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ON EMBEDDING SET FUNCTIONS INTO COVARIANCE FUNCTIONS(>)
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G. D. ALLEN

ABSTRACT. We consider any continuous hermitian kernel M (A, A') on £P x <P where

£P is the prering of intervals of [0,1]. Conditions on M are given to find an interval

covariance function K (A, A') so that K(A, A') = M (A, A') for all nonoverlapping A and A'

in <P. The problem is solved by first treating finite hermitian matrices A and finding a

positive definite matrix B so that b¡¡ = a,¡, i =£j, so that tr B is minimized. Using natural

correspondence between interval covariance functions and stochastic processes, a decom-

position theorem is derived for stochastic processes of bounded quadratic variation into an

orthogonal process and a process having minimal quadratic variation.

1. Introduction. By a well-known theorem, there is a correspondence between

second order stochastic processes and hermitian functions of two variables, of the

nonnegative type (i.e. covariance functions). It is easily shown that a similar

correspondence holds for the nonnegative definite functions of two variables and

nonnegative biadditive functions of intervals (also called covariance functions).

In this paper we consider hermitian biadditive functions of intervals, which are

additionally of bounded variation, and discuss when they can be embedded into

covariance functions, also of bounded variation. The study of this problem leads

to a decomposition theorem for a class of stochastic processes of bounded

quadratic variation. This paper also provides a step toward the study of

nonorthogonally scattered measures.

2. Definitions and preliminary results. Throughout this paper all stochastic

processes X(t) are of the second order, with / ranging in [0,1].

If A' and A" are two subintervals of [0,1] which are adjacent but not

overlapping, we write A = A' + A" to be the smallest subinterval of [0,1]

containing A' and A". If the expression A = A' + A" is written it is assumed that

A' and A" are adjacent but not overlapping. Similarly if A = 2,1i A, it is assumed

that Aj and 2£J 4, for each y < n, are adjacent but not overlapping.

By a hermitian biadditive function of intervals we mean a function K(A, A') of

two arbitrary subintervals of [0,1], such that

K(A,A') = K(A',A),

and if A = A, + A2 then K(A, A') = K(AX,A') 4- K(A2,A') for all A' in [0,1]. In all
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that follows such a fonction will, for brevity, be called an interval function.

A partition 17 of [0,1] is a decomposition of [0,1] into a finite number of

nonoverlapping subintervals A,, ..., A„. If 17' = A\,..., A'm is another partition

of [0,1] and for each i, A, c Ay for some/, we say D ' is a refinement of 17 and

write D' < D. Any partition D and interval function K generates a matrix

(A(A,, A,)), /',/ = 1,..., n. We define a special sequence of partitions {17„} to be

the binary partitions when 17„ is composed of 2" subintervals having points of

division the numbers k/2", k = 0, 1,..., 2". The elements of 1/"n, from left to

right, are denoted by A", /' = 1,..., 2".

If for every partition 17 = A,,..., A„ the matrix (K(A¡, A,)) is positive semide-

finite then we say K is of the nonnegative type. If A(A, A) > 0 for every A c [0,1]

we say K is nonnegative.

Consider any stochastic process X(t). For any subinterval A = (i0, tx) we define

AA = A(/,) - A(/0). For any two intervals A, A' of [0,1] we define the interval

function

A7(A,A') = E(AX,¥X).

M (A, A') is called the interval covariance function of A. We now prove the

Theorem 2.1. If X(t) is a stochastic process, the covariance function M(A, A') is

an interval function of the nonnegative type. Conversely, if K(A, A') is an interval

function of the nonnegative type, then K is the interval covariance function of some

stochastic process.

Suppose we have a hermitian function T(t,t') of two variables. If for every

finite sequence tx < t2 < ... < tn the matrix T(thtj) is positive semidefinite we

say T is of the nonnegative type. If X(t) is a stochastic process, the function

A(t, t') = (X(t), X(t')) is also called a covariance function. Our theorem is then

analogous to the following classical result ([1], [2]):

Theorem 2.1'. 7n order that the hermitian function T(t, t') be a covariance function

it is necessary and sufficient that it be of the nonnegative type.

