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OSCILLATION, CONTINUATION, AND UNIQUENESS OF

SOLUTIONS OF RETARDED DIFFERENTIAL EQUATIONS

BY

T. BURTON AND R. GRIMMER

ABSTRACT. In this paper we present a number of results on continuation and

uniqueriess of solutions of the /i-dimensional system x'(t) =f(t,x(t)) + g(t,x(t - t(/))) for

t(/) > 0. We then give some necessary, some sufficient, and some necessary and sufficient

conditions for oscillation of solutions of the second order equation x" + a(t)f(x(t — r(t)))

= 0.

I. Introduction. During the last several years a number of exceptionally sharp

results regarding uniqueness, continuation, and oscillation of solutions of the

nonlinear second order differential equation

(N) x" + a(t)f(x) = 0

have been obtained. Atkinson [1] gave necessary and sufficient conditions for all

solutions of (N) to oscillate when a(t) > 0 and f(x) = x2""1"1 for « > 1. That

result was extended by Gollwitzer [11] to

(D) x" + a(t)f(x(t - r(t))) = 0

for a(t) > 0, t(/) positive and bounded, and/(x) = xy where y is the ratio of odd

positive integers and y^l, An example by Waltman [16] can be modified to

show that Gollwitzer's result will fail if r(t) is allowed to become unbounded.

The present authors have investigated (N) under the assumptions that xf(x)

> 0 for x t¿ 0, / continuous, and (usually) a(t) differentiable. We gave necessary

and sufficient conditions for:

(a) continuation of all solutions of (N) when a(t) becomes negative at a point

[5],
(b) uniqueness of the zero solution of (N) when a(t) becomes negative at a

point [6], and

(c) oscillation of all solutions of (N) when a(t) is monotone increasing and

a(t) > 0 [3] and [4].

This collection of results gives one a fairly clear picture of many of the

fundamental properties of solutions of second order equations of that general

type. To date, there are mainly only isolated and specialized results on the

specific nature of solutions of (D).
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In this paper we explore the possibility of extending the results of (N) to (D)

and show that this is usually possible. The results on uniqueness and continua-

tion extend as sufficient and necessary conditions respectively. One additional

improvement is made in the form of a necessary and sufficient condition for

oscillation of all solutions of (D) when a(t) > 0 and/(*) is monotone decreasing

for |*| large. This condition also holds when r(t) = 0, thereby providing a new

oscillation criterion for (N).

Preparatory to our work with (D), we obtain several preliminary results on

uniqueness and continuation of solutions of general n-dimensional systems.

A general discussion of existence for the initial value problem may be found

in Chapter 2 of [14].

2. Systems of higher order. We first consider the system of retarded differential

equations

( 1 ) x'(t) = u(t, x(t)) + q(t, x(t - r(t))),        '= d/dt,

and the associated system of unretarded equations,

(1)' y'(t) = u(t,y(t)) + p(t)

in which  u, q, p,  and r are continuous  functions  satisfying the following

conditions:

(a) t/ : [0,oo)xF"^ Rn.

(b)q : [0,oo)XFn^ R".

(c)p:[0,ao)-*Rn.

(d) t : [0, oo) -> [0, oo).

Theorem 1. Suppose that r(t) > 0 for all t in [0, oo) and suppose that every

solution of (I)' defined at any t0 > 0 can be continued as a solution of (I)' on [t0, oo)

for every continuous p(t). If x(t) is any solution of (I) defined on an interval

0 < fo < / <[ ij having continuous initial condition on F,0 = {s \ s = t — r(t) < /0}

U {t0}, then x(t) can be continued as a solution past tx.

Proof. As x(t) is a solution having continuous initial condition and, as r(t) is

continuous and positive, x(t - t(/)) is continuous on the closed interval [/0,'i]-

Thus, the function p defined by p(t) = q(t, x(t - r(t))) is continuous on the closed

interval [t0,tx] and can be extended to a continuous function on [0, oo). With p

defined in this manner, any solution y(t) of (1)' satisfying y(t0) = x(t0) can be

continued as a solution of (1)' past tx. But x(t) is a solution of (1)' on [t0, tx) and

hence can be continued to tx. That is, lim,_,-||x(')|| exists as a finite number.

According to Driver [9] (cf. also [14, p. 29]), the only way in which *(/) can fail

to be defined past /, is for lim sup,_,- ||x(f)|| = +oo. As this limit is finite for x(t),

the proof is complete.
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For many special equations such as the Liénard equation x" + <b(x,x')x'

+ -q(x) = p(t) it is known [7] that all solutions are continuable to +00 whenever

<b, 17, and p are continuous, <i> > 0, and xn(x) > 0 for x ^= 0. Hence, solutions

are still continuable when terms g(t,x(t — r(t)), x'(t — t(/))) are added. On the

other hand, the following result yields a continuation criterion for a wide class of

problems.

