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THE SILOV BOUNDARY OF M0(G)
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WILLIAM MORAN

ABSTRACT. Let G be a locally compact abelian group and let M0(G) be the

convolution algebra consisting of those Radon measures on G whose Fourier-Stieltjes

transforms vanish at infinity. It is shown that the Silov boundary of M0(G) is a proper

subset of the maximal ideal space of A/0(G). The measures constructed to prove this

theorem are also used to obtain a stronger result for the full measure algebra M(G).

1. Introduction. Let G be a nondiscrete locally compact abelian group and G

its dual group. M(G) is the convolution algebra of bounded complex-valued

regular Borel measures on G and M0(G) is the subalgebra of M(G) (in fact,

M0(G) is an ideal) consisting of those measures whose Fourier-Stieltjes trans-

forms vanish at infinity on G. We shall prove:

Theorem 1. The Silov boundary dM0(G) of M0(G) is a proper subset of the

maximal ideal space of M0(G).

The corresponding result for M(G) was proved by Johnson [7]. Our methods

are similar to those of that paper, except in one important respect. To see how

the proofs differ, let us recall the basic idea of Johnson's proof. This will also

serve to introduce some notation.

The maximal ideal space A of M(G) can be regarded as a topological subspace

of the product Ylp¡eMiC) L°°(p) where each factor has the a(Lco(n),Lx(p))-

topology (see [9]). Thus, associated to each / G A there is a 'generalized

character' (jjl)(ieA/(G). For each p G M(G) let A(p) = {/,:/ G A}. Johnson

showed the existence of a measure p having the following properties:

(a)A(p) = {ay: \a\ < l,y G 6};

(b)C= cl{ay : \a\ = 1 orO,y G G}^=A(p).

Since the set C contains all j^ for/ G dM(G), we see immediately that dM(G)

is a proper subset of A. It is obviously crucial that there exists in A(p) a nonzero

constant function a with absolute value less than 1. In proving this, Johnson

makes explicit use of the fact that the Fourier-Stieltjes transform of p does not

vanish at infinity. Of course, the measure which we shall construct to satisfy (a)

and (b) must belong to M0(G). To circumvent the problem which arises, we use

a result of Brown and Moran [4], which in turn depends on Taylor's recent work

on critical points in measure algebras [11].

In §2 we reduce the proof of Theorem 1 to the construction of suitable

measures on a small class of groups. This construction is accomplished in §3.
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Professor C. C. Graham has independently obtained Theorem 1 for infinite

products of finite abelian groups. A proof of Theorem 1 has been found

independently by Dr. Gavin Brown. In fact, he constructs Hermitian measures

of the required type, and so is able to deduce that there is a symmetric maximal

ideal.of M0(G) which is not in 3M0(G). His paper is entitled M0(G) has a

symmetric maximal ideal off the Silov boundary, and is to appear in the Proceed-

ings of the London Mathematical Society.

2. The general case. We shall write A° for the maximal ideal space of M0(G).

Since M0(G) is an L-subalgebra (see [10]) of M(G), Sreider's characterization of

the maximal ideal space as the set of 'generalized characters' is available.

Moreover, a result of Taylor [10] applies to show that dM0(G) is contained in

the closure 77 of all / G A° having the property that |j¡^|2 = |^| for all

p E M(G). For any subset A of A°, we shall denote {f, : f E A} by A(li).

Lemma 1. Suppose that there exists a measure /x G M0(G) having the properties:

P(i)A°(,i) C{ay: \a\ < l,y G G};

P(ii) there exists a ( the constant function with value a ) in A°(fi)(0 < \a\ < 1).

Then 9M0(G)^Ao.

Proof. Under the hypotheses, 77(¡u.) is contained in the closure in the

a(L00(jLi),L1(iU.))-topology of the set

A={ay: \a\ = l,y G G} u {0}.

Because ¡i belongs to M0(G), any infinite sequence of characters has the constant

function 0 as a cluster point. It follows that H(p) is contained in A. Thus P(ii)

shows that H(p) ^= A°(ju).

We remark that P(i) and P(ii) are together equivalent to

A°(ji) = {ay: \a\ < l,y G G}.