As Theorem 2.1' is well known we shall demonstrate the equivalence of the two

theorems. That is, we shall prove the

Lemma 2.2. IfT(t,t') is a covariance function on [0,1] X [0,1], then it defines an

interval function K(A, A) of the nonnegative type. Conversely, if K is an interval

covariance function it defines a function T(t, t') of the nonnegative type.

Proof. The first statement is trivial, so we pass on to the converse. That is,

ATA, A') is a covariance function. For tx < t2, define A, = (0, tx) and A2 = (tx,t2).

Then define
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A(0,0) = A(0,/) = A(/,0) = 0,

A(tx,t2) = K(Ax,Ax) + K(AX,A2),

A(t2,tx) = K(Ax,Ax) + K(A2,Ax).

The function A is well defined and hermitian. It remains to show that A is of the

nonnegative type. Let tx < t2 < ... < tn be any numbers in [0,1] and p„

i = 1,..., n, any set of complex numbers. Define

A, = (0,?,), A2 = (i,,/2),..., A„ = (tn-x,t„).

Then, using biadditivity of K, if r, < tj,

m,tj) = 2 ATA*, A,) +Ü K(Ak,A,)
k=\ *=1 /-l

and

(2-3)        g  A^tj^pj = 2 ± (± K(AkAk) +±Í A-(AtjA,))p,.p,,
i,j=l j=\ i=\   V*=l jfc=l /=1 J

Collecting terms, we find the coefficient of AT(AmAm) is 2<j>m P¡Pj an^ the

coefficient of K(Ak, A,) is 2ÍU 2/1-/ PiPj- Defining ok = 2ÍU Pt we can rewrite

(2.3) as

•J-)

and this quantity is nonnegative. Thus the lemma is established. By applying

Theorem 2.1' to A(tx,t2) we establish Theorem 2.1.

We say that an interval function K can be embedded into an interval covariance

function if there exists a covariance function M such that whenever A and A' are

nonoverlapping subintervals, K(A, A') = M (A, A').

An interval function K is said to be of bounded variation if

sup  2   |AT(A, A)| < oo

where the supremum is taken over all finite partitions of [0,1]. A stochastic

process is said to be of bounded quadratic variation if its covariance is of bounded

variation. We define the quadratic measure w(t) of K(A, A') as the lim sup of the

sum 2ae a, AT(A, A) over partitions 17, of (0, t), as the norm of D, tends to zero.

Similarly we define the quadratic measure of a stochastic process as the quadratic

measure of its interval covariance.

3. The algorithm and main results. In this section we answer the question as to

when a nonnegative interval function of bounded variation can be embedded

into a covariance function of bounded variation. This question necessitates the

study of the effect of the values of the interval function for nonoverlapping
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intervals on the values for coincident ones. Since by Theorem 2.1 we need

consider only finite partitions and hence finite matrices, we are really asking

what is the effect of the off diagonal terms on the diagonal terms. More precisely,

if A = (a¡j) is an nth order hermitian matrix with a¡¡ = 0, what diagonal matrix F

must be provided in order to make A + D positive semidefinite? In fact, what is

the smallest (in some sense) F that can be added? For a nonnegative interval

function and a partition 17= A,,..., A„, the quantity for computing the

variation is 2"-i ^(A,, A,), which is the trace of the matrix (K(A¡, A,)), /',/

= 1,..., n. Thus it is the trace which is to be as small as possible for our

problem. We will consider for the time being only matrices.