Corollary. Suppose that r(t) > 0 and that there are continuous functions W and

r, W : [0, 00) -> (1, 00) and r : [0, 00) -> [0, 00), such that \\u(t,x)\\ < r(t)W(\\x\\)

and Jq  (dv/W(v)) = +00. Then the conclusion of Theorem 1 holds.

Proof. Define t0, tx, and p(t) as in the proof of the theorem. Then define

F = max,0<,<,, ||p(/)||, f(t) = /•(/) + 1, and W(v) = W(v) + P. Thus, for / > t0, we

have \\u(t,y)~+p(t)\\ < r(t)W(\\y\\) + P< f(t)W(\\y\\). Now f0°° (dv/W(v)) = cc

implies that /" (dv/(W(v) + P)) = 00. Thus, it follows [12] that all solutions of

(1)' can be continued to +00.

Remark. For ordinary differential equations without a time lag, say system (1)',

the only way in which a solution y(t) defined on [í0, tx ) can fail to be defined past

tx is for linv,,- ||.y(i)|| = +00 (cf. [8]). This is a very important and useful property

and is one which is not generally shared by solutions of (1) whose noncontinua-

ble solutions merely satisfy lim supr_(-1|*(/)|| = +00. The following result gives

sufficient conditions for the stronger property to hold for (1).

Theorem 2. Suppose that ||h(í,;c)|| < A(0IM| for all (t,x) E [0, 00) X R" and

some continuous function « : [0, 00) —> [0, 00). Let x(t) be a solution of (I) defined

on [t0,tx) and having continuous initial condition. If x(t) cannot be defined past tx,

then lim,_„- \\x(t)\\ = +00.

Proof. We first show that for any sequence {/„} tending strictly upward to /,,

we can find a sequence {/*} tending strictly upward to /) with /„ = /*— t(í*„).

Let /„ > t0 and {/„} tend to /,. As r(t) > 0, t - r(t) < t and so t0 - t(/0) < t0

< /„. Also, /, - t(/,) = /, > /„ since t(/,) = 0. (If t(/,) were positive, then

solutions would be continuable past /,.) Therefore, by the intermediate value

theorem there exists s satisfying tQ < i < /, with 5 - t(s) = z„. Thus, if A„

- {' I '0 < t < t\,t - T(0 = {n}, then A„ is bounded, closed, and nonempty.

Define /* = sup A„ so that /* - t(/*) = /„. We now show that (/*} is monotone

and /* is strictly increasing to tx. If {/*} is not increasing, then there exists « with

t*n > t:+x. Then t*„ - T(t*„) = tn < /n+1 = t*n+x - r(t*+x). Also, as t*„ > r*.„ we

must have t - r(t) < t„+x for t in (/*,/]]. (If not, then there exists f*fj in

(f*.'i] C (t*+x,tx] such that /*+*, - r(t**x) = tn+x which is a contradiction of our

choice of /*+,.) This says, however, that /, = /,- t(/,) < tn+x < /,, which is a

contradiction. It is clear that {/*} converges to /, as /, - t(/,) = /, and r is

continuous.
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If lim,_,- ||*(r)|| 7^ +00, but lim sup,^,¡-1|*(0|| — + °°, then there exists M > 0

and sequences {tn}, {tn} strictly increasing to /¡ with A7 < ||*(i)|| < 2A7 for

'«<'<'« and ||*(i„)|| = A7, ||*(i„)|| = 2A7. Thus, we can find a sequence {t*}

increasing to tx with tn = t* — r(t*n). Then ||*(i* - i"(r*))|| = M and there are

sequences {s„} and {s„} strictly increasing to tx with M < \\x(t — r(t))\\ < 2M for

s„ < t < s„, M = ||*(s„ - t(j„))||, and 2M = \\x(sH - t(í„))||. Thus, s„ < s < s„

implies that

IW*)II < IW*-)II + £ \Ht,x(t))\\di + ¡I \\q(t,x(t - T(t)))\\dt

and there is a number Q > 0 with ||<7(r, x(t — t(í)))|| < Q on that interval.

Hence, by Gronwall's inequality, ||*(s)|| < (||*(j„)|| + Q(s„ — sn))exp fsSi¡ h(t)dt.

Now the only way in which tx can be finite is for s„ — sn —* 0 as n —» oo. Thus,

||*(s)|| approaches ||*(i,,)|| as n -» oo. This, however, contradicts ||*(s„)||

= 2||*(i„)||.

The problem of uniqueness of solutions of (1) is similar to that of continuabil-

ity of solutions. The next result shows that if u(t,x) is fairly smooth and if

r(t) > 0 then solutions of (1) are uniquely determined by their initial functions,

independent of the lack of smoothness of g (aside from continuity).

