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THE LORENTZ GROUPS
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ABSTRACT. For n > 2, let G(n) denote the generalized homogeneous Lorentz group

of an n + 1-dimensional real vector space; that is, G(n) is the identity component of the

orthogonal group of a real quadratic form of index (+, — ... -). Let 6(h) denote a two-

fold covering group of G(n), and let $(n)M(n) be a parabolic subgroup of G(n). We

consider the induced representations of G(n), induced by the finite-dimensional irreducible

representations of S(n)M(ri). By an extension of the methods used in a previous paper, we

determine precise criteria for the topological irreducibility of these representations.

Moreover, in the exceptional cases when these representations fail to be irreducible, we

determine the irreducible subrepresentations of these induced representations. By means of

some general results of Harish-Chandra together with the main results of this paper, we

obtain a complete classification, up to infinitesimal equivalence, of the quasi-simple

irreducible representations of the groups 0(h).

1. Introduction. Let « be an integer equal to or greater than 2, and let G(«) be

the identity component of the orthogonal group of a real quadratic form of

signature (+,-...—). Let G(n) denote a two-fold covering group of G(«). For

« > 3, G(n) is simply connected. Let K(n) be a maximal compact subgroup of

G(n) and let S(n)M(n) be a parabolic subgroup of G(n). See the next section for

a precise definition of these subgroups for the situation under study. We consider

the induced representations of G(n) induced, in the sense of Bruhat [4], by the

finite-dimensional irreducible representations of the subgroup §(n)M(n). We

determine precisely for what representations of S(n)M(n) these induced represen-

tations are irreducible, and in the nonirreducible cases, we determine the

irreducible subrepresentations. We remark that all the finite-dimensional repre-

sentations, as well as certain "discrete" series of representations occur as

subrepresentations of these induced representations, in the nonirreducible cases.

In case « = 2, (5(2) is isomorphic to SL(2, R). For this case, it is known that the

finite-dimensional representations occur as subrepresentations of these induced

representations for certain "integral" values of the character of S(n)M(n). When
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the induced representations contain such a finite-dimensional subrepresentation,

there is a supplementary subspace that is invariant under another induced

representation related to the original one by a Weyl reflection of the character of

§(n)M(n). The latter representation is essentially a direct sum of two discrete

series of representations. There is another way of describing the relationship

between the discrete series and finite-dimensional representations in the case of

G(2), namely the finite-dimensional representation may be regarded as a quotient

representation of an induced representation modulo a discrete-series-representa-

tion. The latter may be regarded as a quotient representation of an induced

representation modulo a finite-dimensional one. This relationship between

subrepresentations and quotient representations generalizes in a manner that is

made precise in §§10 and 11. This relationship enables us to apply some results

of Harish-Chandra to obtain a complete classification of the irreducible quasi-

simple representations of G(n) up to infinitesimal equivalence. The main results

of the paper are summarized in Theorem 6. Of course, no claim is made that the

various discrete series that occur in this analysis are unitarizable, although in case

n = 2, the discrete series is in fact unitarizable, as are some of the discrete series

for even n, according to results of Dixmier [6] and Takahashi [17]. Results similar

to some of those of the present paper have been announced by Hirai [11 a,b,c].

Hirai has also announced results on the characters of the irreducible representa-

tions of these groups.

The methods used in this paper are an extension of those used in [16] for the

case of semidirect product groups. We use a basic result of Harish-Chandra

according to which the topological irreducibility of a K(n)-finite representation

of G(n) is equivalent to the algebraic irreducibility of the corresponding U(G(n))-

module of 7í(rt)-finite vectors, where U(G(n)) denotes the universal enveloping

algebra of the Lie algebra of G(n). We use some of the methods of [18] to reduce

the problem of showing irreducibility of these C/(G(/i))-modules to the problem

of showing that these i/(G(«))-modules are modules over a certain commutative

algebra. In case the induced representations are irreducible, the commutative

algebra used is a polynomial algebra defined on a Cartan subspace of the Lie

algebra G(n). For the Lorentz groups, this algebra is essentially the pointwise

algebra generated by the spherical functions defined on the n - 1 -sphere, and

is analogous to the one used in [18]. For the case when the induced representa-

tions are not irreducible, this algebra must be modified. The connection between

the U(G(n))-module structure of the space of k(n)-finite vectors and the module

structure of this space over the algebra of spherical harmonics is made by Lemma

1 and Theorem 1, the main computational theorem of the paper.

We turn to an explanation of the notation and basic definitions used in this

paper. If L is a real Lie group, we denote by L its Lie algebra, and by Lc the

complexification of L. We denote the complex universal enveloping algebra of L

by t/(L). If A is a Lie subalgebra of L, then i/(K) is identified as the subalgebra
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of U(L) generated by C and L. If AT is a compact group, we denote by ß(ÄT) the

set of equivalence classes of irreducible unitary representations of K, or equiva-

lently, the set of equivalence classes of irreducible finite-dimensional representa-

tions of K. If V is a vector space, and g —> U(g) is a representation of a group G

on V, we shall express this information by the symbol [V, II]. If G is a Lie algebra

and dlJ is a module action of G on V, we shall also use the notation [ V, dU] to

denote the G-module V, together with this action. We also use the same symbol

to denote the natural extension of this module to U(G).

Let G be a real Lie group, and let K be a compact subgroup of G. Let [Hn, U]

be a continuous representation of G on a Banach space Hn. If V is a linear

subspace of Hn consisting of infinitely differentiable vectors, then [ V, dU] shall

denote the correponding t/(G)-module. Following Harish-Chandra, we call the

representation [Hn, U] quasi-simple, if [//jf, dU] restricts to scalar multiplication

on the center of t7(G), where //jf is the linear subspace of Hn consisting of

infinitely differentiable vectors. Following Godement [8] the representation is

called completely irreducible if the strongly closed algebra generated by the set of

operators {11(g) : g G G} coincides with the algebra of all bounded operators on

Hn. We employ the terminology of [ 18] regarding Affinité vectors in Hn, AT-finite

representations, and infinitesimal equivalence of ÄT-finite representations. If G is

connected and a semisimple matrix group, as in the case with the groups under

consideration, and if A' is a maximal compact subgroup of G, then it is known

that every completely irreducible representation of G is ÄT-finite. (See [8].) It is

also known that every quasi-simple representation of G is AT-finite [9a, Theorem

1]. A stronger result is also known (see §11). Let us assume that [//n,n] is Af-

finité. We say that [Hn, Tl] is unitarizable if it is infinitesimally equivalent to a

unitary representation. If [Hu, U] is unitarizable, then this unitary representation

is unique up to unitary equivalence [9a, Theorem 8]. An extension of Harish-

Chandra's argument by Fell [7] shows that infinitesimal equivalence of ÄT-finite

irreducible representations is equivalent to Nairhark equivalence of completely

irreducible representations. If [Hn, II] is a ÄT-finite representation of G, we denote

by dHn the dense linear subspace of ÄT-finite vectors. Of course, for finite-

dimensional representations we have the equality Hn = dHn.

We now outline the paper. In §2 the induced representations induced by a

parabolic subgroup of G are discussed. §3 contains the main computational

lemma of the paper. This lemma is derived in the context of a general split-rank

one simple Lie group. The lemma replaces, in part, Lemma 1 of [18] for the

semidirect product case. The lemma of §3 is improved upon in §4 with the aid of

some known information, in the case of the Lorentz groups, on the tensor

products of K(«)-modules, and the eigenvalues of the Casimir operators in these

modules. For general facts on semisimple Lie groups and Lie algebras quoted in

§3, the reader is referred to [10]. The basic properties of Spin(l,«) used in this

paper may be derived by methods similar to those of [5, p. 64]. The first

application of our methods appears in §6, where sufficient conditions for



468 ERNEST THIELEKER

irreducibility are obtained. These conditions turn out to be "almost" necessary

as well; however, it is more convenient to sort out the complete state of affairs

in Theorem 6 (§11). In §7 the commutative algebra used in the proof of Theorem

2 is modified to handle the nonirreducible situation. Here, for the first time,

explicit use is made of the fact that Â(«)-irreducible subrepresentations occur

with multiplicity no greater than one, in the induced representations of G(n). The

theorems proved in §8, together with Theorem 2, then exhaust all the possibilities

for irreducible subrepresentations of the induced representations. The theorem in

§ 11 summarizes the results of this paper and includes criteria for the infinitesimal

equivalence of the induced representations, in the irreducible cases, as well as the

structure of the quasi-simple representations. Some general results of Harish-

Chandra are used to obtain this information. Along the way one obtains the

infinitesimal equivalence between certain subrepresentations and certain quo-

tient representations. §12 contains some comparisons between our results and

some known results for the generalized Lorentz groups. For the purposes of these

comparisons, the computation of the eigenvalues of the Casimir operator,

undertaken in §9, is helpful.