The methods of [7] apply here to obtain P(i), whereas P(ii) requires new

techniques. For this reason we prefer to separate the two conditions. We shall be

largely concerned with establishing P(ii).

Lemma 2. Let H be a compact subgroup of G and suppose that there is a measure

lí E M0(G/H) satisfying P(i) and P(ii). Then there is a measure v in M0(G) which

also satisfies P(i) and P(ii).

Proof. For/in C0(G), we define

"(/) - / (//(* +y)dmH(y)Sj dit(x + 77),

where mH is the Haar measure of 77, so that the inner integral is constant on

cosets of 77. This defines a measure v E M(G). It is proved in [8] that v satisfies

P(i) provided that p. does.
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Let 77 : G -> G/H be the canonical projection and tt* : M(G) -* M(G/H)

the induced algebra homomorphism. To prove P(ii), we choose / G A£/w such

thatj^ = a (0 < \a\ < 1 ) and consider the algebra homomorphism

X^TT*(\r (/).

(Note that tt*(M0(G))   E M0(G/H)   [5, p. 480].)    Let g denote this homo-

morphism and fix a absolutely continuous with respect to p (a > 0,\\a\\ = 1).

Then

ô(g) = /g,do= f flidTT*a = a

because tt*o is absolutely continuous with respect to p. It follows that gv = a.

Finally, we have to prove that p E M0(G). (This has been tacitly assumed in

the preceding argument.) It is enough to note that unless y (G G) is identically

equal to 1 on H, v(y) = 0.

Any infinite compact abelian group has a quotient group isomorphic to T or

Ap (the p-adic integers) or an infinite product of finite cyclic groups. We shall

explicitly construct measures on these groups satisfying P(i) and P(ii) in §3. Thus,

from the above lemma, we obtain Theorem 1 for all infinite compact abelian

groups.

Lemma 3. Let H and K be locally compact abelian groups and suppose that there

exists ¡x E M0(H) satisfying P(i) and P(ii). Then the same is true of H X K.

Proof. It suffices to choose a measure v E LX(K) and consider the product

measure p X p on H X K. Clearly, p X /> G M0(H X K) and it is easily checked

that P(i) and P(ii) hold for this measure.

Lemma 4. Let H be an open subgroup of G with a measure p G M0(H) satisfying

P(i) and P(ii). Then regarded as a measure on G, p E M0(G) and satisfies P(i) and

P(ii).

Proof. That p satisfies P(i) and P(ii) is clear. Moreover since (G/H)A is

compact we see immediately that p G M0(G).

We shall discuss the case when G = R in §3. Since any locally compact abelian

group has an open subgroup of the form R" X K where K is a compact group,

the proof of Theorem 1 will be completed when we have proved it for the

particular groups studied in the next section.

The final result of this section is fundamental to the construction of the

measures in these particular cases. All of these measures are infinite convolutions

of discrete measures. Using this fact and the results of [4] we obtain a sufficient

condition for P(ii) to be satisfied.

Lemma 5. Let p be an infinite convolution of discrete measures on the compact

abelian group G. Suppose that p G A/0(G)(p > 0, ||p|| = 1) and satisfies P(i) and

that p" is singular (to Haar measure) for all positive integers n. Then p also satisfies

P(ii).
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Proof. According to Theorem 2 of [4], ii satisfies one of the following two

statements:

(a) ¡u" is singular to every translate of um unless n = m;

(b) there is a finer locally compact group topology t on G such that

n" E Lx( G, t) for some positive integer n.

If (b) holds then evidently ii G M(G,t). However, M(G,t) n M0(G) = {0}

unless t is the compact topology (see [5, p. 481]). It follows that if (b) holds, some

power of w belongs to Lx ( G ), and this contradicts the hypotheses of the lemma.

We may assume, therefore, that jti satisfies (a). This being so, the spectrum of it

as a member of M(G) and a fortiori as a member of M0(G) is the unit disc (see

[1, Theorem 2]). (As stated, this theorem requires more conditions on it. However,

the proof only requires that u satisfies (a).) On the other hand, assuming that P(ii)

is not satisfied but P(i) is, the spectrum of u is

{a(i(y) : \a\ = l,y G G} U {0}.