Theorem 3. Suppose that r(t) > 0 for 0 < t < co and suppose that for every

continuous function p, all solutions of (I)' are uniquely determined by their initial

conditions. If x(t) and z(t) are two solutions of (I) defined on some interval

0 < t0 < t < tx having the same continuous initial function <¡> on the initial interval

£«, - Co} U {s\s = t- t(0 < /„ for t > t0}, then x(t) = z(t) for t0 < t < Í,.

Proof. As r(t) > 0 on t0 < t < tx, there exists F > 0 with r(t) > T on that

interval. Also, if x(t) ^k z(t), then there is a number t2 satisfying t0 < t2 < tx with

x(t2) ^ z(t2), but *(/) = z(t) for t0 < t < t2 - T. That is, the length of F,0 is at

least F and so for t0 < t < t0 + T, any solution x^(t) of (1) with initial function

<f> is a solution of / = u(t,y) + g(t,<b(t)) whose solutions are uniquely determined

by the initial point. Therefore, [t0,t2 - T] contains at least one point. Now, for

'o < t < t2, we have x(t) and z(t) both being solutions of (1)' with p(t)

= q(t,x(t - r(t))). As x(t0) = z(t0) and solutions of (1)' are unique, it follows that

x(t) = z(t) for t0 < t < t2. This completes the proof.

Corollary. Let r(t) > 0 and let u satisfy a local Lipschitz condition in x. Then the

conclusion of the theorem holds.

3. Second order systems. We now turn to the system of two first order

differential equations with time delay

(2) x'(t) = y(t),       y'(t) = -a(t)f(x(t - r(t)))
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in which a(t), f, and t are continuous functions satisfying

(d) t : [0, oo) -» [0, oo) and t - r(t) —> oo as / -h> oo,

(e) a : [0, oo) —> (- oo, oo) and

(f)/: (-00,00) -> (- oo, oo) and xf(x) > 0 if x =£ 0.

Our Theorems 1, 2, and 3 apply to system (2) in obvious ways.

When t(/) = 0, then there are two ways in which a solution (x(t),y(t)) defined

on an interval [/0, /, ) can fail to be defined past /,. If a(tx ) < 0, then we may have

lim,.,,- |x(/)| = +00. On the other hand, if a(tx) > 0 and if a(t) is not of bounded

variation, then x(t) may oscillate unboundedly and lim,_,-(|x(/)| + |.y(/)|) = +oo

(cf. [13]). In [5] we derived a necessary and sufficient criterion for the first type

of behavior. Here, we show that the same condition is a valid necessary condition

when t(/) > 0.

Theorem 4. Let a(t) < 0 on an interval 0 < t0 < t < /,. Suppose also that f is

increasing. Then there is a solution (x(t),y(t)) of (2) defined on [t0, t,x ) and satisfying

lim,^,- |x(/)| = +00 only if either

(a) f   ,   dx        <oo

or

(b) f~X    ,   dX        >-°o
Jo      V + E(x) ^

where

F(x) = f¡f(s)ds.

Proof. We assume that there is a solution X(t) = (x(t),y(t)) defined on [t0,tx)

with lim,^,- x(t) = +00. Clearly, this must happen in Quadrant I of the xy-plane

since x'(t) = y(t). Also, by the proof of Theorem 1, it must be the case that

t(/,) = 0; otherwise, there exists an e > 0 and 8 > 0 such that t(/) > e on

tx - 8 < t < tx + 8 and so X(t) could be continued past tx.

Now let 0 < m < M be chosen so that -M < a(t) < -m for z0 < t < /,.

Then yy' = -a(t)f(x(t - r(t)))y and since r(tx) = 0, /, > 0, we see that / - t(/)

-^ /, as t -» t{. Since x(t) -^ oo as / -^ tx, there exists t2 satisfying t0 < t2 < /,

with x(t - t(0) > 0 if z2 < / < /,. Thus, / > i2 implies that

yy' = -a(t)f(x(t - r(t)))y < -a(t)f(x(t))y < Mf(x(t))x'(t)

and hence,

y2{t) < y2(t2) + 2M[F(x(t)) - F(x(t2))]
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follows from an integration from t2 to /. Therefore,

x'(tV[y2(h) + 2M{F(x(t)) - F(x(t2))}r2dx < dt

or

Jí-X(í)^ [y\h) + 2M{F(x(t)) - F(x(t2))}]-x/2dt <t-t2.

As x(t) —> oo when t —» tx~ > t2, it follows that (a) holds.

A similar argument holds in Quadrant III for (b) if *(/) —> - oo as t -^ tj. That

argument will complete the proof.

Remark. The above proof is a straightforward adaptation of the proof given by

the authors [5] for the equation without retardation. Although the condition does

not appear to be both necessary and sufficient for delay equations, the equation

x" - (12)(3/2)5x5/3(i - (1 - |0) = 0

has x(t) = (t — 2)-3 as a solution. Thus, there are equations satisfying (a) and (b)

which have solutions with finite escape time.