2. The infinitesimal equivalence classes of induced representations. Let G be a

semisimple Lie group which has a faithful matrix representation. Let A be a

maximal compact subgroup of G, and let G = K © P be the Cartan decomposi-

tion of the Lie algebra G, corresponding to the maximal compact subalgebra K.

Let 0 be the Cartan involution corresponding to this decomposition. Pick a

maximal abelian subalgebra A of P, and fix a lexicographical ordering in the real

dual of A. Let N denote the internal direct sum of the eigenspaces of ad(A),

corresponding to the roots which are positive in this ordering. Then N is a

maximal nilpotent subalgebra of G, and S = N © A is a maximal solvable

subalgebra of G. Let 5, A, and A denote the analytic subgroups of G correspond-

ing to the subalgebras S, A, and N, respectively. Let M denote the centralizer of

A in K, under the adjoint representation. Then G = SK is an Iwasawa decompo-

sition of G, with S a closed solvable subgroup of G homeomorphic to a Euclidean

space, and S n K = {1}. The subset S M is a minimal parabolic subgroup of G,

that is, the normalizer of 5 in G, and M = SM n K.

Let 77 be a finite-dimensional Hubert space equipped with an inner product

( , ). Suppose [77, u] is an irreducible Af-module, and let A be a complex character

of the subgroup S. Since A lies in the commutator subgroup of S, it follows that

A(A) = 1. The infinitesimal character, dA, is a linear form on S which is zero on

N. In the real-rank one case, in which the generalized homogeneous Lorentz

groups fall, dA is determined by a single complex number X, its value on a

nonzero element 77 G A. Since M is in the normalizer of S, and since M fixes the

elements of A, it follows that, for all s E S, and m E M, A(msm~x) = A(s). It

follows that one may define a representation Au of the parabolic subgroup SM

by means of the formula: Afi(sm) = A(s)Li(m), for all s E S, and m E M.



QUASI-SIMPLE IRREDUCIBLE REPRESENTATIONS 469

Let CAfi(G,H) denote the linear space consisting of functions F from G to

H which satisfy the subsidiary condition:

(1) E(pg) = Ap(p)F(g),

for p E MS, and g E G. We note that each function in the space CA)l(G,I£) is

uniquely determined by its restriction to the compact subgroup A. Moreover, let

C^A,//) denote the linear space consisting of such restrictions. Then C^A,//)

consists of the space of all H-valued continuous functions defined on A and

which satisfy the condition:

(2) Mmk) = ti»Wk),

for all m E M, k E A, and i// G C^A,//). In fact, if ^ is a continuous function

from Ato H_which satisfies condition (2), then we define a function F from G to

H which satisfies condition (1) as follows. For g G G, let F(g) = A(o(g))\¡/(K(g)),

where a(g) and ic(g) are the uniquely defined elements in 5 and A, respectively,

defined by the Iwasawa decomposition of the element g. It is known that the

functions g —> o(g) and g -» K(g) are real-analytic functions from G to 5 and G

to A, respectively. It follows that F is continuous. Moreover, if \(/ is real-analytic,

it follows that that F is analytic. The fact that F satisfies condition (1) is seen

from the following observations: o(mg) = mo(g)m~x, ic(mg) = mn(g) and

A(a(mg)) = A(ma(g)m~x), for m E M, and g E G. Thus the assertion is estab-

lished.

It is obvious that the restriction-to-A map which takes the space CA)l(G,H)

onto the space C^A, Ü) is a A-module isomorphism for the action R of right

translations of functions.

We turn the space CA¡Í(G,H) into a Banach space by equipping it with the

"sup" norm:

\\F\\x = sup(F(k),F(k))x/2,
k<=K

for F E CAl¡(G,H). This defines a norm on C^A,//) as well.

We may also define an inner product on these spaces by means of the formula:

<F,G> = fK(F(k),G(k))dk,

where the integral is the Haar integral over A, and F and G are elements of

CA)i(G,I£). Let L2Ali(G,tf) denote the completion of CAp¡(G,H) with respect to the

Hubert space norm defined by this inner product.

Let P denote the positive square root of the determinant of the adjoint

representation of 5. Then dP is the linear form on S which is zero on N and equal

to one half the sum of the positive roots on A. Then, for any character A on 5,

AP is also a character of 5. The induced representation of G, induced by Ap, is, by

definition, the representation: [L2APji(G, U),R], and the continuous induced repre-
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sentation of G, induced by Au, is by definition, the representation [CAPfL(G,H),R].

It is a known fact that the action 7? is continuous for both of these Banach spaces.

(See [4].)

For a given representation [77,/t] of the subgroup SM, both of these represen-

tations are A-finite, and infinitesimally equivalent. In fact, let [w] G Q(K), and

let Xu be the irreducible character of K, normalized in such a manner that it is

an idempotent under convolution: xu * Xa = Xu- Then the operator Ea, defined

on L2A¡i(G,H) by the formula

EUF= fKXa(k)R(k)Fdk,

with F E L2All(G,H), is an Hermitian projection on L^G, 77). Its range is the K-

isotypic subspace corresponding to the representation class [w]. We note more-

over, that the range of this projection is contained in the linear subspace

CA(1(G, 77). Even more, this range is finite dimensional and consists of real-

analytic functions. Thus, it follows from the Peter-Weyl theorem that the

representations [L2A)iiG, 77), R] and [CA/1(G, 77), 7?] have a common dense i/(G)-

module of A-finite vectors, and are thus infinitesimally equivalent. This t/(G)-

module is given by the (algebraic) direct sum

dCA,(G,H) = spanc{EuL2Alt(G,H) : [a] E fl(A)}.

By some abuse of notation, we shall use the symbol Eu to denote the projection

onto the /c-isotypic subspace belonging to the class [to], defined for any A-module

consisting of square-integrable functions on K. In particular, we shall have

occasion to consider the slightly more general spaces LA(G, 77), and CA(G,H).

The latter are defined, respectively, as the set of all square-integrable functions,

and the set of all C00-functions which satisfy the condition f(sg) = A(s)f(g), and

which have range in 77. It is easy to verify that these spaces are linearly

equivalent to the tensor products L\ (G) <8> 77 and CA (G) ® 77, respectively. For

any representation u of M, dCA¡l(G,H) is a linear subspace of CA(G,H).

3. A basic lemma. The main result of this section relates the action of the Lie

algebra G to the action of pointwise multiplication by certain polynomial

functions on the homogeneous space A7\A. The result, Lemma 1, is analogous to,

but more complicated than, Lemma 1 in [18]. The first step in the argument

applies to any semisimple real Lie group.

Let dR and dL be the differentials of the right regular representation and the

left regular antirepresentation, respectively, defined on CX(G). These actions

may be defined by ¿7?(A)/(g) = id/dt)ifig exp tX)) |,_0, and ¿L(A)

■if ig exp tX)) |„0, for all A G G,/ G C°°(G), and g E G.

Let B be the Killing form on G. We define a positive definite form on G by

(X,Y) = -cB(X,9Y), for A, Y E G, where c is a suitable number. Now let

{Z,,..., Zr} be an orthonormal basis of N, with respect to the Euclidean inner
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product ( , ). Let {Hx,...,H,} be an orthonormal basis of A, and let {Í7,,..., Us}

be an orthonormal basis of M. For each index /', with 1 < i < r, let A" and Y¡ be

defined by the formulas:

(3) Y, = 2"I/2(Z, - 9Z¡),       X¡ = 2"1/2(Z, + 9Z¡).

Then {Hx,... ,H,,YX,... ,Yr}, and [Xx,... ,Xr,Ux,... ,US) are orthonormal bas-

es of P and K respectively.

Now, let F E CnC), for A a complex character on 5. Then, for all Y E P,

and i: 6 AT, we have

dR(Y)f(k) = (d/dt)f(k exp tY) U = (¿/¿/)/(exp(i Ad(Â:)T)A:) |„0 .

Let p denote the restriction of the action Ad of A on P. Then we have

Ad(k)Y = 2 (p(k)Y,Ht)Hi + ± (p(A:)T, 1^.
/-i i-i

From (3) we have ÎJ + X, e N. Hence, dL(Y¡)f(k) = -dL(X,)f(k). Thus we have

(4) (¿A(T)/)(Â:) = 2 dA(Hi)(p(k)Y,H,)f(k) - ± (p(k)Y, Yi)(dL(Xi)f)(k).
/-i /-i

Now assume that G has split rank 1. Hence, / = 1. The set of restricted positive

roots, in this case, is {a}, or (a, 2a}. Let H E A, such that a(H) = 1, and

(H,H) = 1. The last condition determines the number c. Let N, and N2 be

defined as the eigenspaces of ad(H) in G, belonging to the eigenvalues 1 and 2,

respectively. Then N = N, © N2. Hence, we may and do choose the basis

{Zx,..., Zr} such that {Z,,..., Zr¡} is a basis of N,, and {Zri+1,..., Zr} is a basis

of N2. Let QK be the Casimir operator of K given by SlK = - 2i-i X,2 - 2/=i W-

Then we have the following lemma.

