follows from the above that if p is any permutation of the

letters I,..., m then f (N) = fs(N) where ô = t^,, ... r^m). Thus, for t G 2 there

exist integers kx,...,kn such that fT(N) = fi" .. .f„k"(N), and hence 77 =

H {/,*' ...f„k"(N) | *„...,*„ integers}.

Conversely, if A is an open subgroup of G such that D {/(A) | t G 2} = 77

then (F(A) : K) < oo, and since H ç N, L(N) = F:(5) where 5 is some finite

subset of M. M = F(H {/T(A) | t G 2}) = F(U {ATt(S)) | t G 2}) = AT(S')

where 5" = U {t(S) | t G 2}. Hence <=M = D( <s5».

Proposition 2.2. Suppose n > l anc7 the transforming operators of X commute on

K. If N is an invariant subgroup of G and M = C\ {/,*' .. .f„i"[l(N) \ ku ...,

k„_x integers} then for each integer k,f„k(M) is (/,,... ,f„_x)-stable.
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Note that G is of finite type if and only if G has an open invariant subgroup

N such that e - fl /,*' .. J„k"(N).

In the context of Proposition 2.1, if E is a subgroup of G, <£> will denote the

stable subgroup H /*' .. .f„k"(E).

Lemma 2.1. Let G be a compact topological group, H{, H2, ■ ■. a decreasing

sequence of closed subgroups of G with Hj^i Hk = H, and let U be an open subset

of G containing H. Then there exists a positive integer a such that if k > a, Hk Q U.

Theorem 2.1. Let J(be a difference field with underlying field K and transforming

operators ou ..., on which commute on K, Xan extension of D( with underlying field

L separable algebraic over K. If X/3( is finitely generated then any subextension is

finitely generated.

Proof. We can assume L/K is normal for if J?* is a normal closure of X/3(

then X*/EKis finitely generated. Let G be the Galois group of L/K and/,.fn

the automorphisms induced on G by a,,..., a„ respectively.

Before proceeding with the proof of Theorem 2.1 we will prove that Theorem

2.1 implies that if G is of finite type it has the descending chain condition (dec)

for closed stable subgroups. If {T} is a decreasing sequence of closed stable

subgroups then T = D T¡ is a closed stable subgroup whose fixed field is a

finitely generated extension of D(. Proposition 2.1 implies there exists an open

subgroup U of G such that <£/> = T. Lemma 2.1 implies there exists an / such

that T¡ Ç U. Since T¡ is stable T C Tt Ç (U) = T. The proof of the converse of

this implication can be found in the proof of Theorem 2.1, to which we now

return.

We proceed by induction on n, the number of transforming operators. The

proofs of the case n = 1 and the induction step are carried out simultaneously.

Let J\\ be a subextension of X/D( and H = G(JH) the closed stable subgroup

of G corresponding to <M, under the Galois correspondence. There exists by

Proposition 2.1 an open invariant subgroup N of G such that {N} = e. Let

E - D {/,*' .. ./B*y (AOIti.ti integers} (E = N if n = \). E is a closed

invariant (/,,... ,/_,)-stable subgroup of G (Corollary 2.1). L(E), the subexten-

sion of L/K corresponding to E, is the underlying field of a difference field with

transforming operators <j,,..., a„_,. It is finitely generated over IK', the differ-

ence field with underlying field K and transforming operators a,,..., o„_{, since

N is an open subgroup of G with D [fkl .. .fk-\l(N) \ kx,... ,kn_x integers}

= E. By the inductive assumption (G/E;f,...,/_,) has the dec for closed stable

subgroups. (In the case n = 1, £ is an open subgroup of the compact group G.

Hence G/E is a finite group.)

For 7 =1,2,... let

NU) = H[D {/,*' .. ./„*-(#) [ -j < k, <j,\ <i< «}]
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and 77W = </y(/)>. #<o) wüi denote 77.

The topological space G/77 of left cosets of 77 is compact, Hausdorff and has

a basis {N^/H} at eH = H since, as one can easily see from Lemma 2.1,

{H {/,*' .. .fk"(N) | -j < k, <j) \j - 0,1,...} is a basis at e for G [8]. If

g G G and g & H there exists a nonnegative integer j such that G77 n N^H

= gH n N<J> = 0. Hence flft, Ww = 77 and n£> 77^ = //.

For each pair of nonnegative integers, j, I let

H  =H(D n  f\fk(E)
J Ar-0

and

Fjj-HV>n  nj-k(E).
k=0

For each positive integer j and each nonnegative integer / the natural maps

defined below are monomorphisms of groups and, in the cases where n > 1, are

continuous and commute with the automorphisms induced on these (topological)

quotient groups by/,,...,/,_,.

<Pj,i '■ Hj+\,t/Hj+\,i+i -* Hjj/Hjj+x,

^i,i '■ ̂+i,v/-f/+i,/+i -» Fjii/FjJ+u

aj.i '■ -fliy/fliy+i -» Hjj/HjiM,

ßj,i '■ Eoj/Eoj+i -* Fy/fy+t ■

H\j/H\,t+\ l% a closed (/,... ,i,_,)-stable subgroup of A = 77<n/77li/+1.

(/4;/i,... ,/-i) is of finite type since B = 77(1) n ^'¿}ofnk(N) is an open sub-

group of 77<') with D {/,*' .. J„-r(B) \ki,.. .,kn_x integers} = Hu+l. It is easy

to see that subgroups of a group of finite type are of finite type. Hence, for each

nonnegative integer /, (Hu/Hll+l ;/,,...,/_,) is of finite type and by the

inductive assumption has the dec for closed stable subgroups. (In the case n = 1,

771//771/+1 is a finite group.) Similarly we can show that, for each nonnegative

integer /, (Fi,/F|/+i ;/,,... ,f„-\) has the dec for closed stable subgroups.

For each nonnegative integer /, {77y//7/7/+1 \j = 1,2,...} is a decreasing

sequence of closed stable subgroups of /70///70/+1 (up to an isomorphism of the

form (p0/ ... <Pj-{j). Hence by the dec there exists for each / a positive integer/

such that (fjj is an isomorphism if j > j). We claim that if y > j¡ then a7, is an

isomorphism. If not, then it is not epic, so 5 = H0JHjl+x c 77,,/. 5 is a closed

subgroup of 77,. Since Hj¡ is a normal topological space there exists an open

subgroup U of 77, such that US c 7F,,. {77,, \ i =j,j + \,...} is a decreasing

sequence of closed subgroups of 77, whose intersection is 770, C US. By Lemma

2.1 there exists i >j such that 77,, Ç US. Now 77y77,,+ 1 C US c 77,, contra-

dicting the fact that <p(j/ ... <p,, is an isomorphism.
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Similarly we can show that for each nonnegative integer / there exists a positive

integer k¡ such that iL¡ and /?¿, are isomorphisms if j > k¡.