In the same manner, if r(t) > 0, then solutions are unique. However, for t0 = 0

in the equation

x" - l2xm(t/2) = 0

the initial interval is the single point t0 and there are two solutions x(t) = t3 and

*(0 = 0 satisfying *(0) = *'(0) = 0.

The following result is also patterned from our previous work [6] on unretarded

equations. Again, the condition given does not appear to be both a necessary and

sufficient condition for (2), although it is for the unretarded counterpart of (2).

Theorem 5. Suppose that there exists t0 > 0 and tx > i0 for which r(t0) = 0,

t0 < t - r(t) < tx for /„ < t < tx, and a(t) < 0 on [t0,t\l Finally, let f be

increasing. If

(i) f¿. [F(x)]-x/2dx = oo and

(ii) Jq- [F(x)]~x/2 dx = — oo, then the zero solution of (2) is unique to the right at

to-

Proof. Notice that the initial interval is just a point, /0. Suppose (i) and (ii) hold

but there exists a solution of (2), say (x(t), y(t)), which is zero on the initial

interval, but not identically zero on [/n.'i]-

From the direction field defined by (2), it follows that (x(t),y(t)) is in the

(closed) first or third quadrant for t0 < t < tx. We shall assume that it is in the

first quadrant.

As a(t) is continuous, there exist M and m with m < a(t) < M < 0 for

'o < * < *\ ■ Then for t0 < t < tx, we have from (2) that
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yy' = -a(t)f(x(t - r(t)))x'(t) < -a(t)f(x(t))x'(t)

as x(t) is increasing and / - t(Z) < t. Thus, for t0 < t2 < t < tx, we obtain upon

integration

y2(t) -y2(t2) < -2m £f(x(s))x'(s)ds

= -2mF(x(t)) + 2mF(x(t2)) < -2mF(x(t))

and so y(t) < \/y2(t2) - 2mF(x(t)) or

x'(t)[y2(h) - 2mF(x(t))]-x/2 < 1.

Thus, for z0 < t < tx, we have

f™ [y2(0 - 2mF(s)]-»2ds <tx-t <tx-t0.

Now, from (i), given k > 0, there exists x with 0 < x < x(tx) so that

/*"> [-2«jF(i)]-|/2i/y > A. Also, there exists 8 > 0 so that if y2(z) < 8 and

x > i then .y2(z) - 2mF(s) < -8mF(s). Now as x(t0) = y(t0) = 0, there exists 7

with z0 < t < z, so that 0 < x(t) < x and^2(z") < 8. Then,

tx - k > Jj} b2(0 - 2«/F(i)]-'/2A

1    Z"x<'')
> ^ JÄ      [-2«/F(í)]-1/2í¿j > A/2.

This is a contradiction, however, as k is arbitrarily large.

The argument in the third quadrant is similar. That argument completes the

proof.

The following result not only characterizes the oscillation situation for (2)

when / is decreasing for large \x\, but it also is a new result for unretarded

systems. Notice also that the remaining theorems differ significantly from many

results of previous investigators (cf. [11], [2], and [15]) in that r(t) need not be

bounded. A notable exception to this is found in the work of Eliason [10] whose

specific goal was to obtain the results of the previous investigators of the problem

with f(x) = |x|rsgn x without assuming r(t) bounded. Also, most previous

investigators required that/be bounded strictly away from zero for \x\ > d > 0.

Convention. We shall say that (2) is oscillatory or that all solutions of (2)

oscillate if for every solution (x(t),y(t)) of (2), x(t) has arbitrarily large zeros.

In the following theorems we usually ask that a(t) > 0. This can be replaced

by the more cumbersome condition that a(t) > 0 and a(t) is not eventually

identically zero. Obvious modifications then must be made in the proofs. For

example, in the proof of Theorem 6 one would write "/ < 0 and y' is not

identically zero."



200 T. BURTON AND R. GRIMMER

Theorem 6. Let 0 < r(t), t - t(í) -» oo as t -> oo, a(t) > 0, */(*) y 0 if

x ^= 0, an¿ let f be decreasing for \x\ > d > 0/or some ¿7 Fnen a// solutions of (2)

are oscillatory if and only if

fj a(t)f(±c(t - t0 - t(0) ± x0)dt = ±oo

for every c > 0, for every t0 > 0, and for every x0 > d.

Proof. Since/is bounded, it follows easily that all solutions are continuable in

the future.

We first show that if the integral condition holds, then all solutions are

oscillatory. To this end, we show that any solution in Quadrant I with * > d

intersects the *-axis. That is, we assume that (x(t),y(t)) is a nonoscillatory

solution and there exists t0 > 0 such that *(/) > d and^(?) > 0 for all t > t0.

Notice that if x(t) > d for all t > t0, then there exists /, > t0 such that

*(/ - t(0) > d for all t > tx. Hence, / = -a(t)f(x(t - r(t))) < 0 for all t > tx.