Lemma 1. If G has split rank 1, then for all Y G P, andf G CA(G), the function

dR( Y)f is an element of C^ (G) defined, for all k E A, by

(dR(Y)f)(k) = (X - \li)(p(k)Y,H)f(k) + \dR(ttK)((p(k)Y,H)f(k))

-\(p(k)Y,H)dR(tiK)f(k)

+ \   2   dL(Xi)(p(k)Y,H)dL(Xi)f(k),
I'-ri +1

where X = dA(H), and p is the eigenvalue of $iK in the irreducible representation

[P, dp] of A. This eigenvalue is a positive number.

Proof. Since ÜK is in the center of U(K), we have (dL(üK)f)(k) = (dR(Q,K)f)(k),

for all k E A, and / G CA(G). By the Leibnitz rule, applied to the

derivations dL(X¡), and dL(U¡), and the fact that [U¡,H] = 0, we have for all

Y E P, and k E A,
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dR(QK)((p(k)Y,H)f(k)) =f(k)dR(SlK)(p(k)Y,H) + Ípik)Y,H)dRiüK)fik)

W - 2 ± idLiXi)ipik)Y, H))(dL(Xi)f(k)).
/-i

Now, by (3),

[77,A¡] = 2-1/2[77,Z, + OZi] = Y„       for 1 < i < r„

= 2IJ, for /■, + !</</•.

Hence, the last term of (*) becomes

-2 2 (p(k)Y, Yi)dL(Xi)f(k) - 4   2   (p(k)Y, Yi)dL(Xi)f(k).
i=\ i-ri + 1

By (4), the latter expression is

2idRiY)f)ik)-2\ipik)Y,H)fik)-   2   dLiXi)ipik)Y,H)dLiXi)fik).
i-O + l

The lemma now follows from (*).

4. The basic theorem. We now specialize the construction of the last section to

the generalized Lorentz groups. Let n be an integer, equal to or greater than 2.

Let G = Gin) or G(«), where G(n) is the identity component of SO(l,«), and G(n)

is the group Spin(l, n). The latter group is a two-fold covering group of G(n), and

is simply connected if n > 3. The group G(n) is the identity component of the

orthogonal group of a quadratic form Q, defined on a real n + 1-dimensional

vector space, where Q is nondegenerate, and has signature equal to — n. In a

canonical basis, this form has the matrix/ = diag[l, — 1,..., — 1]. In such a basis,

G(ri) may be identified with a set of matrices A which satisfy the relation

ATJA = J. We may take K = K(n) to be the subgroup which fixes the vector

(1,0,... ,0). This subgroup is isomorphic to SO(«). The corresponding Cartan

decomposition may be written G(n) = K(n) © P(n), where K(«) is the set of skew

symmetric matrices given by the expression

Kin) = spanR{£;, - Eß | 1 < i < j < n),

and the Cartan subspace P = P(n) is given by the set of symmetric matrices

P(n) = spanR{7i0,. + EiQ\ i = I,... ,n),

where Eg, for 0 < i,j < n, are the matrix units in the canonical basis. We write

N(n), S(«), A(n), respectively, for the subalgebras which in this case correspond

to the subalgebras N, S, and A of the last section. Similarly, we denote by N(n),

S(n), A(n), and K(n) the subgroups of G(n) which correspond, respectively, to the

subgroups N, S, A, and K of the last section. The corresponding subgroups of the
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spinor group G(«) are denoted by N(n), S(n), Â(ri), and R(n), respectively.

For G(«) we have rx = r = n - 1. Hence, for these groups, the last term on the

right-hand side of the equation in Lemma 1 is absent.

In order to derive a more useful form of this lemma, as well as to be able to

state our main results, we make some known comments concerning the weights

of irreducible representations of K(«).

Let p be the rank of K(«). Then n = 2p, or n = 2p + 1. Let H(«) be a Cartan

subalgebra of K(«). It is convenient to extend the inner product (, ), defined on

G, to an Hermitian inner product on Gc by means of the definition (x + ix',y

+ iy') = (x,y) + (x',y'), for x, x', y', y E G(n). We identify H(«)c with its dual

by means of the form ( , ). Let (iex,... ,iep) be an ordered orthonormal basis of

H(«)c. The weights of any finite-dimensional representation of K(«) are pure

imaginary forms on H(«). In particular, let 2 be the set of simple positive roots,

corresponding to the lexicographical ordering on z'H(«) determined by the above

ordered basis. Then

^ = {el  — e2> ■ ■ ■ ,e2p-l ~ E2p,e2p),

in case « = 2p + 1, and in case n = 2p,

2 = [ex — e2,... ,£2p-X — £2p,e2p-i + ^pi-

Let [w] be a class in ß(A(«)), the set of equivalence classes of irreducible unitary

representations of K(n). Let Au be the highest weight corresponding to this class.

We may write Au = 2f=i Au,e,. In terms of this basis, the standard dominance

conditions:

(5) 2(Au,a)/(a,a) > 0,

where a G 2, and the numbers on the left are integers, become

(6a) Ki > Au2 > ... > Aap_x > \Aap\,

in case « = 2p, and in case « = 2p + 1,

(6b) A„x > Au2 > ... > Aup > 0.

The components of the highest weights must be integers or half odd integers. The

latter representations correspond to the spinor representations which do not

correspond to "single-valued" representations of A(w). The weights of the

irreducible representation [P(n)c,dp] are given by the expression (±e,,... ,±ep},

in case « = 2p, and by the expression {±£x,... ,±6^,0} in case « = 2p + 1. Let S

be the form defined as 26 = sum of positive roots of K(«). Then for « = 2p we

have 25 = 2[(p - l)e, + (p - 2)e2 + ... +ep_i], and for « = 2p + 1 we have

28 = (2p - l)e, + (2p - 3)e2 + ... +3^., + ep.
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Finally, for each Y E Pin) we write 4>Y for the function k —► (p(k)y, 77). These

functions are defined on the right coset spaces M(n)\K(n) ca M(n)\K(n), that is,

the n — 1-sphere. They are in fact spherical harmonics of degree one.

Theorem 1. Let f E L\(G(n), 77), where 77 is a finite-dimensional inner product

space, and let Y E P(n)c. Then, unless Au, - Au is a weight in [Pc, dp], we have

EudR(Y)Eaf = 0. Now assume that Au- — Au = a is a weight in [Pc,<7p]. Then we

have

E„.dR(Y)EJ= (\-(n- l)/2 + (o,o)/2 + (a,Au + 8))Eu,<t>YEJ.

The theorem follows easily from Lemma 1 and some known observations

concerning irreducible K(«)-modules.

Lemma 2. Let [Hu,tc] be a representation belonging to the class [to] in il(K(n)).

Then the eigenvalue of Q,K in this representation is given by

du(üK) = [(Au + 8,A„ + 8) - (8,8)]l,

where 1 is the identity function on Hu.

Proof. This formula is true for any compact or complex semisimple Lie

algebra. See [13, p. 247]. For n = 2, the result is true with 5 = 0.

Lemma 3. Consider the reduction of the tensor product representation [Hu

<8> P(n)c,dp <8> w] into irreducible representations. A class [w] occurs in this

reduction if and only if the highest weight Au- satisfies the condition that Au. — A^

= a is a weight in [P(n)c,dp].

Proof. This lemma follows immediately from the general theory of reduction

of tensor product representations. See [3] or [13, p. 262].

Proof of the theorem. For each class [w] G $l(K(n)), the map Y <8> EJ

-> fyyEuf is a K(«)-module homomorphism of the K(«) module P(n)c

® EaL2A(G(n)) into L2A(G(n)). In the representation [P(n)c,dp], the eigenvalue of

dp(SlK) is u » in — 1). Hence, the theorem follows.

5. Some remarks on the A(n)-module structure of the induced representations.

Let [77, All] be a finite-dimensional representation of the parabolic subgroup

5(«)M(/7). We point out that the Â(n)-module structure of the space dCA¡l(k(n))

can be completely determined from the Frobenius reciprocity theorem for

compact groups, and the branching theorem. (See [2, p. 248].)

We note that the subgroup Ñ(ri) is isomorphic to Spin(« - 1), if n > 3. The

group Spin(2) is the circle group. For n = 2, G(n) ¿t SL(2, R). In this case, K(n)

is the circle group, and M(n) is the two element group comprising the center of

G(n). In case n = 2p + 1, rank(K(n)) = rank(M(n)) = p. In case n = 2p, the rank

of M(w) isp - 1. In the latter case, choose the basis {zx,... ,ep} in such a manner
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that the first p - 1 elements lie in the subalgebra M(n). We call a representation

[co] G S2(A(«)), or a representation class [p] G ü(M(n)), a spinor (ordinary)

representation, in case the components of the highest weights in the above bases

are half odd integers (integers). In case « = 2, the nontrivial (trivial) character of

M(n) is called the spinor (ordinary) representation. With these definitions, the

spinor representations are precisely the ones whose kernels do not contain the

kernel of the covering map Spin(«) -4 SO(«).