For each positive integer^' and each nonnegative integer / the mappings ¡u,, and

Vjj defined below are monomorphisms of topological groups.

Hi '■ Hj,i+\/'Hj,i+2 -* Hjj/Hjj+i,

gHj,l+2 ̂ fn\$WjJ+U

vj,i '■ Fjj+\ /FjJ+1 -* Fjj/Fjj+i,

gFj,,+2 I-» f„(g)Ejj+i ■

It is not necessarily true that pj¡ and vjJt commute with the automorphism

induced on the above factor groups by /,... ,f„-\. However, it is easy to see,

using Corollary 2.1, that the image of Hj¡JrX /HJt¡+l in Hjfi/HljX under ¡ij0 ... pjt is

stable under the automorphism induced on the factor groups by /■,... ,f„-\.

Hence, for each positive integer/ {Hjj/HjJ+x | / = 0,1,...} is a decreasing

sequence of closed (/,,... ,/_i)-stable subgroups (up to isomorphism) of

Hj¡0/Hjti. (In the case n = 1 the sequence is a decreasing sequence of subgroups

of the finite group HjQ /HjA.)

Similarly, one shows that for each positive integer y the sequence {Fjj/Fjj+i \ I

= 0,1,...} is a decreasing sequence of closed (/,... ,j„_1)-stable subgroups of

Fj,o/FJA.

Using the induction hypotheses, there exists for each positive integer j a

nonnegative integer ¡(J) (m(j)) such that if / > 1(f) (I > m(j)) then pJt (vjt) is an

isomorphism.

Up to an isomorphism of the form <pxo ... <p, y_, nJX ... pj¡ we can consider

{Hjj/Hjj+l \j,l+ 1 positive integers} as a collection of closed stable subgroups of

Hl0/HlA. Also if j > k and / > m we may consider, up to an isomorphism of

the form <pkm ... <?,_,,„,jU,,m ... /x,v_,, Hu/HjJ+x to be a closed (/,,... ,/_,)-stable

subgroup of Hkm/HkmJrX. Again the induction hypothesis implies there exist

positive integers/, l¡ such that pJh «p,, are isomorphisms iij > ji and / > /,. It

follows from above that atjj is also an isomorphism.

Similarly one shows there exist positive integers/, l2 such that &/, /?y/ and vj}

are isomorphisms if y > j2 and / > /2.

Let/ = max{/,/} and l0 = max{/,,/2}.

We claim C = //Oo) n fife— t0f„k(E) C H. If not, there exists an open sub-

group J of G such that J D H and J $ C. Since n£_M//(£) = e it follows

from Lemma 2.1 that there exists an integer p > l0 such that J J //(-/o) n

ng.-, J&*(£) and / D J5T(*> n iXi^, f„k(E). Either (a) or (b) below can occur:

(a) J $ H<») n   ñ /„*(£)       and       J D //<>»> n   n fk(E);
k=-p k=-p

(b) / $ Hi») n   n fk(E)       and      J D H^> n   n' /.*(£).
k=-p k—p-\
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If (a) occurs we have /' =ff(J) $ H<J«) n n%.0fnk(E) and J' D 77^> n

n^to fnk(E). J' is an open and hence closed subgroup of G. We have the following

sequence of mappings

Ho,2p/Ho,2p+i        >JP[ H0t2p/H0:2p+\-*J n Hk2p/Hht2p+\ -* HjOi2p/IIj0,2p+\

where t, is the identity, r2 is the natural map, and t3 is an injection, t, is an

isomorphism, t2 is a monomorphism, and t3 is a monomorphism which is not

epic. Hence t3t2T! is not epic. But t3t2t, = aJo¿p, contradicting the fact that a,j is

an isomorphism if / > /0 and j > j0.

If (b) occurs we can, using an argument similar to the one above, contradict

the fact that ßj, is an isomorphism for some / and y where / > l0 and y > j0.

Hence C Q H G H<J*\

C is an open subgroup of H(Jo) and

H {/,*' .. ./„*_",- (h^ n ¿hf»k(N)) I ku .. .,*„_, integers] = C.

By Proposition 2.1, (HUo)/C;fx,... ,f„_x) is of finite type. Since 77/C is a closed

(/,,... ,/_i)-stable subgroup of HUo)/C, the induction hypothesis implies there

exists an open subgroup Q of G such that

H {/,*' .. ./„*"[' (77O-0) n Q) | ku .. .,kn_x integers} = 77.

Since 77 is stable, H /,*' .. .fnk"(H^) n Q) = 77. Let R = AfW n Q an open

subgroup of G. Then

n /,*•.. .fnk°(R) = n /,*>.. .fnk*(NU°)) n n /,*■.. .//»(e)

= 7700) n n/,*' ...jnHQ)

= n/,*' ...f„k"(HW n 0-/7.

By Proposition 2.1, ^H/i^ is finitely generated. (In the case n = 1, (77 : C)

< (H(M : Q < oo. Since n£0 ^w = 77 there is a positive integer / such that

HUo+t) m H Thus jy^ = j:(//Oo+0) is finitely generated over %)

3. Limit groups of ordinary difference fields. Throughout this section l*f will be

a difference field with underlying field K and one transforming operator o, and

^will be a finitely generated extension of D( whose underlying field L is Galois

over K; G will be the Galois group of L/K and/the automorphism of G induced

by a.

Since jyi^is finitely generated, it follows from Proposition 2.1 that there is an

open invariant subgroup A of G such that Pi Nk = (e). As in the proof of

Theorem 2.1, we have monomorphism cpQ : N/N n A, —> G/A and
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<p, : H n/ n Nk -» W Nk/ C\ Nk        for / = 1, 2,...
T'      *=o   *        *=0     K k=0 k=0

where ap¡(g Dk+J0 Nk) =/~'(g) ni=o^. Since all the above factor groups are

finite, there is an m such that <p„ is an isomorphism if n > m.