Thus, if there exists t2 > /, such that>>(i2) < 0, then^O be comes negative; and,

as *' = y, x(t) has a zero past t2. Thus the assumption that *(/) > d for all t > t0

implies that y(t) > 0 for t > t0 by renaming t0 if necessary.

Now if d is replaced by zero in the two above paragraphs, then the conclusions

are still valid. We now observe that if x(t) > 0 for all t > t0, then there is a

h > 'o wim x(0 > d for all / > tx. To see this, notice that / bounded and the

divergent integral hypothesis holding implies that f" a(s)ds = +oo. Thus, if

0 < x < x(t - t(0) < d for all / > t0 and some *, then/(x:(i - r(t))) > p > 0

for some p and all t > t0. Then

y(t) = y(t0) - fl0 a(s)f(x(s - r(s)))ds -» -oo

and so x(t - r(t)) must become larger than d.

Now y(t) decreasing for / > /0 implies that x'(t) = y(t) < y(t0) and so *(/)

< ^oC' - 'o) + xUo) or x(t - t(0) < y0(t - lit) - t0) + x(t0) for t > t0. Since/

is decreasing for x > d, we have

A') = yo - f,o a(s)f(x(s - r(s)))ds

<y0~ flo a(s)f(y0(s - t(s) - t0) + x(t0))ds

which tends to - oo. This is a contradiction and so the solution enters Quadrant

IV. But then *' = y and / < 0 so x(t) subsequently has another zero as was

argued above. A similar argument may be given in the left half-plane to show

that a solution cannot remain in that half-plane.

Now suppose that all solutions oscillate and that/is decreasing for x > d, but

there exists t0 > 0, c > 0, and x0 > d such that
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fj a(t)f(c(t - t(Z) - t0) + x0)dt < oo.

Consider a solution (x(t),y(t)) which has initial function x(t) = K(t — t0) + x0

and y(t) = K where K > c and to be determined. So long as y(t) > c, then

x' = _y > c implies x(Z) > c(Z — Z0) + x0 which in turn implies that x(t — r(t))

> c(t - t(z) - z0) + x0. Then

y(0 =yo~ J,0 a(j)/(-x(5 - r(s)))ds

>yo~ jl0 a(s)f(c(s - t(s) - z0) + x0)ds.

Let J"" a(s)f(c(s - t(s) - Z0) + x0)ds = M and pick y0 = F > c + M. Then

y(t) > c for all z > z0 and so x(t) does not oscillate. Similar arguments in

Quadrant III complete the proof.

Theorem 7. Let f be increasing and let m be a continuous function satisfying

m(t) : [0, oo) -* (0, oo). FAe« zAere is a solution (x(t),y(t)) of (2) satisfying x(t)

> m(t)for all t > Z0 only if J™ a(s)f(m(s - r(s)))ds < oo.

Proof. Suppose that there exists x(t) > m(t), but j"™ a(s)f(m(s - t(s))) ds

= +00. Then/is increasing and so

/ = -a(t)f(x(t - t(z))) < -a(t)f(m(t - r(t)))

for z > tx > Z0 where tx is chosen so that z — r(t) > t0 if Z > tx. Thus, y(t)

< y(tx) — f'h a(s)f(m(s - r(s)))ds —> -oo. Thus, as x' = y, it follows that x(t)

becomes negative, contradicting x(t) > m(t) > 0. This completes the proof.

We note that in the special case of f(x) = |x|Ysgn x, then Theorem 8 is implied

by a result of Eliason [10]. .

A common result in the study of (2) both with and without retardation is that

unless solutions oscillate, then there is a solution with x(t) approximately f for

0 < a < 1. Theorem 7 provides a simple device for investigating the existence

of such solutions. The result is also useful in connection with our next

proposition.

Theorem 8. Let a(t) > 0, let f be increasing, and let all solutions of (2) be

continuable to +oo. For every solution (x(t),y(t)) of (2), x(t) oscillates or y(t) —> 0 as

t —> oo // and only if

f" a(t)f(±c(t - t(Z) - Z0) ± x0)dt = ±a>

for every c > 0, for every t0 > 0, and for every x0 > 0.

Proof. Assume that the integral condition holds. Let (x(t),y(t)) be a solution of

(2) which remains in Quadrant I for all t > t0 and assume that y(t) does not tend
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to zero as / tends to infinity. (That is, if *(/) does not oscillate, then (x(t),y(t))

must eventually enter and remain in either Quadrant I or III. We deal with

Quadrant I only, as Quadrant III is similar.) Then there exist c > 0, t0 > 0, and

jc0 > 0 such that y(t) > c, x(t - t(í)) > 0 for all t > t0. Thus, x'(t) = y(t) > c

implies that *(/) > x(t0) + c(t - t0) so x(t - t(í)) > x(t0) + c(t - r(t) - t0) for

t - r(t) > t0 and so

/ < ~a(t)f(x(t0) + c(t - r(t) - t0)).