Since |j£t(y)| > \ for only finitely many members of G the spectrum of it cannot

be the unit disc in this case, and we have obtained the required contradiction.

3. The construction of measures in M0(G). Although the methods of construct-

ing these measures are similar in each of the cases, there are sufficient differences

to unduly complicate any attempt at a unified treatment. For this reason we shall

present separate discussions of each of the cases, at least until we have

established that /x G M0(G) and p" is singular to LX(G) (n = 1,2,3,... ).

I. G = n^=i Z(&„). Let e„ be a generator of Z(k„) considered as a subgroup of

G, and let, for 0 < f < \,

o„U) = (*«"' + O8(0) + *2 (*«"' - ft*« - i)-')S(A).

Thus a„(f) is a discrete measure on Z(k„) C G. Now, for any decreasing

sequence Ç = (f„) of positive real numbers (f„ < 5), we define

m

\(n,m;$) = •*  ar(fr)       (« = 0,1,2,... ;m = 1,2, ...,00)
r=n+1

and

Mo =*o,n) = ho, », n.

If y G G and is not identically equal to 1 on Z(kn), a„(£)A(y) = ££„(*« ~ O"1-

Using this, it is easy to see that \(£ ) G M0(G) if and only if fis a null sequence.

Of course, if A(f ) does not belong to M0(G), then all of its powers are singular

to L'(G) (see [4]). Let

Fn = |(*«) e ft z(*«) : JCi = x2 = x3 = ... = x„ = 0|
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and Û («) be the collection of all subsets of G which are finite unions of translates

of Fn. Note that U^ 0(ri) is a basis for the closed sets of G.

We can now begin the construction of p. Fix a sequence (aT) of positive real

numbers decreasing to zero (ar < î). For each positive integer r, let (a(r)) be the

constant sequence (ar,ar,ar,...). Then A(a(1)) is singular so that there is a

closed subset Jx of G such that

M«(r)X4) > i.        m(Jx)<\.

(Here m denotes the Haar measure of G.) Furthermore, Jx can be chosen to

belong to i7(«(l)) for some positive integer «(1). Suppose that «(1), «(2),...,

n(k) and Jx, J2,..., Jk have been defined with J¡ E û(n(i)) and «(1) < «(2)

<...<«(&). Consider the measure

/> = A(0,«(1 );<*<'>) * A(«(l),«(2);a<2>) *   ...   * X(n(k - l),n(k),a^)

* X(n(k), oo;a<*+1>).

This is of the form A(£) for some sequence £ which is not a null sequence. It

follows that there exists a closed set Jk+X such that

PJ(Jk+i)> \-(k + 2)~x        (j= 1,2,...,k),

and

m(Jk+x)< (k + 2)-'.

Further, we may assume that Jk+X  belongs to û(n(k + 1)) for some integer

n(k + 1 ) > n(k). In this way we define inductively a sequence (n(k)) of positive

integers and a sequence (Jk) of closed subsets of G.

Let «(0) = 0,

p=* X(n(k- l),«(/c);a<*>),
k = \

k
pk = *X(n(p - l),«(p);a<^),    and

rt-  *   A(«(p- 1 ),«(/>);«<'>),
p=k + l

so that p = fik * pk (k = 1,2,3,...).

By construction, p = A(£) for a null sequence £ and so belongs to M0(G).

Suppose that pr is not singular. Since m(Jk) -» 0 as /c -* oo, it will follow that

(M'Mt))*-ï,2,... 's bounded away from 1. However, nr(Jk) = prk * pk(Jk) and pk

is concentrated on Fk. Thus

V-k * vrk(Jk) = JFk VkUk - x)dp[(x) = prk(Jk)
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and in a similar way,

(1) ,i'(Jk) = fik(Jk) = ffk prk(Jk - x)dXinik),œ;a^y.

The last expression in (1) is just

A(0,«(l);a<»)r * \(n(l),n(2);aWy *  ...   * X(n(k - 1), oo ;<*<*>)'(./*)>

which is greater than 1 - (/c + 1)~'. This contradicts our earlier statements

concerning ¡xr. We have shown that ¡i E MQ(G) and ¡ir is singular for all positive

integers r.