Definition 3.1. The subgroup <p0 ... opm(r\k=0 Nk/ n£í„* Nk) of G/N is called

the limit group of G (or X/ZK) with respect to N, and we denote it by lN(G).

lN(G) is not independent of our choice of N, as the following example shows:

Example 3.1. Let ..., t..x ,t0,tx,... be a collection of elements algebraically

independent over the field C of complex numbers, and let L = C(... ,t-X,t0,

tx,...). Let a be the automorphism on L which is the identity on C and maps f,

into/,+1. ./'will be the difference field with underlying field L and transforming

operator a. Define 5( to be the difference field with underlying field K

= C(... ,x_x,x0,xx,...) where x{ = tf and transforming operator o | K. Clearly

L/K is Galois.

Let N be the subgroup of G, the Galois group of L/K, with fixed field K(t0).

Since K(t0)/K is finite dimensional Galois, N is an open invariant subgroup of

G. Also Pi Nk = (e) since the fixed field of n Nk is A^U^-«, ak(K(t0))) = L.

G/N is the Galois group of K(t0)/K and í~]'k=0 Nk/ n¿t'0 Nk is the Galois group

of K(t0,... ,tM)/K(t0,...,/,). By an order argument one easily sees that

lN(G) = G/N. G/N is the cyclic group of order 4.

Let M be the subgroup of G with fixed field K(t0, tf). Again M is an invarient,

open subgroup of G and Pi Mk = (e). Pl¿=0 Mk / nj-t'o Mk is the Galois group of

K(t0,... ,tf+l,ti+2)/K(t0,... ,tj,t}+x) which has dimension 4 for ; = 1, 2,....

Hence

lM(G) = M/M n M,.

M/M n M, is the Galois group of .£(/(>, /,, t\)/K(tQ, i¡). Hence lM(G) is the Klein

four group.

There are however many properties of limit groups which are independent of

the choice of N. Theorem 3.1 will reflect these properties.

One should note that the order of a limit group of X/D( is the limit degree of

the extension. (See [4, pp. 135-136].)

Proposition 3.1. If N is an open invariant subgroup of G such that D Nk = (e)

then for each pair of integers s, t with s < t, M = f]k=s Nk is an open invariant

subgroup of G with C~) Mk = (e) such that lM(G) s ¡n(G)-

Proof. Choose m sufficiently large so that lN(G) s HJU Nk/ fl^í¿ A4 and

lM(G) s njU Mk/ (I®, Mkifn> m.

m+t / m+l+1 m+l-s / m+l-j+1

lM(G)^f)Nk/   p   Nkat   H   Nkf     n     Nk^lN(G).
k=s k=s /c=0 *=o
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Proposition 3.2. If N is an open invariant subgroup of G such that D Nk = (e)

then, for each integer r, lN(G) is isomorphic to Hr = D^-.^ Nk/ nkt-x Nk.

Proof. Since ll : Hr -» 770 given by pig (X-. Nk) = f~r(g) ft=_xNk is an

isomorphism for each integer r, we may assume in the proof of Proposition 3.2

that r = 0. Choose a nonnegative integer n such that if m > n then lN(G)

= n£=0 Nk/ n£=n Nk.    Consider  the'monomorphism

<p : 770^ h  Nk/"f) Nk

given by <p(g n¡L-«, Nk) =f(g) n&¿ Nk. ilnk=_x Nk is a closed invariant

subgroup of niUNk. (r$m_jNk/ H?.-« Nk \j « 1,2,...} is a basis at the

identity   for   n£=0A¿/ n*__M Nk.    If    <p    is   not   an   isomorphism   then

(Di_«3 A^Xflfcio A/t) is a proper open subgroup of n*_0 Nk. So, there exists a

positive integer/ such that

(1)   (A NkM «OÍANk) = (2 *XA *0c ANk ■
(1) implies the natural map

n /   n+\ n / n+1

7] : n Nk/ n jvt-*njvt/ n a*
k=-j k=-j Ar-0 *=0

is not epic, tj is one-to-one and by Proposition 3.1 both factor groups are

isomorphic to lN(G) and thus are of the same order. Hence tj is epic, a

contradiction.

Theorem 3.1. If M, N are open invariant subgroups of G such that D Mk = C\ Nk

= (e) then lM(G) and lN(G) have equivalent composition series.

Proof. M is an open subgroup of G and {f)(=-jfk(N) \j = 0,1,...} is a

decreasing sequence of closed subgroups of G with intersection (e). Lemma 2.1

implies there is a positive integer p such that H£_p Nk C M. Proposition 3.1

implies lN(G) s lN(G) where A' = C%^-p Nk. Hence we may assume A ç M.

There exists a positive integer n such that A D n¡J__n Mk. We have the

following sequence of open invariant subgroups of G.

A/DAD   Pi   NkD   ñ   MkD    C\   Nk D ...
k"—n k=-n k=-2n

which gives rise to the following chain of closed invariant subgroups of G:

H   MkD   n   NkD   ñ   Mk D   ñ   Nk D    ii   Mfc 2 ....
&=— oo k=-x A—oo Ar=-oo *=- oo

By refining the normal series

A   AT, D    n   A, D    fS   A, D...D    C]   NkD    n   M,
fc=-oo K=—oo k=~<x A"— 00 K=—oo

and

n m* d  n a/* 3 • • • a  n m*
/t=-oo <t=-oo *=-oo
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to composition series for Dk_x Mk/ H^L-«, Mk we see that the factors of a

composition series of lN(G) at Dk_x Nk/ Dk_x Nk are contained among the

factors of a composition series for lM(G) s C\{_x Mk/ r\{V_x Mk, j = 0,...,

2n — 1. Similarly one shows the factors of a composition series of lM(G) are

contained among the factors of a composition series of lN(G).

To complete the proof we show that the number of repetitions of any factor in

a composition series for lM(G) is equal to the number of repetitions of that factor

in a composition series for /#((/).

Let H be a factor of the two composition series and suppose it appears a times

in the factors of lM(G) and b times among the factors of lN(G). For each positive

integer / a refinement of the series D°_x Mk D  Dk^^x Mk D ... D  nil-«, Mk

to correspond to a composition series for B = nk_„ Mk/ nk=-x Mk contains

H Ina times. By refining D°k=-X Mk D n°k=_x Nk D nlk=_x Nk D ... D

r\klZ-x Nk 2 Djtl-oo Mk to determine a composition series for B we get (/ - \)nb

copies of H among the factors determined by the subgroups of this composition

series between  C]k_x Nk and  r)k'Z-x Nk. Hence for each positive integer /,

(/ - \)nb < Ina; thus b < a.