Let tx > /0 be chosen so that / > tx implies / — r(t) > t0 and integrate from tx

to / yielding^/) —> - oo. This is a contradiction.

Now suppose that for every solution (x(t),y(t)), either x(t) oscillates or y(t) —> 0

as / —> oo. Assume also that there exist tQ > 0, *0 > 0, and c > 0 such that

f™ a(t)f(c(t - r(t) - t0) + x0)dt = H < co.

Start a solution (x(t),y(t)) having initial function x(t) = c(t — tx) + xx and

y(t) = c on Eu where t0 < /, < t. Then x'(t) = y(t) < c implies that *(/)

< c(t - tx) + xx and x(t - r(t)) < c(t - j(t) -/,) + *, holds for / > /, because

of the initial function. Hence,

y(t) = Ah) - X' ̂ Z«1 - **»)*

> y(tx) - fh a(s)f(c(s - r(s) - tx) + xx)ds.

Now choose *i such that - ctx + *, = - ct0 + x0 and choose tx so large that

£ a(s)f(c(s - t(s) - t0) + x0)ds < c/2.

Then y(t) > c/2 for all t > tx. This completes the proof.

There is no hope of deriving a simple divergence integral condition as a

characterization of oscillations in general since for different positive values of k

in x"(t) + [k/r2]x(t) = 0 one has oscillation and nonoscillation. However, if a(t)

increases "most of the time", then such a condition can be formulated [4]. The

following theorem is an extension of that result.

For a'(t) continuous and a(t) positive, define a'+(t) = max[0,a'(0] and a'_(t)

= max[0,-a'(t)\ so that for c(t) = a(0)exp j'0[a'+(p)/a(p)]dp and b(t)

= exp - J"ó [a'_ (p)/a(p)] dp we have a(t) = b(t)c(t).

Theorem 9. Let a(t) > 0, a'(t) continuous, r(t) continuously differentiable, and let

0 <^_ Mx < I — t'(') < M2 for some constants Mx and M2 and all t > 0. Suppose

also that for a(t) = b(t)c(t) we have b(t) —> bx > 0. Then every continuable solution

oj(2) is oscillatory ifand only if f" a(t)f(±k(t — tQ))dt = ±oo for every k > 0 and

every t0 > 0.
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Proof. Suppose (x(t),y(t)) is a solution of (2) for which x(t) does not oscillate.

Then if x(t) > 0 for all z > z0 > 0, we must have x'(t) > 0 for z > z, for some

tx > t0; otherwise, we would have x'(t) < 0 and, as x"(t) = -a(t)f(x(t - r(t)))

< 0 as long as x(t — r(t)) > 0, we see that x(t) would become negative in finite

time. Thus we see that (x(t),y(t)) remains in the first quadrant for t > tx.

Now, as x' = y is nonincreasing for z > Z,, we have x'(i) = y(t) < y(tx ) = A,

and as z - r(t) —> oo, there exists z2 such that z - r(t) > tx for t > t2. Thus, for

t > t2

[x(t - t(z))]' = x'(t - t(Z))(1 - t'(z))

= .v(Z-t(Z))(1-t'(z))< A,M2 = A.

Letting g(t) = x(t - r(t)), we see that g(t) is increasing for t > t2, and that

g'(t) < k. Thus, g(t) has an inverse g~x(s) and as x(t - t(z)) - x(t2 - r(t2))

= g{t) - g(t2) < k(t - h) or, for t > t2,

g(t) = x(t - r(t)) < k(t -t2 + *('2~T('2))) = k(t + Mj)

where M3 is a constant, we see that g~x(s) > [l/k]s — A/3.

Now if x(t) -^ oo as z —> oo, then [x(t - t(Z))/A] - M3 will be nonnegative for

' > h > h ror some Z3. From (2), we see that y'(t)/b(t) = -c(t)f(x(t - r(t))). As

y'(t) < 0 and b(t) > bx > 0,/(/)/*, < -c(t)f(x(t - r(t))) for z > z3. Thus, for

z > z3,

xo/6) < x^y*. - £ c(p)f(g(p))dii

< y(h)/bx - [l/A] £ c(li)f(g(p))g'(p)dli

= y(h)/bx - [l/A] /^ c(g-x(s))f(s)ds.

As g-'(i) > [1/A]i - M3, c(g"'(i)) > c([l/A]i - M3) and y(z)/d, < y(h)/bx

~ [l/A] Jf^) c((1/A)j - M3)f(s)ds -» - oo as í ^ oo and so y(t) must become

negative and we have a contradiction.

If x(t) is bounded, then x(Z - t(í)) tends to a positive limit r and /(/)

= -a(t)f(x(t - t({))) < -a(t)f(r)/2 for z sufficiently large. Thus, again we have

y(t) becoming negative. The argument if x(t) is eventually negative is essentially

the same and is omitted.

We now suppose that f ™ a(t)f(k(t - t0))dt < oo for some A > 0 and some Z0.