Let A be an nth order hermitian matrix with zeros on the diagonal. Let F' be

a diagonal matrix, and set A' = A + D'. We say that A' is a minimal positive

semidefinite matrix generated by A if (i) A' is positive semidefinite, and (ii) if

A" = A + D"', where F" is a diagonal matrix, then tr A' < tr A". Note that there

is no guarantee of unicity. We intend to construct a matrix F so that A + D will

be a minimal positive semidefinite matrix.

To that end, suppose that A is as above. Let {x,} be a dense set of vectors on

the unit sphere of C. In coordinates x¡ is given by (xn,xi2,... ,xin). Consider the

following set of problems, Pm :

Find real numbers a,"1, /' = 1,..., n, such that

p c#m = 2"-i a? is a minimum, subject to

2 afKI2 > ~(Axk,xk), k=l,2,...,m,and a? > 0.

Let A,, /' = 1,..., n be the eigenvalues of A. Then each problem Pm is a linear

programming problem with a feasible solution, namely a,"1 = d where d

= max] <,<„(— A,). This is clear, for then

±aT\xki\2 = d
/-i

for every unit vector, and

inf — (Ax,x) = d.
IWI-i

Thus, we may assume 2 aT < n^, a uniform bound for all m. It is easy to see

that <Jlm < ¿4m+l, since the difference is due to one additional constraint. This,

together with 2 aT < nd, implies that lim <Flm = <Jf exists and is bounded. Now

extract a subsequence {m'} so that {a?} converges for each /'; call the limits {a¡},

i = 1,..., n. Define

A' = A + diag(a,,... ,a„).



ON  EMBEDDING SET FUNCTIONS  INTO COVARIANCE FUNCTIONS 27

The matrix is clearly positive semidefinite. That it has minimal trace is clear from

construction.

Using a standard result from the theory of linear programming we have that

the solutions for each Pm form a closed, bounded, convex set, Cm in R„. Also

Cm D Cm+\. Thus the set of solutions to the limit problem is just D Cm = C,

which is also convex. Since tr Am = 0, C is separated from the origin in Rn. Thus

in the euclidean norm on R" there is a unique element of minimal norm, still

called (ax,... ,an). We call the matrix A' determined from this element the

minimal positive semidefinite matrix generated by A. It is not known if A' can be

obtained in a finite number of steps.

To recapitulate, our algorithm is the following sequence of steps: (i) Consider

the hermitian matrix .4 - diagpl); (ii) find using the above procedure the positive

semidefinite matrix A' so that A — diag A = A' — diag A' in such a way that if

another positive semidefinite matrix A" satisfying A — diag A = A" - diag A" is

exhibited then tr^4' < tr A"; (iii) among all A' = (a'y) found in step (ii) select

that one satisfying 2"=i (a'a)2 = minimum. This matrix A' is called the minimal

positive semidefinite matrix generated by A.

Before applying the algorithm to interval functions we make the following

remarks:

(1) If A' is as constructed in the algorithm then it has at least one zero

eigenvalue.

(2) If A(t) is continuous in t, t in a metric space, then A'(t) is continuous. (A(t)

is a symmetric n X n matrix function of t.)

(3) If XX,X2,..., Xn are the eigenvalues of A and ax,..., an the diagonal

elements of A', then 2 I A, I < 2 2 a,.

The proofs of (1) and (3) are elementary so we prove (2). Using a known result

from linear programming the set-valued functions Cm(t) are continuous in t, and,

in fact, because S is compact, the Cm(t) are uniformly continuous in t. As in the

case where A is constant, we have Cm+l(t) c Cm(t) for each / and m. We define

C(i) = Hm Cm(f). We wish to show that C(t) is continuous, that is, for any e > 0

there is a p > 0 so that S(C(t), C(t')) < e if d(t, t') < p. Here <5(-, •) is the usual

Hausdorff metric, and d(-, •) is the metric on S. Also, we know that for every

e' > 0 there is an M and a p' > 0, <5(Cm(r), C(t)) < e' and d(Cm(t), Cm(t')) < e'

if m > M and d(t, t') < p. Application of the triangle inequality gives

Ô(C(t),C(t')) < 8(C(t),Cm(t)) + 8(Cm(t),Cm(t')) + ô(Cm(t'),Cm(t)) < e

if we take e' = e/3. This proves the continuity of C(t).