Similarly, using (l°k=-x Nk D f]nk=_x Mk D nfc.-« Mk D Dlk"=_x Nk to repre-

sent a normal series for Dk=-X Nk/ H^L-^ Nk, I = 1, 2,..., one shows a < b.

Theorem 3.2. Let Jl[/D(be an inversive subextension of X/3(with underlying field

M Galois over K, and let H = G(JH). Then, given any limit group A of G there exist

limit groups B, C of H, G/H respectively and an imbedding a of B into A such that

A/a(B) s* C.

Proof. Clearly H is of finite type since G is of finite type. By Theorem 2.1, G/H

is of finite type. Hence H and G/H have limit groups.

Choose an open invariant subgroup N of G such that C\ Nk = e. There exist

nonnegative integers nx, n2 such that if n > nx then lN(G) =ë Dk=0 Nk/ n£¿¿ A4

and if n > n2 then lNnI1(H) s D"k=0fk(N n H)/ n»k±},fk(N n H).

Choose an open invariant subgroup E of G such that D Ek = H (Theorem

2.1). {n¿__y Nk\ j = 0,1,2,...} is & decreasing sequence of closed subgroups of

G whose intersection is contained in H. By Lemma 2.1 there exists a positive

integer a such that nak=-a Nk Q E. n^0 Nk Q Ea and F= //(fl^0 Nk) C Ea.

Since H is stable H <Z D Fk ç H Ek = H. Hence there exists a positive integer

«3 such that if J = r)"k=0 Nk then D fk(JH) = H. Let n0 = max{nx,n2,n3, },

X = nf=0 A4, Y = X n H and Z = XH. By Proposition 3.1, lN(G) as lx(G).

lx(G) = X/X n Y, and lY(H) s Y/Y n Yx. There exists a nonnegative integer

m such that if n > m then lz/H(G/H) s njL0 Z*/ fl^o Zk.

For each positive integer n, the monomorphism tp„ : C\k=0 Zk / D^i¿ Z^ —>

HU Z,/ n,n=0 Z, defined by tpn(g n^¿ Z,) =/"'(g) i\n=0 Zk is an isomor-

phism. To show <p„ epic consider
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d-[Ë zJLû A-aZk n la z*K
Now,

(n_x zk}z„ = (^ z,)à;77 d Qj a,)(a„ n ^_,)ä

=/'a(Aa*)(* n ̂ l}//) = z»-'-

The last equality follows from the fact that since lx(G) = X/X n A',, the

monomorphism $ : C\nk=0 Xk / nnk±0 Xk -» A/A" n Xx given by ^(gPl^A*)

= f~"(g)(X n A,) is an isomorphism. Hence F = nj!l¿ Zt and <p„ is an isomor-

phism for n > 0, and thus lz/H(G/H) =ë Z/Z n Z,.

Let a : Y/ Y n li -> A/A n A, be the natural monomorphism. The image of

a is Y(X n A) )/X n A,. We complete the proof by showing the natural map r

of X/X n A, modulo the image of a, i.e. A/T(A n A,), into Z/Z n Z, is an

isomorphism, t is onto since A(Z n Zx) = XH(Z n Zx) = Z. From the remark

following Example 3.1 and Theorem XII of Chapter 5 in [4] it follows that the

domain and range of r have the same order. Hence t is an isomorphism.

4. Benign extensions. Throughout this section X will be a difference field with

one transforming operator, finitely generated over the difference field % The

underlying extension of X/D( will be Galois with Galois group G and induced

automorphism /

Definition 4.1. The extension X/3(is benign (or (G,f) or simply G is benign) if

there exists an open invariant subgroup A of G such that Pi Nk = (e) and

lN(G) = G/N.

Lemma 4.1. If X/3Ç is benign and N is an open invariant subgroup of G with

ÍÜV( = (e)    and    lN(G) = G/N,    then    for    n = 1, 2,...,

iN(G)^~h Nk/'n Nk.
k=—n k=-n—\

Proof. Consider the map <p : N_x /N_x n A_2 —> G/N given by

cp(g(N_x n A_2)) = f2(g)N. Clearly cp is a monomorphism. To show <p onto we

show G = A/2(/-'(A)) = AA,. Since G/N ^ A/A n A, under the map

xP(g(N n Nx)) = /"' (g)N. G = AA_, and since G = f(G), G = NXN. Thus <p is an

isomorphism.

We complete the proof by showing that for each positive integer n the

monomorphism

t„ :   n   At /   ri   Nk -> rî a* /   n   Nk
k=-n—\ k=-n-2 k=—n k=-n-\

defined by T„(g n¿"i_„_2 Nk) = f(g) n^i_„_, Nk is an isomorphism. Since lN(G)

= G/N, <p„ : C\U Nk/ I1& A, -> HU Nk/ Dnk=Q Nk defined by <pn(g n¡& Nk)

= /~'(g) n£=n A^ is an isomorphism. Hence,
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"n Nk = (ñ Nk)(n Nk),
*=0      * \*:=0      V\*—1      */

and so

¿LNk=/"n(aNk) = (A **)Cl.4
Hence t„ is epic.

Lemma 4.2. // X/D( is benign and N is an open invariant subgroup of G such that

fi A4 = (e) and lN(G) = G/N, then for each integer I and each positive integer n,

G = (nU_„A, n nt7+1A4)A4

Proof. Since / is an automorphism, it suffices to prove Lemma 4.1 with / = 0.

A = (¿L * n n Nk)N d (¿ Nk n n Nk)(n Nk)

= Cr>0Côo^)nû^-
Consider the monomorphism <p : n¡£¿ Nk / Dk^0 Nk -» G/ n^=0 Nk defined by

<p(g nfco A4) =f-"(g) IXo A,. Since G is benign with /„(G) = G/N, (G :

nUo Nk) = (n+ l)\lN(G)\ and (H"kzl Nk : ("fe, A,) = (n + l)\lN(G)\. Hence <p is

an isomorphism and G = (Hl=0 Nk)(nkl-„ Nk).

This implies A D  n£=1 A4, and since A D N, A D N(DUi A4).