Then f" a([\/k]s + t0)f(s)ds < oo and, as a(t) = b(t)c(t) we have

fZ c([l/k]s + t0)f(s)ds = M4 < oo.

Now if A, and A are any constants with A, > A, then [1/A]j + z0 > [1/A,]í +

z0 + N for s sufficiently large. Thus, as c(t) is nondecreasing,
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J(o   c([l/kx]s + t0 + N)f(s)ds< oo.

In particular, for kx Mx = k2 > k, we have f¿° c([l/&i]$ + t*)f(s)ds = M5 < oo

where ;* - r(t*) = 0.

Now, let (x,(t),y,(t)) be an initial condition of (2) defined on [i0 — t(/0), 0],

where t0 - t(í0) = inf{t - r(t) : t > 0}, defined by */(/) = 0 andy,(t) = A > kx

> k, where A is to be determined. We see that for / > 0, x(t) must become

positive as y(t) is continuous for t > t0 - t(í0) and so must remain positive on

some interval [0, w), w > 0. Thus, as long as y(t) > 0, *(/) is increasing and

y'(t) < 0 so y(t) is nonincreasing. Also, we see that *'(/) = A on [0, t*] where

t* - T(/*) = 0.

As long as y(t) > kx > 0, for / > /*, we have

(x(t - r(t)))' = y(t - r(0)(l - r'(t)) > kx Mx = k2 > 0

and so x(t - t(í)) > k2(t - t*) for / > t*. Letting g(t) = x(t - r(t)) as before, we

see then that g~x(s) < [l/k2]s + t*.

From (2), it follows that y(t) > y(t*) - J*,'. c(p)f(g(p))dp and, as long as

y(t) > kx, we have

y(t) > At*) ~[Vk2] ¡I c(p)f(g(p))g'(p)dp

= A-[l/k2]f*?)c(g-x(s))f(s)ds

>A- [l/k2] X°° c([l/k2]s + t*)f(s)ds.

Now if A is chosen so that A - M5/k2 > i,,we see that>>(i) remains larger than

kx and so x'(t) = y(t) > kx for all t > 0. Thus, *(/) > kx t and x(t) does not

oscillate. This completes the proof.

For notational purposes, it is now more convenient to write (2) as

(3) x'(t)=y(t),       y'(t) = -a(t)f(x(q(t)))

in which q : [0, oo) —> R, f is nondecreasing, q(t) < t for all /, q(t) -^ oo as

t -^ oo, a(t) > 0, and xf(x) > 0 if * ^ 0. Equation (3) is exactly the same as (2)

with t - r(t) = q(t).

Theorem 10. Suppose there exists N such that for any sequence t0 < /] < • • •

< tN+x and any constants cx,..., cN+2 with c2 > 0 we have

£ °wf(cN+2 + C sa^( ■ ■ -KCx ± C2 C ra^d) ■))dw

= ±00.
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FAe« all continuable solutions of (3) are oscillatory.

Proof. Suppose that (x(t),y(t)) is a solution of (3) such that for Z > Z0 we

y(t) > 0 and x(q(t)) > 0. It follows from (3) that

x(t) = *(/„) + x'(t0)(t - t0) - £ (t - s)a(s)f(x(q(s)))ds

and

Now

x'(t) = x'(t0) - £ a(s)f(x(q(s)))ds.

x(t) = x(t0) - x'(t0)t0 + tx'(t) + £ sa(s)f(x(q(s)))ds

> x(t0) - x'(t0)t0 + £ sa(s)f(x(q(s)))ds

> x(t0) - x'(t0)t0 + £ sa(s)f(x(q(t0)))ds

= cx + c2 J   sa(s)ds

for t > t0. Thus, if q(t) > tQ, we have

x(q(t)) >cx + c2 Jio    sa(s)ds.

Now suppose q(t) > z0 for t > tx. Then for z > z,, as before, we have

x(t) > x(tx) - x'(tx)tx + £ sa(s)f(x(q(s)))ds

and as / is nondecreasing,

x(t) > x(tx) - x'(tx)tx + £ sa(s)f(cx + c2 f™ va(v)dvj ds

for t > tx. Thus, if q(t) > Z,, we have

fiC) ( fv(s) \
x(q(t)) > c3 + jtt    sa(s)f\cx + c2 J^    fui(p)dnj ds

where c3 = x(tx ) - x'(tx )tx.

11 9(0 > h, then for t > t2 we obtain

x(t) > x(t2) - x'(t2)t2

+ Jh sa(s)f(c3 + £    pa(ji)f[cx + c2 £     va(v)dv) d¡ij ds
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and

rio (        c<m ( r<M \     \
Aq(t)) >c4+ Ji2    sa(s)f{c3 + Jit     pa(p)f{cx  + c2 J^     va(v)dvj dpj ds.