Now, as in the case of constant A, we define a(t) = (ax(t),... ,an(t)) to be that

vector in C(t) which is closest to the origin (in R"). Since C(t) is closed, convex,

and disjoint from the origin, existence of a(t) is assured. That this selection is

continuous is known.

We turn now to nonnegative interval functions and the original question of this
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section. Let 17 be a partition of [0,1] into n subintervals A,, A2,..., A„. Consider

the nth order matrix A = (a¡j) defined by

ay= K(A,,Aj),       i^j,

= 0, /=/.

Let A' be the minimal positive definite matrix generated by A. Now let {17,,} be

any sequence of partitions, 17n = AY, A2,..., A£,(n), with 17„ < <D„_X, and lim|17j

= 0. Then each U„ generates a matrix An, and An generates A'„, by the algorithm.

If lim tr A'n < A7 < oo, we say K satisfies a PD condition relative to {C7„}. If

lim tr A'„ < M < oo for every such sequence {17,,} and M is fixed, we say that K

satisfies a PD condition. If when A, D A2 d ... and D A, is a point

lim   2   aj = 0,
'     A,"cA,

we say that K satisfies a zero PD condition.

In the following results we impose two conditions on the interval function

A(A, A'): (wl) the quadratic measure wk(t) it generates is continuous, and (w2)

the quadratic measure wk(t) can be generated by any decreasing sequence of

partitions 17^, of [0, t] with lim|17B'| = 0. With these conditions we can prove the

Lemma 3.1. Ifwk(t) is as above and '/{17n} is a decreasing sequence of partitions

such that lim 117,, | = 0, then for every integer p > 0,

(3.2) Jim   2 2 A(A',A") = 0.
AeC7»      A\A'ÉC7„+,,;A',A"cA;Ay=A"

Also, if 17 is any partition of A

hm 2        A(A',A") = 0.
M->0 A',A"e^;A'^A"

Proof. We know that

lim   2   ^(A- A) = lim    2    K(&> A)

and the quantity (3.2) is the difference

2   A(A,A)-    2    *(A,A).
As O, Ae C7,+,

This gives the result. The second limit is an immediate consequence of the

conditions (wl) and (w2) also.

Lemma 3.3. If X(t) is a stochastic process with covariance function K(A,A'), and

if the quadratic mecsure wk(t) satisfies the conditions (wl) and (w2), then K(A,A')

satisfies a zero PD condition.
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Proof. Let D be any partition of [0,1] with small norm. Then

w(l)=  2  (AX,AX),
Aea

and further by the continuity of w(t) each (AX, AX) is small. As |C7| —> 0,

2  (AX,AX)2^0.

Now application of the algorithm to the covariance K(A, A') of X(t) gives that for

each D the constructed matrix must be dominated by (wl). And also, the sum of

the diagonal elements squared must be dominated by

2  (AX, AX)2
Aea

This gives the lemma.

Before stating the main results we prove

Lemma 3.4. Suppose A is an nth order hermitian positive semidefinite matrix, and

suppose 0 = q0 < qx < . . . < qp = m are integers. If we define

ii ii
bij =2 2        alm,

l=qi-\+\ m=qj-]+\

the pth order matrix B = (b¡j) is also hermitian and positive semidefinite.

Proof. Consider any vector x G Rp. Then x can be embedded into Rm in the

following way:

x = (xx ... xp) ^ y = (xx ... xx,x2 ... x2,... ,xp ... xp)

where x¡ is repeated r¡ times and r¡ = q¡ — q¡_x. It is clear that (Bx,x) = (Ay,y),

and the lemma is proved.