II. G = Ap. We regard G as the space of all sequences (xn) of integers with

Q < xn < p — I [6, §10]. Let e„ be the sequence with 1 in the nth place and 0's

elsewhere. Then ex is a topological generator for G and p"~xex = e„. Let

°n(n = (/>-■ + ns(0) + s' (/>-' - sip - i)-l)S(jen),

for 0 < f < 5. As before, if (f„) = £ is a decreasing sequence of such numbers,

we define

m

\in,m;l) =  * ok($k)       in = 0,1,2,... ; m = 1,2,..., 00)

andX(i")-M0,oo;í).
If y is a continuous character G defined by y^) = exp 2miIp~n where

0 < / < P - 1, then

a?mA(Y)=l        (?>/i),

o-„(nA(y) = fti + (/>- I)"1)

and

KU)A(y) - 1| < «p'-'-Kp - 1)/        iq ^ «)•

Thus, if J, -» 0 and n > A,

|X(iT)A(Y)l < |a»(nA(Y)l <U1+/>-')

so that A(£) belongs to Af0(G). Conversely if £„ > « for all n and y„(e,)

= exp 2irip~",

\Hij\t.t > (S 0 -*p-<-lip- 1 ))î„(i + />"')
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and the right-hand side is bounded away from zero as « -* oo.

Let

Fn = {(x„) : xx = x2 = ... = x„ = 0} = cl(gp(<?B+1))

and ú(ri) be the collection of all finite unions of translates of F„. Precisely the

same induction procedure now applies to give a measure p G M0(G), p = A(£)

where £ is a null sequence and p" is singular to Haar measure (« = 1,2,3,... ).

The proof given in case I only requires F„ to be a subgroup on which p„ and

A(«, oo ; f ) are concentrated.

III. G = T = R/Z. Here let e„ = 2~" and

°„(0 = G + O5(0) + (i- f)5(0-

Let X(n,m;$) and A( f ) be defined as in I. It is already known that X( f ) belongs

to A/0(G) if and only if fis a null sequence (see [3]). Let us define Fn = [0,2"")

and 0(ri) as the set of all finite unions of translates of F„ by members of the

subgroup generated by e„. Although the sets in û(ri) are not closed, it is clearly

possible to carry out the induction to obtain a sequence (n(k)) of positive integers

and a sequence (Jk) of subsets of G having the same properties with regard to the

measures X(n,m;$) as in I. In trying to show that the powers of the constructed

measure p are singular to Haar measure, a more serious difficulty is encountered.

This is that F„ is no longer a subgroup of G, so that the argument which justifies

the singularity of ¡xr in the preceding cases fails to work here. To deal with this

problem, we first have to choose Jk with smaller Haar measure. Thus, for a fixed

decreasing null sequence (ar) we define inductively a sequence (n(k)) of positive

integers, and a sequence (Jk) with Jk E <3(nk) such that

X(0,n(\);a^y * X(n(l),n(2);ar *  ...   * X(n(k - 2). -(Ac - l);a<*-'>)'

* X(n(k- 1), oo;«<*>)'(/*) > 1 -k~\       (1 < r < k)

and m(Jk) < k~\2k + l)"1. Now let Ik = UJL» (Jk +je«k)), so that Ik E Û<k)

and

m(Ik) <   2 m(Jk +jem) <kx.
j—k

We define p, ¡ik, pk as in I. Note that vk is concentrated on F^k) so that pk is

concentrated on U/_0 (E„(k) + Jen(k))- in fact> there exist positive real numbers

ßor), ßV, ■■■, ßlr) (ßjr) = K(*!tk) +jen(k))) such that 2JL« tf> = 1, and for all

J E ß(n(k))

(2) K{J) = {±ßr)KJen(k)))(J).
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Similarly, \(n(k), oo;aw) is concentrated on Fnçk); so that we can find positive

real numbers ■n0r), Tj[r),..., tj>'> such that 2J=o Vjr) ■ 1 and for all/ G û(n(k)),

(3) A(n(*),oo; a<*>)'(/) = ( 2 Tjf5(/e„w))(/).

In this case, Tjjr) = \(n(k),cc;aW)r(Fn(k) + jen(k)).

If 0 < /, / < r < k, Jk - jen(k) C 4 - Mk*) so that

(4) /i*(4 - lem) > 8(jen(k)) * prk(Jk).