Now, consider the monomorphism \[/ : Dkl-„ Nk/ Dkl_„_x Nk —» G/N given

by \p(g rVi-n-i A4) = f+l(g)N. By Lemma 4.1 both of these groups are isomor-

phic to lN(G); hence \p is an isomorphism and G = N(C\k^x Nk). It follows that

A = G and hence G = (nkLn Nk n  n£=1 Nk)N.

Corollary 4.1. For each integer I,

G = 7V;(n {Nk\k^l}).

Proof. It suffices to give a proof when / = 0. If A = N(C\ {Nk | k ^ 0}) c G

choose geC.gii Then, gW n H {A* Ä: ̂ 0} = 0. //m = n*J_m A* n

n™=i A4, m ™ 1, 2,..., is a decreasing sequence of closed subgroups of G such

that n„?=i Hm Q G ~ gN. By Lemma 2.1 there exists Hm C G ~ gN. Hence

g <£ N(f]kl^m Nk n  Dk=x Nk), contradicting Lemma 4.2.   .

Theorem 4.1. Let N be an open invariant subgroup of G such that fl Nk = (e) and

H the topological group X G/A4.

(a) The mapping f* : H -^ H defined by f*(gkNk\ = (f(gk.x)Nk)k is a (topolog-

ical) automorphism of H.

(b) The mapping y : G -> H defined by <p(g) = (gNk)k is a monomorphism of
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topological groups such that opf = f*q>.

(c) If cp is an isomorphism G is benign.

(d) If G is benign and /#(G) = G/N then <p is an isomorphism.

Proof, (a)/* is well defined, for if (gkNk)k = (hkNk)k then gklhk G Nk for

each integer k, and so f(gklxhk_x) = f(gkli)f(hh-X) G Nk for each integer k. f*

is clearly multiplicative. If (gkNk)k G ker(/*) then, for each k, f(gk_x) G Nk,

and so gk_x G Nk_x; so /* is one-to-one. If y = (gkNk)k then/*(x) = y where

x = (f~l(gk+\)Nk)k. For each integer k let ek be the projection map of 77 onto

G/Nk. For each k, ekf* = \pek where \p is the isomorphism \p : G/Nk —> G/Nk+X

given by \¡/(gNk) — f(g)Nk+x. ek is continuous and \¡/, as an isomorphism of finite

Galois groups, is continuous. Hence, / * is continuous. As a topological product

of finite Galois groups 77 is compact and Hausdorff and it follows that / * is

bicontinuous.

(b) That <p is a monomorphism of topological groups follows from Number 3,

p. 190 in [2]. If g G G, <pf(g) = (f(g)Nk)k = f*(gNk\ = f*<p(g).
(c) For integers ix,..., i„ let X^,..;> G/Nk denote the subgroup X 77. of 77

where Hk = G/Nk if k ^= L, j = 1,..., n, and Hk is the identity subgroup of

G/Nk otherwise. Since <p is an isomorphism G/N s; H/op(N). 77/ X^ A^

s G/N and <p(A) Ç X^ Nk so <p(A) = X^ Nk. For each nonnegative integer

t,

(IN,/ n Mat     X     G/Nk/      X      G/Nk at G/A,+1 at G/N.
1=0 /-0 *#0,...,r K       k^O.f+1 * '   '

Hence lN(G) = G/N and G is benign.

(d) It only remains to show <p is onto. This follows from Corollary 4.1 and

Number 3, p. 190 in [2].

Remark 4.1. If X/D( is benign it follows that the underlying extension L/K is

isomorphic to ®k=-x K(ok(a)) over K where a is the transforming operator and

a is an element of F such that X = D( <a>. (See [2, pp. 190-191].)

Definition 4.2. Suppose X/D( is as described at the beginning of §4 except

perhaps not finitely generated. An automorphism g G G is called a (difference)

automorphism of X/3( if f(g) = g.

Proposition 4.1. Let X and J( be as in Definition 4.2. F = {g | /(g) = g} is a

closed subgroup of G.

Proof. Clearly F is a subgroup of G. To show F is closed, consider the map

A : G -» G defined by X(g) = g'if(g). X is continuous since it is the composition

of the continuous maps a, ß: when G%G X GÍG, a(g) = (g"',/(g)), and ß(g,h)

= gh. D = X~l(e) is therefore closed in G.

Remark 4.2. F will be called the Galois group of X/J(. The mapping A defined

in Proposition 4.1 will play an important role in §5. We again return to consider

extensions X/D( which are finitely generated.



ALGEBRAIC EXTENSIONS OF DIFFERENCE FIELDS 15

Proposition 4.2. // A' is an open invariant subgroup of G such that f] Nk = (e)

then the natural homomorphism tj : D —> G/N, where D is the Galois group of X/ZK,

is a monomorphism. (A consequence of Proposition 4.2 is that if X/ZK is finitely

generated D is a finite group.) If G is benign and lN(G) = G/N then n is an

isomorphism.

Proof. If g G ker(n) then g G A, so g = fk(g) G fk(N) for each integer k.

Then, g G n A, = (e).

Now, suppose lN(G) = G/N. Let gN G G/N and x = (fk(g)Nk)k G X G/Nk.

Using the notation of Theorem 4.1 we see/*(x) = x and if h = <p~l(x) G G, then

f(h) =f<p~l(x) = <p-'/*(x) = <p-'(jc) = h. Clearly hN = gA so r\(h) = gN.

Corollary 4.2. For each integer k, let Dk = D and let J be the topological group

X Dk. The mapping f*((gk)k) = (gk-X)k « a (topological) automorphism. G is benign

if and only if there exists a (topological) isomorphism \p : G -» J such that \pf = ft \p.

5. Universally compatible and monadic extensions. As usual X will be a

difference field with underlying field L and transforming operator o. I^will be a

subfield with underlying field K. L/K will be Galois, G will denote the group of

automorphisms of L/K and / the automorphism of G induced by o.

Definition 5.1. Let c/t by an arbitrary extension of a difference field B. Jf/!B

is universally compatible if given an extension Û/33 there exist an extension 2VS

and difference monomorphisms tp : Jf/!B -> 2VB and \p : (2/23 -» 2V.B. We

will say the pair (G,f) or simply G is universally compatible if and only if X/D(

is universally compatible.

Let X be the continuous function of G into itself defined by X(g) = g~lf(g).