Lemma 4. Consider the restriction of the representations [L2Ajl(G(ri), H), R] and

[CA/J(G(«), H), R] to the subgroup K(n). Then the following statements are true. (1)

The class [to] G n(Â(«)) occurs in these restrictions with the same multiplicity as [p]

occurs in the restriction of[u] to M(n). (2) //[p] is a spinor (ordinary) representation

of M(n), then every class [w] that occurs in the above restricted representation is a

spinor (ordinary) representation, and in case « > 3, the components of the highest

weights A„, and A^, satisfy the following inequalities:

(a) for n = 2p,

(7a) Aul > AM, > Au2 > A^ > Au3 > ... > A^., > \Aup\;

(b)forn = 2p+ 1,

(7b) Aul > AMl > Au2 > A^ > ... > Aw_, > Aup > |AW|.

Moreover, if Au satisfies condition (7a) or (7b) above, then [<o] occurs with

multiplicity 1 in the induced representation.

Proof. Statement (2) follows immediately from statement (1) and the branching

theorem referred to above. By the discussion in §3 the restriction-to-ÄX«) map is

a Â(«)-module isomorphism. The image of this map is the induced representation

of AX«) induced by the representation [H, p] of the subgroup M(n). The lemma

follows then by the Frobenius reciprocity theorem for compact groups. (See Weil

[19, p. 82].)   Q.E.D.

6. The first irreducibility theorem. Let [H, p] be an irreducible representation of

the subgroup M(n). We consider now the induced representation [LA(1(G(«)), R]

induced by the representation AP~x¡i of the parabolic subgroup S(n)M(n). As

before LA/1(G(«), FT) may be viewed as a closed invariant subspace of L\(G(n), H).

As a first application of the main theorem, we derive sufficient conditions for

the irreducibility of this module. We recall that topological irreducibility of the

Banach space representations, belonging to the infinitesimal equivalence class of

the module [LA(1(G(«),¿/), R], is equivalent to algebraic irreducibility of the K(«)-

module [dCA¡¡(G(n), IT), dR].

Theorem 2. Suppose that [H,p] is an ordinary representation of M(n), and suppose

that the number X = dA(H) is not equal to an integer. Then, [dCAl¡(G(n),I£),dR] is

irreducible.



476 ERNEST THIELEKER

Suppose that [77,/x] is a spinor representation of M(n). Then the module

[dCA¡1L(G(n),H),dR] is irreducible provided X is not equal to a half odd integer.

Finally, dCA)i(G(n),H) is an irreducible U(G(n))-module if for all classes [to]

occurring in the restriction to K(n), the following conditions hold: X + Aui + 1 — /

^ 0, A - A«, - n + 1 i=. 0, 1 < i <p.

Proof. Under the hypothesis of the theorem we will show that every nonzero

element of the space dCA¡í(G(n),H) is cyclic. Let/be a nonzero element. Let V

be the t/(G(«))-module generated by/; that is, V = dR(U(G(n)))f.

It is known that the universal enveloping algebra has the following decompo-

sition (see [9a, part I]):

U(G(n)) = U(P(n))U(K(n)),

where U(P(n)) is the image in U(G(n)) of the symmetric algebra S(P(n)), under

the symmetrization map. Let F be the subspace of dCA¡i(G(n), H) defined by

F = dR(U(K(n)))f. This subspace is obviously finite dimensional and a K(n)-

module. Moreover, V = dR(U(P(n)))F.

Let J¡ be the pointwise C-algebra generated by 1, and the functions g -» <¡>Y(g)

= (p(K(g))Y,H), where Y E P(n)c. We recall that k is the analytic projection of

G(n) onto the subgroup k(n) defined by the Iwasawa decomposition. This

algebra consists of the spherical harmonics defined on the coset space

M(n)\K(n). We show that it consists of all the Â(«)-finite functions defined on

this coset space. In fact, S is closed under complex conjugation, since it is

generated by real functions. Moreover, this algebra separates points as the

following observations show: Assume that for all Y E P(n)c we have (p(kx ) Y, 77)

= (p(k2)Y,H). Then since p is unitary, we have iY,pikxx)H) = (Y,p(k2x)H), for

all Y E P(n). From the nondegeneracy of the inner product ( , ), it follows that

p(kxx)H = p(k2x)H, or that kx k2x fixes the element 77, and hence is in M(n). In

other words, kx and k2 lie in the same right coset. Hence the assertion follows

from the Stone-Weierstrass theorem.

Now, by the argument used in Lemma 3 of [18] it follows that the space

dCA¡!¡(G(n), 77) is generated as an ^-module by any finite-dimensional K(n)-

submodule of dCAl¡(G(n), H). In particular we have

^9 = dCAli(G(n),H)-

Hence, the proof of the theorem will be complete once it is shown that <V is an

<A-module, for in that case we will have

dCAli(G(ri),H)=j;V ç rj/_ dR(U(G(n)))f.

Q/is a direct sum of irreducible Â(«)-modules. Hence, for all [u>] E Q(K(n)) we

have EU(V c CV. Assume [w] occurs in the Â(«)-module reduction of Q/. By
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Theorem 1, we have, for all Y G Pc(«),

Ea.dR(Y)Ea = qu-uEu,<byEu,

where quu = 0 unless Au, - Au = a, a weight in [Pc(n),dp]. We note that

Eu,<f>YEu = 0 as well, unless [«'] belongs to the tensor product p ® w. Hence

Eu-4>yEu = 0 unless Au, - A^ = o, a weight in [Pc(n),dp], by Lemma 3.

On the other hand, if [w'] does occur in the tensor product p <8> w, we assert

that qa,u t^ 0. The theorem will follow from this assertion, since then Ea, <i>y Eu <V

E CV, for all [«'] and [to] G ñ(A(«)). Thus, <f>Y<V c <V, and O^is an ^-module.

By Theorem 1, we have

qu,a = X + Aai + I - i, in case a = e„

= X - A^i -« + /'+ 1,       in case a = -e,,

= X - p, in case a = 0,

the last condition applies only to the case « = 2p + 1.

Now by Lemma 4 if [p] is a spinor representation, then Aw, is a half odd

integer, for all 1 < /' < p, and in case [p] is an ordinary representation, A^, is an

integer. In all cases the hypothesis of the theorem insures that qu,a ^ 0. Thus the

assertion follows.    Q.E.D.

7. A lemma for the nonirreducible cases. In order to examine the situation in

which the hypothesis of Theorem 2 fails to be satisfied, it is convenient to

introduce a class of commutative operator algebras, which plays the same role

that the algebra S plays in the proof of Theorem 2.

We shall introduce the following terminology. Let [p] be an irreducible

representation of the subgroup M(n), and let A^ be its highest weight. Let us say

that an irreducible representation of K(n), [a], is ^-admissible if this representa-

tion occurs in the induced representation of K(ri) induced by the representation

[p]. It follows immediately from Lemma 4 that this condition is equivalent to the

condition that the components of the highest weight Au satisfy the inequalities

(V).
Let ^(Âi«)) be the subset of ü(K(n)) consisting of p-admissible representation

classes. Suppose íü is a subset of ñM(A(/i)), and let [H, Ap] be an irreducible

5(«)A?(«)-module corresponding to the character A of 5(«) and the representa-

tion p of M(n). Then we define an Hermitian projection D on the Hubert space

L2Afl(G,I£) by means of the formula

D = 2 {Ea ■ M g &}•

The above formula defines a Hubert space projection, since the projections Ea,

[u] E ^(Âi«)) are mutually orthogonal, by the Schur orthogonality relations. If

/ G dCA¡l(G(n),H), then only a finite number of terms in the sum
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Df=-2{EJ: M G2>}

are different from zero. Hence Df is also a A-finite vector. Since dCAf¡(G(n), 77) is

dense in L2Alx(G(n), 77), it now follows easily that DdCA¡l¡(G(n), 77) is dense in

£>LA(1(G(«),7i).

Now let <SD be the C-algebra of operators on L2A¡¡(G(n), 77) generated by the

operators D<bYD, for T c Pc(«)- The functions <pY are of course regarded as

multiplication operators on LA(t(G(/i), 77). When 7) = 1, or equivalently, when

2> = í2íi(7C(n)), the algebra Sx is of course equivalent to the algebra S, intro-

duced in the proof of Theorem 2, when the latter is regarded as an algebra of

multiplication operators on LA(l(G(«), 77).

Lemma 5. Let ih be a set of ii-admissible representation classes, and let D be the

Hermitian projection that corresponds to this set, as defined above. Let D be a K(n)-

invariant finite-dimensional subspace of dCAyi(G(n), 77), and assume that 7)9 = 9.