In the following theorem ÂTA, A') satisfies the conditions (wl) and (w2)

Theorem 3.5. If K(A,A') is a continuous nonnegative interval function of bounded

variation that satisfies a zero PD condition, then K can be embedded in a continuous

interval covariance function, also of bounded variation.

Proof. We intend to construct a covariance function M (A, A') for all A, A'.

First, define M(A, A') = K(A, A') for all A and A' nonoverlapping.

To define M on coincident intervals we consider the subsequence rJ„ of the

binary partitions. As described above each On describes via K a matrix A„, for

which A'„ is the minimal positive definite matrix generated by A„. Then

substituting the diagonal elements of A'„ for those of ATA", A") we arrive at an

interval function Kn(A, A'), defined for all A and A' which are intervals or sums

of intervals in lJ„. In fact for these it is biadditive and if <P = (w, ... -nm) is any
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partition of [0,1] having intervals with endpoints contained by those of 17„, the

matrix K„(tr¡,TTj), 1 < i, j < m, is positive semidefinite by Lemma 3.4. To

complete the definition, define A„(A, A) = 0 if A is not of the form above, and

define K„(A, A') = A (A, A') if A and A' are not overlapping.

Let S = {A,,A2,...} be an enumeration of all the intervals of all On in

nonincreasing size. Then any A c [0,1] can be written either as an element of 5,

as a finite sum of elements of S, or as a limit of finite sums of elements of S.

We now define A7(A, A) for A G 5. A„(A,, A,) exists for all n and is bounded,

because of the PD condition. Define Af(A,,A,) = lim A„(A,, A,). This defines

A7(A, A) for all A G S. With these values we define Af(A,A) for all other

A c [0,1].
Suppose now A G S and A c A', so that A' = A + A, + A2, each pair of A, A,,

A2 nonoverlapping; define

A7(A,A') = A7(A,A) + A7(A,A,) + A7(A,A2)

= A7(A,A) + ATA, A,) + A(A,A2).

If A , A', and A" are in S so that A = A' + A" we must show that

M (A, A) = A/(A',A') + A7(A",A") + 2 Re A7(A',A").

We know that, for any 8 G S,

M(8,8) = lim Kn(8,8),

and for A large enough, n > A implies

A„(A,A) = A„(A',A') + A„(A",A") + 2 Re A(A',A").

Taking the limit gives the desired equality. For finite sums of A G S, say

A = 2"=i à], we also have

A7(A,A) = 2 MiA't,^) + 2 m(a;,a;).
/-I w

Furthermore, if A = 2£i A" is another representation of A it is clear, by taking

a common refinement of the two partitions, that

M(A,A) = 2 M(A"i,A"i) + 2 a/(a:,a;).

What remains is to define M (A, A) for all other A. So, let A c [0,1]. Then A

can be written as a limit of finite sums 8n = 2"-i A-í or" A, e $• ^e define

A7(A,A) = ]im M(8n,8„).
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To show this limit exists we note that

K(sn,s„) = 2 a-(a;,a;.) + 2 k(A],a'j).
/=i m

By first the continuity and second the nonnegativity of K the following two limits

exist:

Jim K(8H,8„) = ATA,A),       hm ± K(A'hA't).
i-1

Therefore, linv^ 2,"^, K(AhAj) exists. Now

Jim M(Sn,Sn) = Jim(2 M(A'hA',) + 2 M(A;,A;))

= Jim 2 M(A'i,A'i) + Jim ± M(A\,A'j).
1=1 ¡=M

By the nonnegativity of M (A,, A,) and the remark above we have that

limn_xM(ô„,ô„) exists and is finite. We must establish that M (A, A) is well

defined. So, suppose also that A = linv^p,,, where p„ = 2"=i A", and tnat each

A] c A"j, for somej. Then the limits are clearly the same, that is

Jim M(ôn,Sn) = Jim M(Pn,Pn).