(See Proposition 4.9.) Let J\/[/D( be a subextension of X/IK such that the

underlying extension M of *M is normal over K and let H = G(JH). From

Theorem 1.1 we know there exists an isomorphism qp : G' —» G/H, where G' is

the Galois group of M/K, such that <pf' = h<p where / ' is the automorphism

induced on G' by a \ M and h is the automorphism induced on G/H by /. If X' is

the map defined on G' into itself by X'(g') = g'-xf'(g) and X* is the mapping

defined on G/H into itself by X*(gH) = (gH)~lh(gH) = g~xf(g)H = X(g)H,

then <pA' = A*<p.

Theorem 5.1. X/J( is universally compatible if and only ifX maps G onto itself.

The proof of Theorem 5.1 is an application of Theorem XIII in Chapter 9 of

[4].

Proposition 5.1. If X/3(is universally compatible and J\A/D(is a subextension of

X/fK then J\I{/ZK is universally compatible.

Proposition 5.2. Let J\K/D{ be a subextension of X/ZK with Galois underlying

extension. If X/J\l{ and J\\/LK are universally compatible then X/D( is universally

compatible.
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Lemma 5.1. 7/77 is an open invariant subgroup of G such that f (H) Ç H then 77

is stable.

Theorem 5.2. X/3( is universally compatible if and only if every subextension of

X/J( whose underlying field is finite dimensional Galois over K is universally

compatible.

Proof. Suppose X/D( is not universally compatible. There exists g G G such

that g £ A(G). Since G is compact Hausdorff and A continuous g~'A(G) is a

closed subset of G. e £ g~'A(G) and so there exists an open invariant subgroup

A of G such that g~'A(G) n A = 0. Let 77 be maximal among all the open

invariant subgroups A such that A n g~'A(G) = 0. We claim 77 is stable. By

Lemma 5.1 it is only necessary to show/(77) Ç 77. If/(77) % H then Hf(H) is

an invariant open subgroup of G properly containing 77. Hence g~'A(G)

n 77/(77) ^ 0 and there exist h G G, a, b G 77 such thatg-'A(n) = af(b). Now

g~[h~lf(h)f(b~l) = a. Since 77 is invariant there exists c G 77 such that g~lb~l

= cg~[. We now have cg~lbh~lf(hb~l) = cg~i\(hb~l) = ag~l\(hb) = c~la

G g_,A(G) n 77 = 0, a contradiction. X(H)/3(\s a finite dimensional Galois

subextension of X/%

There is no h G G such that g77 = A(n)77, for if g77 = \(h)H, g"'A(n) G 77

n g"'A(G). Hence X(H)/3( is not universally compatible.

The converse follows from Proposition 5.1.

Definition 5.2. The core of G is the intersection of all open invariant stable

subgroups of G. We denote the core by C(G).

Note that C(G) is closed, invariant and stable and is the intersection of all open

stable subgroups of G. Further, X(C(G)) is the core of the difference field

extension X/% (See [4, p. 215].)

Proposition 5.3. 7/G is of finite type and C(G) = (e) then \G\ < oo.

Proof. Let S be the set of invariant, open, stable subgroups of G. Choose an

open subgroup A of G such that D Nk = (e). Since G is compact and the

elements of S are closed on G there exist 77(1),..., 77(n) G S such that

77 = nr=, 77« Ç A. 77 is stable; hence (e) = C(G) ç 77 Ç D A* = (<?). Since 77

is open in G, oo > (G : 77) = \G\.

Corollary 5.1. 7/G is of finite type then (G : C(G)) < oo.

Proof. By Theorem 2.1, G/C(G) is of finite type and clearly the core of G/C(G)

with respect to the automorphism induced on G/C(G) by /is C(G).

Corollary 5.2. If G is of finite type then C(C(G)) = C(G).

Proof. If 77 is an open invariant subgroup of C(G) then (G : 77) = (G : C(G))

(C(G) : 77) < oo. Hence 77 = C(G).
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Corollary 5.3. C(C(G)) = C(G).

Proof. Suppose C = C(G) has an open, invariant, stable, proper subgroup 77.

There exists an open invariant subgroup A of G such that F = A n C ç 77.

Since 77 is stable, Fk C 77 for each integer k. Let F' be the subgroup of 77

generated by U Fk. E is stable and an invariant subgroup of G. Let F be the

closure of E in G. It is easy to see that the closure of a stable group is stable.

Hence F is a closed, invariant, stable subgroup of G contained in 77 and

(C : F) < oo. Consider G/E, C(G/E) = C/E ^ F. By replacing G by G/E and

/ by the automorphism induced on G/E by /, we have reduced to the case where

C is a nontrivial finite subgroup of G.

Under this reduction (e) is an open subgroup of C. There is an open invariant

subgroup A of G such that A n C = (e). Let P = H Ak, a closed invariant

stable subgroup of G. G/P is of finite type.

We claim C(G/P) = CP/P. Clearly CP/P C C(G/P). If CP = G then G/P

= CP/P a C/C n F = C ç (<?). Hence (G : F) < oo (i.e. F is open in G). Thus

F D C so (e) = F n C = C contradicting the fact C ^ (e). Hence we may

assume there is a g G G with g G CF. If g is such a point then gP n C = 0.

From the definition of C and the fact that G is compact it follows that there exist

a finite number of open stable subgroups, A(1),..., A(/), of G such that

0 = gP n iXi A«. If F = n,L, A« then FF/F is an open, invariant, stable

subgroup of G/P which does not contain gP. Hence, CP/P D C(G/P).

We now have G/P of finite type with core CP/P at C/C n F = C which is

finite. P/P is an open invariant stable subgroup of C(G/P), contradicting

Corollary 5.2.

Theorem 5.3. X/D( is universally compatible if and only if X(C)/3(, C = C(G), is

universally compatible.

Proof. By Corollary 5.3, X/X(C) has no finite dimensional subextensions and

hence X/X(C) is universally compatible (Theorem 5.2). Theorem 5.3 then follows

from Proposition 5.2.

A difference field extension <^/S is monadic [4, p. 196] if the maximal number

of difference isomorphisms of cA/ZZ into any extension of B is one. Since L/K

is Galois, X/3( is monadic if and only if the difference Galois group F

= {g G G I /(g) = g} of X/3(is the identity group. As usual we will say (G,f) or

simply G is monadic if and only if X/D(is monadic.

Theorem 5.4. X/D( is monadic if and only if A is one-to-one on G. (A(g)

= g~lf(g).)

Proposition 5.4. If X/D( is monadic and <zW{/D( is a subextension of X/D( then

X/J\A is monadic.