Assume also that üb has the following property: If [oi] and [w'] G 5b, then 2>

contains all the ¡i-admissible classes which lie between [u] and [u'] in the lexicograph-

ical ordering of highest weights. Then we have the following equality of subspaces:

£DV = D<StD = DdCAll(G(ri),H)-

Proof. The equality DJ¡XD = DdCAlt(G(n),77) follows immediately from the

equality <A9 = dCA)i(G(n), 77), which was pointed out in the proof of Theorem 2.

It remains to prove the first inequality. It clearly suffices to assume that 9 is

A>(«)-irreducible and belongs to the «-admissible class [to]. Let

C = <S% c £XD C ... C S'D ...,   C = ^° c £x E ... E £' ...

denote the standard nitrations that the algebras SD and S acquire as algebras of

polynomials. We shall prove that for all degrees t, t > 0,

S'D3 = D^"D.

Since, for all t, t > 0, the linear space JS'*3 is equivalent to a direct sum of its

^(^-irreducible subspaces, it follows immediately that ¿¿9 Ç DS'D for all t,

t > 0. Hence it is sufficient to show that <S'DD D DS'S. The proof proceeds by

induction on the degree /. The last statement is obvious for t = 0. Let us assume

that this statement is true for t = u ~> 0.

We note that the linear space DSuJrX 9 is generated by the subspace DSU<D and

the set of functions D<j>Y<b', with <f>' E <S"D and Y E Pc(n). Hence, it suffices to

show that D<pY<p' E ^+19, for 4>' G SU,D, and Y E Pc(n).

We may write

7)<í>y(f>' = D<bYD4>' + 7)<f>y(l - D)<t>'.
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By induction hypothesis, D<¡>' E <S%'D. Hence the first term on the right-hand

side of the last equation lies in £$~x 9. If the second term is equal to zero we are

done. Assume that D<bY(\ — D)<¡>' =¿= 0. This expression is a sum of terms of the

form Eu,<bYEu„<b', with [w'] G D and [w"] G £>, and A„. = Au„ + a, with o = ±e,

for some/ 1 < / < p. The last condition follows from Lemma 3. We assert that

Eu,<j>YEa»<b' lies in the subspace J>"S. Whence the lemma follows by the

induction hypothesis, once this assertion is proved.

It follows from the Frobenius reciprocity theorem and the branching theorem

that each p-admissible representation class occurs with multiplicity one in the

A(«)-module [dCA)l(G(n), H), R], Now it follows from Lemma 3, and also from the

branching theorem, that the p-admissible representations have highest weight O

which lie on certain lattice points in a p-dimensional lattice. These lattice points

correspond to vectors fi such that the components of fi - Au, in the basis {e,},

are integers. Lemma 3 tells us more: Let us look at the sequence of subspaces

9, J>X<D, Ji2Q,.... As one moves along this sequence, the lattice points which

correspond to p-admissible representations "fill in" without gaps in any direction.

In other words, the lattice points whose y'th coordinates are AaJ ± s must fill in

before the lattice points whose y'th coordinates are Au ■ ± (s + 1 ), í > 0. In

particular, we see that the lattice point corresponding to A„. must have been

filled in before the lattice point corresponding to Au„. It follows that

E„,<j>YEu„<p" E SUD.   Q.E.D.

Remark. In the course of the above argument we have shown that for some

Y 7^= 0, Ea,<bYEu„ =£ 0, whenever Au, - A„- is a nonzero weight in [Pc(n),dp] and

w' and w" are p-admissible.

8. The nonirreducible cases. We shall now investigate the situation in which the

hypothesis of Theorem 2 fails to be satisfied. We shall perform a case by case

analysis of this situation.

Theorem 3. Fix a real number X = dA(H). Suppose there exists an index i,

1 < ' < P, and a ¡i-admissible class [u] E ^^(n)) such that X + A„, - /' + 1

= 0. Let s be the integer or half odd integer defined by the equation X + s — i + 1

= 0. Assume also that either i =¿= p or that n = 2p + 1. Then the index i is unique.

Let U\ be the subset ofCiß(K(n)) defined by

<h~x = {[a/] G fiM(A(«)) : Auj < s}.

Then the following statements are true.

(1) The projection Dx = 2 {Eu : [w] G 5\} is an invariant projection; that is,

D\dCAll(G(n),I£) is a dR(U(G(n)))-module.

(2) The dR(U(G(n)))-module in statement (I) is irreducible.

(3) The projection defined in (1) has no supplementary invariant subspaces. In
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particular,  the submodule defined in (2) is a unique irreducible submodule of

[dCAli(G(n),JD,dR].

Proof. First, we note that the index ; defined in the hypothesis is unique.

Suppose that for some [u] and j ^ i, X + Au^ - j + 1 = 0. Then Au.j = s +j

— /'. If y > /', then by the inequalities (7), we have s > A^ > AM/_i > s + j — i,

a contradiction. Similarly, if j < /', we have s + j — i > Aw > A^., > s, again

a contradiction.

Now, we will show that under the conditions of the theorem, Dx dCA)l(G(n), If)

is an invariant subspace. Since the projection Dx is invariant under the

restriction of the representation to K(n), it is sufficient to show that D^ dR( Y)DX

= dR(Y)Dx, for all Y E Pc(«). This condition is equivalent to the condition that

(1 - DÎ)dR(Y)DÎ = 0, for all Y E Pc(n). If 1 - D¿, the latter condition follows

trivially. To prove the last condition when 1 ^ Dx, we will show that for any p-

admissible classes [to'] and [w"] such that [«'] G 2\ and [u"] £ 2\ we have

Eu..dR(Y)Eu. = 0, for all Y E Pc(n).

Assume that [w'] G 2^ and [u"] £ U\. If Aa„ — Au, is not a weight in

[Pc(n),dp], then it follows from Lemma 3 that Ea„dR(Y)Eu, = 0. Suppose that

Au„ — Au, is a weight in [Pc(«), dp]. Then by Lemma 3, we must have, for some

/ 1 < j < p, Au„ = Au- ± Bj. On the other hand, by the definition of the set ü\,

we must have Au», > s and Au7 < s. Hence, by Theorem 1 we have, for all

Y E Pc(n),

Eu„dR(Y)E„. = [X + s + 1 - i]Eu;<bYE„, = 0.

Hence (1 - D^)dR(Y)Dx = 0 for all Y E Pc(n).

In order to prove the irreducibility of the module Dx dCA)í(G(n), H), we will

show that an arbitrary nonzero element / in this space is cyclic. Let / be such a

nonzero element. Let D be the t/(K(«))-module generated by / Since / is K(n)-

finite, 'D is finite dimensional. Hence, by Lemma 5, irreducibility is proved once

we have shown that

«SA-9 E dR(U(Pc(n)))D.

The last inclusion will be proved once we have shown that the space on the right

of the inclusion is an J¡D- -module.

Let g' E dR(U(P(n)))9, g' ^ 0. Then for Y E Pc(n), Em„dR(Y)Ea,g' = 0

unless [w"], [w'] G U\ , by the first part of the theorem. Assume [w"], [w'] G í£>x •

Then, as in the proof of Theorem 2 we have

E„„dR(Y)Eu,g' = q^Ea.,<bYE^g',

where qu„u, = 0 unless A^» - Au, = a, a weight in [Pc(n),dp]. In that case we have
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?«•«< = X- A„j- n+j + 1        in case a = -e,,

= À + AaJ + 1 — j in case a = e,,

= X — p in case a = 0.

The last case is applicable only when n = 2p + 1.

In the first case we find that A„«¿ = Aa>¡ - 1 ; so that

î»-«- = A - Au7 - n +j + 1 < A - Au.j - n +j + 1

= -Au.,j -s + i+j- n.

Since we are assuming that either n = 2p + 1 or that / =¿= />, we have i > 0.

Moreover, Aw^ > 0, except when n = 2p and / = p. In the latter situation we

have |AU-7| < s. Hence ?wV < 0.

In the second case we find that Auy = Aaj + 1. Ifj^iwe have À + A^ - /

+ 1 j^ 0, by the uniqueness of the index i in the hypothesis of the theorem. If

/ = /', we have Au», < s by the definition of the set 2\. Hence Aul < s, and

qa.a, = X + A0.i - i + I < A + 5 - i + 1 = 0.
If case three applies, we have X - p = -s + i — 1 — /? < 0.

Hence, in all three cases, <7uV ̂= 0. Thus

Eu„4>YEu,g' = (l/^v)7v¿7?(y)7vg' G dR(U(Pc(n)))D,

whenever Eu» dR(Y)EU, =£ 0. Thus £>* <f>YD^g' E dR(U(Pc(n)))D. Thus, the

G(n)-module generated by 9 is an ¿SD- -module, and the irreducibility follows.