Now suppose ¿, = 2"=i A'/' gives a third representation of A, as n —> 00. Let pn

be defined in such a way that each A" c A¡ for some j and A" c A'" for some

k. It is now easy to see that

limM(fn,fn) = limA/(ôn,5„);

thus M is well defined.

If A c A', define

M(A,A') = M(A,A) + M (A, A' - A).

Finally if A = A¡ + A2, we have

M(A,A) = M(A,,A,) + M(A2,A2) + 2 Re A/(A,,A2),

by use of the usual interior limits, the continuity of K, the zero PD condition, and

Lemma 3.1. Thus, M (A, A') is now completely defined and is continuous by the

zero PD condition. It remains to show that M is of the nonnegative type. By

construction, M is positive semidefinite for any partition having binary points of

division. Now let D = A,,..., A„ be any partition. Then there is a partition H7'

with binary points of division, ôx, S2,..., S2n_x, where <52,_,, / = \,..., n, is

interior and a close approximation to A,, and S2, is the gap between ô2,_! and

ô2l+1. Now consider any sequence px,..., p2n_x of complex numbers, with p2, = 0

for each i. Then
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2 M(8i,8J)pipj = 2 M(82i_x,82j_x)p2Mp2j_x > 0.

If  1J'm  is a sequence of partitions of 2n - 1  elements, 8™,..., 82n„_x, with

82i_x c A, and lim|ô£| = 0 and lim S£_, = A,, we see that

hm M(8T,8f)piPj = 2 M(Ai,Aj)p2i_xp2j_x > 0.

Thus A7 is of the nonnegative type, and the theorem is proved.

Referring back to the proof of Theorem 3.5 we prove the

Corollary 3.6. lim,,^ 2, M(Ani,Ani) = lim^itr An).

Proof. Since tr A„ > tr A„_x, the limit on the right exists. Now for any n and

e > 0 there is an A7 such that for m > A7

(3.7)     2^(A?,A?)-2    2    Am(A;,A™) + 2        2        Km(Af,Amk)\<E.
< •    A'cAf i   ATtfctf-J^k

Now by Lemma 3.1 the rightmost term on the left side of (3.7) tends to zero as

n increases, and the middle term is tr Am. Taking the limit as n tends to oo gives

the result.

We say that a covariance function A (A, A') is minimal for its cross covariance

if for any covariance function L(A, A') arising from a process with orthogonal

increments the interval function A(A, A') — F(A, A') is not a covariance. With

Corollary 3.6 we can prove the

Corollary 3.8. The covariance function M (A, A) is minimal.

Proof. Let F(A, A') be the covariance of a process having orthogonal incre-

ments, and define M '(A, A) = A7(A, A') — F(A, A'). For n large enough we have,

by (3.7),

2 A/'(A?,A?) < tr Am + 8m + e - L(A°X)

where 8m is as small as desired. Then the trace of M' is not large enough to

support its cross covariance because tr(Am) is minimal. This gives the result.

Now let X(t) be any process of bounded quadratic variation with quadratic

variation satisfying (wl) and (w2) conditions. Then by Lemma 3.3 the covariance

function of A, A(A, A'), satisfies a zero PD condition. Hence applying Theorem

3.5 and Corollary 3.8 we obtain a minimal covariance function Af(A,A')

supporting the cross covariance of K. Taking the difference A(A, A') — M (A, A')

we get a nonnegative interval function F(A, A') representing a process with

orthogonal increments. We summarize this in the

Theorem 3.9. If X(t) is a stochastic process of bounded quadratic variation with

quadratic measure satisfying (wl) and (w2) conditons, its covariance can be written
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as a sum of two covariance functions, L(A, A') and M (A, A'), where L(A, A') is the

covariance of a process having orthogonal increments, and M (A, A') is the minimal

covariance supporting the cross covariance of X(t).

This theorem applies to the continuous process in Lip(<i>i, <J>2, o¥) where <#>, and

<p2 are self pairable, for which Young has defined stochastic integrals [4].
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