Proof. From Theorem 5.4, this proposition is equivalent to showing if A is one-

to-one on G then A is one-to-one on any subgroup.
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Proposition 5.5. Let X/ZK. be finitely generated. X/ZK is monadic if and only if

X/JH is monadic for every subextension J\\/ZK of X/ZK where [L : M] < oo, M

being the underlying field of ¿M.

Proof. If X/ZKis not monadic then D ^ (e). By Proposition 4.2, D is finite and

[L : L(D)] < oo. Clearly X/X(D) is not monadic.

The converse follows from Proposition 5.4.

Lemma 5.2. Let J\I{/ZK be a subextension of X/ZK such that the underlying

extension ofJH/ZKis Galois. If X/ZKis monadic and X/<=M is universally compatible

then J\A/ZK is monadic.

Proof. Let H = G(<=M). X is one-to-one on G and maps H onto itself. We want

to show X' is one-to-one on G/H (X'(gH) = X(g)H) or equivalently if g G G and

X(g) G H then g G H. If X(g) G H there exists h G H such that X(h) = À(g).

Hence, g = h.

Theorem 5.5. // X/ZK « monadic and X(C)/ZK is finitely generated where

C = C(G) then X/ZK is universally compatible.

Proof. X/X(C) is universally compatible. By Lemma 5.2, X(C)/ZKis monadic.

Hence, X' : G/C -* G/C is onto. Hence X(C)/ZK is universally compatible. By

Theorem 5.3, X/ZK is universally compatible.

Example 5.1. Theorem 5.5 implies that if X/ZK is finitely generated and

monadic then X/ZK is universally compatible. We now construct an example of

a monadic extension which is not universally compatible.

Let «[ = — 1 and for n = 2, 3,... let w„ be the primitive 2"th root of unity

which satisfies x2 — «„_, = 0. For n = 2, 3,..., co„_,<o„ is a primitive 2"th root

of unity. If Q is the field of rational numbers we can define inductively on Q(un)

an automorphism o„ such that a„(w„) = «„_, wn and o„ | ß(w„-i) = o„_x. Let AT be

U£i Q(o3„) and a the automorphism defined on K by the o„. Denote by I^the

difference field (K, o).

Let £, be a root of x2 — 5. £, G K, otherwise |, G Q(un) for some n and

£, G Q(a) where a is a primitive fifth root of unity. (See [6, pp. 203-208].)

K n ô(£i) = Q and K/Q and Q(ix)/Q are normal extensions, K and Q(ix) are

linearly disjoint over Q, and there exists an automorphism t of Q(¿,\)/Q such that

t(£i) = Í\. Hence there exists an automorphism a(1) of K(£x) such that <r(1)(li)

= £, and a<'> extends a. (See [3, pp. 12-15].) Let Xx be the difference field (L,,o(1))

where Lx = A(^ ). j?, /ZK is not universally compatible since it is finitely

generated and not monadic. In particular «p defined by <p(£] ) = — £, is a nontrivial

difference automorphism of Xx /ZK. By Theorem 5.2 any extension of Xx is not

universally compatible over ZK-

We inductively define a sequence of difference fields {Xn} such that Xn is an

extension of X„_x, Xn has underlying field L(£„) where £„ is a root of x2" — 5 and
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il = £„_!, and X„ has transforming operator a(n) where a(n)(£„) = w"£„ where a is

2 or 2"-' + 2.

Let J? be the difference field which is the union of the X„. X/D( is Galois and

by our above remark is not universally compatible. We now show X/D( is

monadic. If <p is a (difference) automorphism of X/D( then <p | X„ is an

automorphism of Xn/D( for each n. Let <p(£„) = uJ„£n where/ G {1,2,... ,2"}.

<P°(n)(tn) - <PK£J = «!X& where a = 2 or 2-' + 2. a<"> <*>(£,) = ^KÍJ

= (u>„_xu„)ju"£n. Since (pa'"' = o(n)<p we have to^ = wf** and w* = 1. Hence,

<p(£„_i) = <p(^) = (u>Í£n)2 = |„_i and (¡p | X„_x is the identity. Since n is arbitrary,

<)p is the identity on X.

Theorem 5.6. Let <^>H/SK be an inversive subextension of X/D( with underlying

extension of <=M/U( Galois. Then:

(1) The difference Galois group D2 of X/^M is a closed invariant stable subgroup

of the difference Galois group, Dx, of X/J(.

(2) There exists a natural monomorphism \p : Dx/D2 -* F3, where F3 is the

difference Galois group of ¿M/D(. If X/J\l{ is universally compatible then \p is an

isomorphism.

(3) If X/SX is universally compatible and xp is an isomorphism then X/J\l{ is

universally compatible.

Proof. (1) Let 77 = G(JVi). H is a closed invariant subgroup of G. F2

= F, n 77. Hence (1).

(2) We identify F3 with the subgroups of G/77 consisting of the elements g77

for which A(g) G 77. If qp : G —> G/77 is the natural homomorphism and g G F,

then A(g) = e G 77. Hence qp j F, is a homomorphism of Dx into F3 and its

kernel is F, n 77 = D2. Let \p be the monomorphism \p : F, /F2 -> F3 given by

<p. \p is continuous and a closed map. If X/J\A is universally compatible, so

A(77) = 77 and g77 G F3, then A(g) G 77 and there exists n G 77 such that

A(n) = A(g). Thus A(gn"') = e and gh~l G F,, ^(gn"1 D2) = g77. Thus ^ is an

isomorphism of topological groups.

(3) Suppose \p is an isomorphism and A(G) = G (i.e., X/D( is universally

compatible). Let n G 77. There exists a g G G such that A(g) = n. g77 G F3.

Since \p is an isomorphism there exists a g, G Dx such that g, = ghx for some

hx G 77. ghx = g, =/(g,) =f(ghx) = ghf(hx), so A(nf') = n. Hence A(77) = 77.

Babbitt's Lemma. (See [I, p. 67].) If G is of finite type, C(G) = G and G has no

closed invariant stable subgroups 77 such that the order of a limit group of 77 is

different from one or the order of a limit group of G, then G is benign.