Finally, we turn to the last assertion of the theorem. If the set 2\ is equal to

the set of all «-admissible classes, ü^(Riri)), then D^ = 1, and the last assertion

is vacuously true. Hence, assume that 1 - D^ ^ 0; then there exists a class

[w'] g Dl, and Eu(l - D^)EU. = (1 - D^)EU.. We also have for the index i the

following inequality A^,- > i. Let [to"] be the class corresponding to the highest

weight Au. — e,. (The latter is in fact a dominant integral form because of the

inequalities (7) and (6).) Then for all Y E Pc(n),

Ea.dRiY)Ea,-qoWEa.4>YEs,

with

Qu'a- = A - Au-, -n+i+l<A-*-«+i+l

= -2s + 2/ - n < 0.

Hence, by the remark made .at the end of the last section, the class [w"] also lies

in the i/(G(«))-module generated by EudCAf¡(G(n)). Proceeding inductively, we

conclude that the latter module contains a class [«"] such that Au», < s. It follows

that the latter U(G(n))-module contains a class in the range of D^ ■ In particular,

7J>x has no supplementary invariant projections. Q.E.D.
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Next, we consider a situation which, in a sense to be described later, is dual to

the situation described in Theorem 3.

Theorem 4. Fix a real number X = dA(H). Suppose there exists an index i,

1 < i < p, and a ¡¡.-admissible class [w] G Q^K^)) such that X — Aa¡ - n + i

= 0. Assume also that either i ^= p, or that n = 2p + 1. Then the index i defined

above is unique. Let s = Aui,for the class [co] satisfying the above condition. Let 2b^

be the set defined by

^ = {[«']  G Ö„ (*("» : A"'. > «}■

Then the following statements are true.

(1) The projection D+ = 2 {Eu : [w] G 5>^} is an invariant projection in

[dCAli(G(ri),H),dR].

(2) The U(G(n))-module D+dCAfí(G(n), H) is irreducible.

(3) The projection defined in (1) has no supplementary invariant projections in

dCAfi(G(n), If). In particular, the irreducible U(G(n))-module defined in (2) is a

unique irreducible submodule.

Proof. We state only the details in which this proof differs from the proof of

the previous theorem. The statement concerning the uniqueness of the index i

follows exactly as in the proof of Theorem 3.

In order to prove that Df is an invariant projection, we must show that if

[w"] g 2^", [«'] G £>x , and A„- - Au, = ±Bj, then qu„u, = 0. However, for such

classes [w"] and [w'] we must have y = /', Au„¡ < s, and Au,¡ > ä. Thus A.u-¡ = s,

and Au„i = A^, - 1. Hence, qa-a. = X - Au-, -« + /+l=A-i + /'-« = 0,

and invariance follows as in the proof of Theorem 3.

The irreducibility of D£ is proved by showing that qu„¿ ^ 0 for [u"], [<o']

G 5>x, and Au» - Au. = a, where a = Sj, — e¡, or 0. The last possibility applies

only when n = 2p + 1.

First assume that Au„ - Au, = -e;, for 1 < j < p. Then A^ = A^ - 1, and

we have qa.u, = X — Aw», - n + j + 1 = X - Au„j — n + j. If j =£ i, then the last

expression in the above equation is different from zero, by the uniqueness of the

index /'. If/ = /', then by the definition of ^, we have qu„u, = X — Au», - n + i

<A-5-« + / = 0.

Next, assume Au„ - Au, = ey, 1 <j<p. Then we have

?«v = * + Kj +\-j = s + Auj-i-j + n+l>n+\-2p>0.

Finally, if n = 2p + \  and Au„ - Au, = 0, then qa„u, = X-p = s+p-i+ 1

> 1-

Hence, in all three cases, qu»u, =£ 0, and irreducibility follows as in the proof

of Theorem 3.
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Finally, we prove the last assertion. Here we must show that if [to'] (£ 2^, so

that we have Aw., < s, we must also have qu~u* ̂= 0, for Au- = A,,,- + e,. However,

in this case we have qa*a. = A + Au-, + 1 - i > n + 1 - 2/ > 0. The last asser-

tion follows as in Theorem 3. Q.E.D.

We now consider a possibility omitted in both of the last two theorems, namely

the situation in which n = 2p and the index i is equal to the rank of K(ri), namely

p. We point out that the theorem about to be stated includes the case when n = 2

or G(2) = SL(2, R). However, in that case, the inequalities (7) do not apply and

the condition of u-admissibility reduces to the condition that 2AU/J = 2A,,,, is odd

if u is the nontrivial character of M(2), and 2Aul is even if ¡u, is the trivial

character of M (2).

Theorem 5. Assume that n = 2p. Fix a real number X = dA(H). Suppose that

there exists a Li-admissible class such that Aup = s satisfies the equation X + s — p

+ 1=0. Let 2^ and 2^ be the subsets of Q^Kin)) defined by the expressions

% = {[to'] G ^(k(n)) : Au.p < s},

2>£ = {[^ E ß„(it(«)) : Au.p > -s}.

In case s is nonnegative, define the subset 2}^ as the intersection

2^ = 2^ n 2^.

Let D^p, Dfy, and D^ be the projections corresponding to the subsets 2>^, 2>^, and

2ij¡p as in Lemma 5.

(1) The projections D^,, D^,, and in case s > 0, Df^, are invariant projections.

(2) In case s > 0, Df^ is an irreducible projection. If p = 1, then D^, is a finite-

dimensional projection. In case s < 0, D^ and D^, are irreducible projections.

(3) In case s > 0, D^ is the unique irreducible projection; that is, 1 — DC

contains no supplementary invariant projections. In case s < 0, 1 — D^, — D^,

contains no invariant projections.

Remark. It follows from inequality (7a) that the conditions p > 1 and

A(I/>_1 = 5 imply that D^ = D^, = Dj^ = 1. In this case, it will follow that

dCA)iiGin), 77) is irreducible.

Proof. Again the proof follows the same pattern as that of Theorem 3. We

emphasize only those details which differ from the proofs of the last two

theorems.

If [w"] $ <]\, [u'] E 2\, and Au» = A„. ± e,, we must show that &v = 0.

However, under the conditions stated, it must follow that Au» = Au. + ep, with

K"p = K'p + I- Hence

qaW = X + Au.p+l-p = X + s+l-p = 0,
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by hypothesis. Hence it follows as in the proof of statement (1) of Theorem 3 that

D^p is invariant.

Similarly, if [«"] É 2}£, [to'] G 2>£, and Au„ - Au, = ±£j, then A„„ - A„,

= -ep, Au~p = -s - I, and Aw,p = -s. Hence

iav -A-Ab>-#!+/>+1-A + j+1-/>«0.

Hence Z)j¡¡, is invariant.

Finally, we note that if j > 0, we have Z)^ = D^D^, = D^D^. Hence D^ is

an invariant projection.

Next, assume that s > 0. In order to show that D^ is irreducible, we show that

?«v t^ 0, whenever [«"], [«'] G 2^ and Au. - A„- = ±e, for some/ 1 < j < p.

The irreducibility of the projection D^ will follow as in the proof of part (2) of

Theorem 3.

If Au„ = Au, + Bj, then quW = A + Aw> + 1 - / = (A^ - s) + (p - j). Ifj = p,

then A¿p = Au„p — 1 < s — 1. Hence çu»u. < 0. If/ < p, then by the inequalities

(7b), Aa.j > Aprl > s. Hence ?wV >/>-/> 0.

If A„» = Au. - Ej, then 0wV = X - Aaj- 2p +j + 1 = -s - AuJ - p+j. If

/ < p, then Auj > A¡i^x > s. Hence, qa„a, < -p +j < 0. If p =/, then Au>

= A^ + 1 > — s + 1. Hence qu»a, = -s - Aup < — 1. Hence Z)^, is irreducible.

Now assume that s < 0. We will show that Z)^ is irreducible. Let [«"], [co']

G 2>xp. First assume Aw» - Aa, = e,-. Then ?„.„- = Aw> - s +p -/, as before. If

j < p, then A^ > |s|, by inequalities (7b). Then qu„u, > 2\s\ + p -j > 0. If

j = p, then gM»w- = -í + Aa,p > -2s > 0.

Next assume A,,» - Au, = -£,. Then 0uV = -s - AuJ - p + /. If/ < p, then

A„<j > —j, by the inequalities (7b). Then qa~a, < — 2s — p + j < 0. If/ = p, then

A„> > -■* and Au> = 1 + Au> > -s + 1. Hence, qu„u, = -s - Au> < -1.

Hence, the irreducibility of Z)^, follows as in the proof of part (2) of Theorem 3.

We continue the assumption that s < 0. We will show that 2}^, is irreducible.

Let [to"], [to'] G 2>xp. First assume that Au„ - Au, = e,. Then qu.u. = A^ - s + p

- j. Ifj < p, then Aw> > -5, by the inequalities (7b). Hence, qu„u, > p -j > 0.

If/ =p, AuV, = Au> - 1 < s - 1. Hence $„.„. < -1. Next, assume Aw- - A„.