In general, there exists a sequence t0 < /, < ... < tN such that for t sufficiently

large we have

/•«(<) f ( fiW
x(q(t)) > cN+2 + jir/    {sa(s)f[cN+x + )¡f¡¡ pa(p)

■ /( .. ./(c, + c2 j™ va(v)dv) ...))<&}

for t > tN+x where q(t) > tN for t > tN+x. Now, as/ = -a(t)f(x(q(s))), integrat-

ing from tN+x to / > tN+x, we have

y(t)-y(tN+x) < - £ \a(r)f(cN+2

+ /* sa(s)f( .. ./(c, + c2 j™ va(v)dv) ...)) dr)

and hence y(t) —» — oo. This is a contradiction and so *(/) must have a zero after

t0. The case for x(t) negative is similar.

Example 1. Bradley [2] considered the linear delay equation

(4) x"(t) + a(t)x(t - t(0) = 0

where a(t) and t(/) are continuous on [0, oo) with a(t) > 0 and 0 < t(î) < M

< oo. He showed that if f™ a(t)dt = oo, then all solutions of (4) are oscillatory.

From Theorem 10 we see that (4) is oscillatory if

X   a(')(c, + c2 X„'   ' sa(s)dsj dt = CO

for all c, and all c2 > 0. Now, if J"™ a(t)dt = oo, we see that c, + c2 /{"^ íu(í)í¿s

is eventually greater than one and so f0x'a(t)(cx + c2f'~T(')sa(s)ds)dt=co.

Hence, Theorem 10 includes Bradley's result.

Example 2. Consider the equation

(5) *" + r<l+?>*<V) = 0

in which o is an odd integer, 0 < y < 1, and 0 < ß < 1.

Suppose there exists A such that

£l^{cN+2 + £s-i(...y)°dp = 00.
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Then for N = 0 we have

f"r™(cl + c2f's->ds)°dt

= f" z-<1+*>(c', + ¿tfl-ywydt

r oo

= J,    [c2Z"(1+1')z<1-i'>^' + lower order term] ¿A = oo

if ßo > y/(l -y).

If N = 1, then

if '-<l+Y)(c3 + £' *-y{ci + ^2 C ^dpjdsjdt

/*oo

= J,    [c'2"z-(1+ï>+(i-y)0<h-(i-y)0V + lower order terms] dt = oo

if /Ja + ß2a2 > y/(\ - y).

Generally, if 2j^T' ißa)j > y/(1 _ y)> then solutions oscillate. But this is true

if and only if 2A (ß°)j > y/(1 ~ j) = 2,"i Y; which is true if and only if

ßo > y. Thus, solutions oscillate if ßo > y.

On the other hand, if ßo < y, then

JJ a(t)f(c(t - r(t)))dt = J" t-V+Hctß)"dt

= c, fj rV+rt+l*°dt < oo

which implies that there exist nonoscillatory solutions by Theorem 8.

We note that our results differ from those previously obtained in that

conditions to guarantee oscillation explicitly invoke a(t),f(x), and q(t) = t — r(t).

Our next theorem shows that even in the case where f(x) = xy it is often

necessary to consider a, f, and q.

Theorem 11. Suppose a(t) > 0, not eventually identically zero, and f is increasing

in x. If fo «(0 dt < oo, zAe« there exists a continuous q(f) defined for all t > 0 with

q(t) < t and q(t) -> oo such that (3) has nonoscillatory solutions.

Proof. We first assume that / is not bounded above or below. Suppose

fo a(t)dt = M < oo and let (z„) be the sequence tending to infinity with the

property that 0 = z0 < z, < ... and /£" a(t)dt = (M/e)(l/«!). Define />,(/) by

px(t) = 2" for z„ < z < tn+x. We see then that

/0°° a(t)Px(t)dt = 2  f"' a(t)px(t)dt = Me.
n=0      "
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Now, define p2(t) by p2(t) = 1 for t0 < t < tx, p2(t) = 2" for (/„ + tn+x)/2 < t

< tn+x, and define it to be linear and continuous between tn and (t„ + tn+x)/2. If

we define q(t) by q(t) = min{t,f~x(p2(t))}, then q(t) is continuous, q(t) < t, and

q(t) -» oo as t -» oo. We now have

X" <t)f(q(t))dt < X°° a(t)p2(t)dt

^ Jo" a(t)P\(t)dt < oo.

It now follows from Theorem 8 that (3) has a nonoscillatory solution.

If / is bounded above or below, then the existence of a nonoscillatory solution

follows from Theorem 8 with any q(t). This completes the proof.

We note that Theorem 11 shows that the result obtained by Waltman [16] is

the best possible result under the conditions given. In fact, combining Waltman's

result with our Theorem 11 yields the following result.

Corollary. Suppose a(t) > 0, not eventually identically zero, and f is increasing in

x. A necessary and sufficient condition that (3) is oscillatory for every choice of q(t)

with q(t) < t and q(t) -» oo as t —> oo is f " a(t) dt = oo.
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