From (3), we obtain

(Íf«(^)) * f»*)(J*)-(M*  * X(#i(*),oo;aC*>))'(./*) > 1 -/r1

which, combined with (4), gives

(5) ¡irkilk - ie<k)) > 1 - k-\

for 0 < / < r < k. However, from (2) it follows that if J E û(n(k)),

fV)-(£ßPKtowl * ti)(J)

so that, with (5), we have

Mr(4) = 2 ßP^ih -Jem) > 1 - *"'.
7=0

Since m(Ik) < Ar1 it is clear that all powers of ju are singular.

The property P(i) remains to be proved for the measures « constructed above.

We shall, in large part, rely on Johnson's arguments here. Before proving P(i), it

will be convenient to note that if we let, in II, k„ = p, and, in III, kn = 2, then in

all cases

o„(n = (*«-' + n«(0)+ 21 (*«"' - ft*« -1)-')«(je„)-

The proof of the following lemma can be abstracted from [7].

Lemma 6. Let li =*r^xon(Ç„) and let 77 be the subgroup generated by

{e„ : n — 1,2,...}. Suppose that all characters of 77 which satisfy

(6) f \bn9(U-bn^x\dan(U^0

for some sequence (b„) of complex numbers of absolute value 1 can be extended to

continuous characters of G. Then ¡x has property P(i).
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Of course, in our situation (f„) is a null sequence; using this, (6) becomes

k;1 <Sl|*(e.y - c„\ - 0,

where c„ = è„-1Vi •

If (A:„) is a bounded sequence c„ -* 1 and hence so does 0(e„). This is sufficient

to prove (when (k„) is bounded) that 9 can be extended to a continuous character

of G (see [7]). If (k„) is unbounded, then G is an infinite product of finite cyclic

groups and so 9(e„) is a Ac„th root of unity. If 9(e„) does not equal 1, then at least

half of its powers differ from c„ by j, so that

k;1 V \9(eHy - em\ >\.

It follows that for sufficiently large «, 0(e„) = 1 and so 9 extends to a continuous

character. In view of Lemma 6, p has property P(i) and so by Lemma 5 and the

construction of p, it is a measure of the required type. This completes the proof

of Theorem 1 for compact abelian groups.

It remains to deal with the case of the real line. Let p be the measure

constructed in III, but now regarded as belonging to M(R). It is well known that

p must belong to M0(R) [2, p. 388]. Let it : R -* T be the natural epimorphism

and 77* : M(R) -* Af(T) the induced algebra homomorphism. Then ir*(n) is

the measure of III. The argument given in Lemma 2 now applies to show that p

has property P(ii). That p also satisfies P(i) follows by an application of Lemma 6.

4. The Silov boundary of M(G). It is not difficult to adapt the above arguments

to give an alternative proof of Johnson's theorem on the Silov boundary of M(G).

In fact, we can obtain a stronger statement which is not obtainable using the

measures considered in [7]. In order to describe this we shall need to examine

some of the properties of the maximal ideal space A of M(G). There is a natural

semigroup structure on A which derives from the usual multiplication of members

of E°(n). Also if/belongs to A, then |/| defined by |/|M = |jf| (p G M(G))

belongs to A, as does/((/)/i =/f (ji e M(G)). Further, iff G A, we can write

/= 1/1« where « G A and |«|2= |«| (see [10]). Taylor has also noted that

l/l* G A for Re(z) > 0. For any subset 5 of A, we write T(S) for the smallest

closed subsemigroup of A which contains 5 and is such that if / G T(S), then

/« (as defined above)and \f\z (Re z > 0) also belong to T(S).

Theorem 2. T(dM(G )) is a proper subset of A.

Proof. Since M0(G) is an L-ideal every element of A°(p) is also in A(p).

Furthermore, the arguments of the preceding sections show that

A(p) C {ay: |a| < l,y G 6}.
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Thus A(jit) = A°(u) u {0}. However,

3A/(G)(u) C {ay : \a\ = l,y G G} u {0}.

This last set is invariant under the various operations described above so that

r(3A/(G))(/x) C {ay : \a\ = l,y G G} U {0}

and the result is proved.
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