= -Ej, then c7u.v = -5 - Aw7 -p+j. Ifj = p, q^u- = -s - A„,p > -2s > 0. If

/ < p, then qa.a. - -i - A^ - p +j < -s - A^ < 0, since AaJ > -s,by the

inequalities (7b). Hence, the projection DXp is irreducible.

We finally prove the last assertion of the theorem. As pointed out in the

remark, if Afip_x = s, then Z>^ = D^ = Z)^, = dCAlx(G(n), H). The assertion fol-

lows trivially in that case.

We now assume that A^., > |j|. Assume s > 0. We show that D^ has no

supplementary submodules. Suppose [to'] E 2>j^,, where [u'] is a p-admissible

class, and suppose Au> < — s. Then Aa, + Ep is the highest weight of a p-

admissible representation class [u"], and we have qu«a, = Au,p - s < —2s < 0.

Hence it follows by induction, and the remark made at the end of the last section,
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that there exists a "string" of «-admissible classes whose highest weights form the

sequence Aw-, A„. + ep,..., Au< + tep. This string eventually enters 2s£,. Similar-

ly, if [to'] G 2^ and A¿p > s, then Au- - ep is the highest weight of a in-

admissible representation class [co"], and we have qu.a- = -s — Aa.p < —2s < 0.

Thus there exists a string of «-admissible classes whose highest weights form the

sequence A¿, Au, - ep,..., Au. - tep. This string eventually enters 2>^,, again.

Hence in both cases, the U(G(n))-module generated by EudCAll(G(n),H) con-

tains the range of 7)^.

Now assume that í < 0. Let [«'] be a «-admissible class not contained in

2>^ u 2^. Then an entirely similar argument to the one given above shows that

the U(G(n))-module generated by the space EudCAll(G(ri),H) contains the range

of the projection D^ + D^,. Q.E.D.

9. The eigenvalues of the Casimir operator. In this section we compute the

eigenvalues of the Casimir operator ß = 2j=i Yoj ~ 2?-Y 2j>; X,2 for each of the

induced representations contemplated in this paper, and observe some simple

consequences of this calculation. Here, we write Y0j = E0J + Ep, and Xtj = Ey

- Eji, for 1 < i <j < n.

First, we make some observations concerning the Casimir operator of the

subalgebra M(n). For n — 2, of course, this algebra is trivial. For n = 3, M(n) is

the abelian Lie algebra {A23}, and we define the Casimir operator to be

QM = - X2\. In case n > 3, we normalize the Casimir operator in such a manner

that QM - - 2,"=2 Xr>i X>h Let us Pick a Cartan subalgebra of M(n), n > 3,

which is contained in the Cartan subalgebra of K(m). We give this Cartan

subalgebra an ordering compatible with the ordering in (—l)U2HK. Let 8M be the

linear form on this Cartan subalgebra defined as follows: if n = 3, we set 8M = 0,

and if n > 3, we set 28M equal to the sum of the positive roots of M(n). Let « be

an irreducible representation of the subgroup M(n), and let A,, be its correspond-

ing highest weight. Then it follows from Lemma 2 that the eigenvalue of ÜM

corresponding to this representation is given by dp.(QM) = [(A^ + 8M, A^ + 8M)

— (8M,8M)] ■ 1, where we use the symbol ( , ) to denote the restriction of the

inner product on (—l)i/2HK to the Cartan subalgebra of M(/i).

Lemma 6. The representation [dCAliiCin),H),dR] maps the element ß onto the

scalar -y(ß) given by y(ß) = A2 - A, when n = 2, and y(ß) = A2 - (n - l)X

+ [(A„ + 8M, A„ + 8M) - (8M,8M)],for n > 3.

Proof. For each function/ G dCAfiiGin),H) define a complex valued linear

function / on U(G(n)) as follows. For q E U(G(n)) we set J(q) = dR(q)f(e).

Since the functions in the space dCA)l(G(n), H) are real-analytic, it follows that the

map/ —> / is a one-to-one map of dCAlí(ú(n),H) into the algebraic complex linear

dual of U(G(n)). This map is obviously linear as well. It follows from this

definition and the fact that ß is in the center of U(G(n)), that dR(Q,)f(q) = f(qü)

= ¡iüq), for all q E U(G(n)) and / G dCA¡í(G(n), 77). Let 7 be the right ideal in
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U(G(n)) generated by the element A - 77 and the Lie subalgebra N(n). Then it is

clear that if / G dCAlí(G(n), 77), the linear function / vanishes on this ideal. Next,

we take note of the following computation: (Note: 77 = l^i)

n        „        n— 1    n

« = 2 Yoj - 2 2 Xi2
j-\ '=1 j>i

= H2-±XXjY0J-2±Xi?    Mod 7
j"2 i=l j>i

= 772 - (n - 1)77 - 2 Y0jXXJ - § 2 *«?

= A2 - (/i - 1)A + 2 Xi} - 2 2 Xi2    Mod 7
/=2 ¿=1 j>i

= X2-(n- l)X if n = 2,

= A2 - (« - 1)A + ßw       if « > 3.

Hence, for all/ G dCAli(G(ri),77), and 4 G t/(G(n)), we have

/(ßt,) = [A2 - (n - l)X + dpiÜM)]f~(q).

The lemma then follows from the remarks made above. Q.E.D.

10. On spatially dual representations. We notice that the eigenvalues of the

Casimir operator ß are invariant under the Weyl reflection A —» — A + (n — I).

We also note that, for a fixed index i and integer s, the conditions on A expressed

in Theorems 3 and 4 "transfofm" into each other under this reflection. In this

section we shall explain this phenomenon in terms of an interesting duality

between representations corresponding to pairs of parameters A that are Weyl

images of each other.

The next lemma is essentially known and depends only on the fact that the

group G(n) has an Iwasawa decomposition. We say that a real connected Lie group

G has an Iwasawa decomposition if there exists a maximal compact subgroup K

and a maximal solvable subgroup S such that G = SK and S n K = {e}. This

property of G insures the existence of an analytic projection a of G onto 5 such

that g = a(g)K(g), for all g E G. For each g G G we define an analytic

diffeomorphism of K onto itself by the formula Kg(k) = x(kg), for all A: G A. It

is a straightforward matter to check that this map is one-to-one and onto and

that, in fact, we have Kg(-)~x - ng-< (■) for all g E G. For each g E G the map Kg

transforms the Haar measure dk on K into an equivalent measure d(ng(k)). We

shall need the Radon-Nikodym derivative corresponding to this transformation

of measures.

Lemma 7. Assume that G is unimodular. Then the Radon-Nikodym derivative

dK (k)/dk is given by dKg(k)/dk = P2(a(kg)), for g E G, and k E K, where P2 is
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the character on S given by P2(s) = det[Ads(s)]. In case 5 = S(n), we have, of

course,

A, when Z E N(«)

dPHz) = 2P(Z) = {{n_iXwhenZ=Y^

Proof. It is well known that the Radon-Nikodym derivative dKg(k)/dk is given

by the Jacobian of the diffeomorphism Kg(k). The latter may be computed as

follows. For each C°° -function on A, it is convenient to extend this function to a

C°° -function on G by the extension f(g) =/(«(g)), g E G. For each point

k E A, and Z G G we get a linear mapping of Z into the tangent space at k by

the map Z -> dL(Z)f(k) = dL(PKZ)J(k), where PK is the projection of G onto

A corresponding to the direct sum decomposition G = S + K. Let Z G A. Then

we have for/ G C°°(A),

dKg(dL(Z))f(k) = (d/dt)f(K(exp(tZ)k)g) U

= (d/dt)f(exp(tZ)kg) Uo = (d/dt)f(exp(tZ)o(kg)K(kg)) \l=0

= (d/dt)f(exp(t Ad(o(kg)-x)Z)K(kg)) |,=0

= dL(PKAd(o(kg)-xZ))f(K(kg)).

Hence dKg(k)/dk = det(ZJA:Ad(a(Ä:g)~1)). Now, let s be an element of 5. Then in

a basis of G compatible with the direct sum G = S + K, the matrix representa-

tion of the linear map Ad 5 has the following block form:

K S

(Ad s) = K

S

PKAd sPK 0

Ad \s (sU(1 - PK)Ad sPK

By the fact that G is unimodular, and the above observation we have

1 = det[Ad(a(A:g))] = det[Ad |s (a(kg))]det[PKAd(a(kg))].

Hence det[PKAd(a(kg)~x)] = P2(o(kg)). Q.E.D.