Proof. Let <S be the set of all open invariant subgroups A' of G such that

ilJVi = (e) and lN(G) =? N'/N' n N\, <£ =£ 0, for if A is an open invariant

subgroup of G with DAk = e and lA(G) == n*_0 Ak/ n¡£¿ Ak then A'=

D¡J_0 Ak is in ¿S. Choose N G S whose index in G is minimal. If the monomor-
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phism <p : N/N n Nx —» G/N given by <p(gA n Nx) = f~}(g)N is onto we are

done, so we assume F = NN_X c G. U F = N then, by Lemma 5.1, A^ is stable.

Since (G : N) < oo, G and A have limit groups of equal order. Hence N = G,

contradicting F ^= G. Thus, we also assume N c F.

Let // = H Fk a closed invariant stable subgroup of G. The limit group of H

is (e); otherwise the order of a limit group of G is equal to the order of a limit

group of H and, by Theorems 3.1 and 3.2, (e) is the limit group of G/H which

implies (G : H) < oo. Since C(G) = G, H = G, a contradiction.

By Theorems 3.1 and 3.2, limit groups of G and G/H have the same order. F/H

and hence F defines a limit group of G/H; thus (F : F (~\ Fx ) > (N : N n Nx )

since lN(G) = N/N n A,. Now

(G : F D F,) - (<? : F)(F :Fnf,)>(G: F)(A : A n Nx)

= (G : NNx)(NNx : N) = (G : A).

Since N C F n Fx we also have (G : F n Fx) < (F : N). Hence N = F n Fx

and H F* = (e) so F defines a limit group of G. <p maps N/N n A¡ onto

NN_X/N = F/F n Fj. Since \lN(G)\ = \lF(G)\, lF(G) = F/F n F,. However,

(G : F) < (G : N), contradicting the minimality of (G : N).

Theorem 5.7. // G « o/ /;'«/7e type and universally compatible then D

= (g G G | f(g) = g}, the difference Galois group of X/ZK, and any limit groups of

G have equivalent composition series.

Proof. If the order of a limit group of G is one then G is finite. Since G is finite

and universally compatible D = (e) and the theorem follows.

Assume the theorem true for all groups G with limit groups of order less than

n,n > 1, and let G have limit groups of order n. By Theorem 3.2 there exist limit

groups A, B, E of G, C(G) and G/C(G) respectively and an imbedding <p of B into

A such that A/q>(B) s E. By Theorems 5.3 and 5.6 and Corollary 5.3, D/Dx

s D2 where D, Dx, D2 are the difference Galois groups of G, C(G) and G/C(G)

respectively. Since G/C(G) is universally compatible and (G : C(G)) < oo,

D2 = (e). Also E = (e). Hence, D — Dx and A sí B. We can assume, therefore,

that G = C(G).

If G has no invariant, closed stable subgroups H such that the order of a limit

group of H is different from one or n then by Babbitt's Lemma G is benign. By

Proposition 4.2, G has a limit group isomorphic to D and the theorem follows.

Suppose that H is a closed invariant stable subgroup of G with a limit group

of order k where 1 < k < «. Since H is of finite type C(H) is an open, invariant,

stable subgroup of H. There exists an open invariant subgroup A of G such that

N n H Ç C(H). (H : N n H) < oo and A' n # is an invariant subgroup of G.

The group generated by U fk(N n H) is an invariant stable subgroup of G. The

closure M of this group in G is a closed invariant stable subgroup of G contained
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in C(77). Hence M = C(77) and C(H) is an invariant subgroup of G.

The order of any limit group of C(77) is k. There exist limit groups X, Y, Z of

G, C(77) and G/C(H) respectively and an imbedding \p : Y —> X such that

X/xp(Y) at Z. Since C(77) is universally compatible, D/D3 s F4 where F3, F4

are the difference Galois groups of C(77) and G/C(H) respectively. By induction

F4 and Z have equivalent composition series as do F3 and \p( Y) and thus so do

F and X.

Corollary 5.4. If G is monadic and of finite type then G is finite.

Proof. F = (e). By Theorem 5.5, G is universally compatible and by the above

theorem its finite groups are of order one. Hence G is finite.

Example 5.2. We now give an example of a finitely generated extension X/D(

which is not benign and whose core, X(C(G)), is %

Let D( be the difference field whose underlying field is C(z) where C is the

complex numbers and z is transcendental over C and whose transforming

operator is the automorphism a of C(z) given by a(a) = a if a G C and

o(z) = z + 1. Choose elements uk, vk, wk for k = 0, ±1,... in the algebraic

closure of K such that u\ = z + k, v\ = uk + uk+x and wk = uk — uk_x for each

integer k. Let F = K({uk,vk \ k = 0,±1,...}) and let a be the automorphism of

L which extends a on A and such that a(vk) = vk+x and a(wk) = wk+x for each

integer k. Let X = (L, o).

X/3( has core D{ and hence is universally compatible. (See [4, pp. 306-307].)

X/D(is finitely generated; in fact X = D(<£v0, w0». By Theorem 5.7 the order

of F, the difference Galois group of X/SX, is equal to the order of any limit group

of G, the Galois group of L/K, which is equal to the limit degree of X/% The

limit degree of X/lXis 8. (See [4, p. 135].)

F consists of the automorphism q>jk, \pjJc, j = 1, 2, A: = 1,2, defined by

<PjAVn) = (-iy«V <P,,*K) - (-l)*w„, ¡pM(vn) = (r-iy/t/,, and ^(w„) = (-1)^

where z'2 = -1. To see this let ¿M = JTif «m0» a benign limit degree two

extension of .% The difference Galois group of ¿M/D< consists of two elements,

the identity, <p, and \p where \p(un) = -u„ for all n. X/J\l\ is benign and hence

universally compatible. By Theorem 5.6 every element in D is an extension of

either <p or \p. There are four possible extensions of each and they are given by

%,k' ^j.k> /» k = 1,2. Since \D\ = 8, F must consist of exactly these automor-

phisms. Corollary 4.2 implies that if X/3(is benign then G s X^,^ Dk where

Dk = D for all k. Since F is abelian, G would also be abelian. To show X/D(not

benign we construct an isomorphism t of L/K such that T<p3 = «¡p3t.

Let p be an automorphism of K(... ,u_x,u0,ux,... )/K defined by p(u2n)

= u2„, p(u2n+x) = -u2„+\ for each integer n. Extend p to an automorphism t of

L/K. If t(v0) = a then a2 = t(^) = t(w0 + t/,) = u0 - ux, so u = ±w0. Now

<P3t(í;o) = <p3(±w0) = ±w0, but Ttp2(v0) = t(-vq) = TwQ.
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