In order to state the next lemma, it is convenient to view our representation

spaces as spaces of functions defined over K(n), rather than functions defined on

G(n). Let A be a character of the subgroup 5(«). Let ta denote the restriction-to-

Á(«) map taking functions in CA(1(G(«),Z£) onto their restrictions to K(n). As

pointed out in §2, ta is a linear isomorphism of the space CA/J(G(«), ZZ) onto the

space CM(Â(«), H). Clearly, this map extends to a unitary equivalence from
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LA|l(G(«), 77) onto L2(K(rí),H), the space of square-integrable function classes

which satisfy condition (2) in §2. We also denote this extension by the same

symbol ta, and define a G(«)-action on this Hubert space by the formula

nA(g) = TA7?(g)TÄ' where g E G(n). We point out that this definition of the

group action is independent of the class [«] of the representation [77, «]. In fact,

let $ G L2(K(ri),H). Then the explicit expression for this action is as follows:

nA(g)<i>(*) = A(o(kg))<b(K(kg)), for^all g E G(n), and k E_K(n).

HA is a linear operator on L2(K(n), 77), we denote by A its complex conjugate

defined by A<¡> = Á§, where <j> E L2(Â(«), 77), and the map <j> -^ $ denotes

complex conjugation of functions.

We remark incidentally, that complex conjugation of functions takes the space

L2(K(n),H) onto the space L|(A(n),77), where for any irreducible representation

[77, «] of the subgroup M(ri), JL denotes the complex conjugate representation of

«. In case n = 2p, we have « = p, and in case n = 2p + 1, the complex conjugate

representation p has the property that A^, = - A^, and all other components of

Aj, and A¡j with corresponding indices are equal.

Let A be a linear operator on L2(K(ri),H). We denote by A* its Hermitian

conjugate and by A' its transpose given by A' = A*. If LI is a representation of

G(n) on this Hubert space, we denote by II its contragredient representation,

defined by \\(g) = U(g-X)', for all g E G(n). We also denote by IT, and 11+ its

complex conjugate and Hermitian conjugate representations respectively. The

latter may be defined by the formulas 11(g) = 11(g), and W(g) = il(g_1)*, for

all g E G(n). In the case of induced representations we have the following

relationships:

Lemma 8. Let [77,«] be an irreducible representation of M(n). Let A be a

character of the subgroup S(n). Then we have the following equalities of group actions

on Ll(K(n),H) : UA = UA, TlA = UA-,P,, and n] = nA-V.

Proof. Let g be an arbitrary element of G(n), and let k be an arbitrary element

of K(n). Then for (#> G L2(Â(n),/i) we have

nA(g>K*) = ThïèWk) = A-(°(kgW«(kg)) = TlA(gMk).

In order to check the second relation, let \p be another element of L2(Â(/7),77_).

Then we have

<nA(g)<|>,^> = / (^(k),A(a(kg)mK(kg)))dk.

By Lemma 7, we express this integral in the terms of the measure dn(kg), and

obtain

<nA(g)<|>,^> = / ®(k), AP-2(a(kg)mK(kg)))dK(kg).
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Next, change the variable of integration as follows: kx = K(kg), k = ic(kxg '). We

also have

k\ = kxg-xg = a(kxg~x )n(kx g~x)g.

Hence a(K(kxg~x)g) = o(kxg~x)~x. Hence, the integral is equal to

/ (<b(kx),Ä-lP2(o(kxg-x)W(K(kxg-x)))dkx = (<t>,nA-ip2(g-x)4<).

Hence, the third relation follows from the definition of conjugation. The second

relation is obvious, by the first and third relations.    Q.E.D.

Remark 1. The proof of Lemma 8 depends only on the hypothesis of Lemma 7.

Remark 2. It is clear that the eigenvalues of operators dUA(Q) and cZfiA(i2)

must be equal on the dense subspace t/C^A/«), ZZ). It follows from Lemma 8

above that this eigenvalue must be invariant under the reflection dA —> d(A'x P2)

= 2P - dA. If one applies these differential characters to the element H, one

obtains the transformation À —> « - 1 - À a fact which explains the symmetry of

the eigenvalues of Í2. We remark further that the above argument applies to an

arbitrary element Í2' of the center of U(G(n)). Thus the eigenvalue of Í2' must be

a polynomial in X which is invariant under the Weyl reflection À —> « - 1 - À.

In the case of infinitesimal characters of class 1 representations this fact is a

special case of a result of Harish-Chandra (see [10, p. 431]).

We close this section by making some preliminary remarks concerning

quotient representations and their relationship to contragredient representations.

Let A be a character on 5(«). Suppose D is a proper invariant projection in the

representation [L2(K(ri),H), LT.A]. By Theorem 2, we know that for this to be the

case, the number X = dA(H) must be an integer or half odd integer. In particular,

the character A must be real. Hence, the Hubert space adjoint and the

contragredient representations coincide in this case.

By the remark made prior to the statement of Lemma 8, as well as by the

conditions for proper invariant subspaces in Theorems 3, 4 and 5, we know that

D is also an invariant projection on the module [L2(K(n), H), HA]. We also know

that 1 — D is not an invariant projection in this representation. However, one

may define a quotient representation on the range of 1 — D by means of the action

g -> (1 - D)UA(g)(l - D). (The fact that this action defines a representation is

a straightforward matter to check.) The name quotient is justified in this context

by noting that this representation is isomorphic to the quotient structure

[L2(Â(«),ZZ),nA]/[Z)L2(Â(«),ZZ),nA]. We also note that the U(G(n))-modu\e of

Â(«)-finite vectors in the representation [(1 - D)Ll(K(n),H),(l - D)lTA(-)(l

- D)] is isomorphic to the quotient module [dC^(K(n), IT), dUA]/[DdCß(K(n), IT),

dflA]. We assert that the representation flA = n^i^ also acts on the spaces

(1 - D)Ll(K(n),H) and (1 - Z?)L?(Â(«),ZZ). This last assertion is established by

noting that for all >//, <b G L^(Â(«),ZZ), and g G G(n), we have
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0 = <nA(g-')(l - £>)<#>, Dxp) = <(1 - £>)<£>, IIA(g)7ty> = 0,

since D is invariant under the operator nA(g). Hence, nA(g_1)(l — D) lies in the

range of 73x = (1 — D), and the assertion is proved. In the next section we will

show the quotient action defined above is infinitesimally equivalent to the

representation [(1 - D)L2i(k(n),H),flA-iP2]. At this point we point out the

assertion just established "explains" the relationship between the condition on A

expressed by the hypothesis of Theorem 3 and that of Theorem 4.

12. The classification of quasi-simple irreducible representations of G(n). We will

now show how our methods, together with some general results of Harish-

Chandra, lead to a complete classification, up to infinitesimal equivalence, of

irreducible quasi-simple representations of G(n). As pointed out in the introduc-

tion, the latter classification is the same as the classification, up to Naimark

equivalence, of the topologically completely irreducible representations of G(n).

We summarize the main conclusions of this paper in the following theorem.

Theorem 6. Let [77, «] be an irreducible representation of M(n), and let A be a

character of the subgroup S(n). Let X be defined by X = dA(H). Then the following

statements are true:

(1) A necessary and sufficient condition that the U(G(n))-module [t/C^A^w), 77),

dl~lA] be irreducible is that one of the following statements be true:

(a) For all ¡i-admissible classes [a] we have X + Aw, + 1 — /' =^= 0, and X — Aui

- n + i + 1 =£ 0.
(b) For some ¡x-admissible class [w] we have X + Au, + 1 — ; = 0, / > 1, and

Au, = A^., ,orX-Aui-n + i+ 1 = 0, / < p, and Aui = A^.

(2) Assume that the U(G(n))-module [dC^kty), 77), c7nA] is irreducible. Then a

necessary and sufficient condition for this module to be equivalent to a U(G(n))-

module [dC¿ (K(n), 77), <7nA] is that ¡x = p. and A' = A, or «' = p and A' = A"1 P2.

(3) Assume that there exists a ¡x-admissible class [to] and an index i, 1 < /' < p,

such that X + Au/ — n + i = 0. Let s be the integer or half odd integer such that

X + s — n + i = 0. Assume also that i ^ p or that n = 2p + 1, and that s =£ A^.,,

if i > 1. Let 2ix denote the set of ¡i-admissible classes [to'] whose highest weights Aa-

satisfy the condition Aw., > s. Let D¿ denote the projection defined by

¿A+ = 2 [Eu : [co] G 2>A+}.

Then the following statements are true:

(a) [DxdC^k^îD^iif^] is an irreducible proper submodule of the U(G(n))-

module [rfC„(i?(rt),Ä).<'nA].
(b) [7>x dCJ(k(n),H),dWA} is an irreducible proper submodule of the U(G(n))-

module [dC-^(K(n),H),d\l.A}.

(c) Let X' = - A + n - 1. In  the notation of Theorems 3 and 4 we have Dx
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= 1 - Dx , and the space [Dy dC^(R(n), H), dUA-iPi ] is a proper irreducible submodule

of[dCß(E(n),mdTlA-lrt].
(d) [Dx dCn(K(n), IT), dTlA-iP2 ] is a proper irreducible submodule of[dC^(R(n), /£),

dUA-,P2].

(e) We have the following isomorphism of U(G(n))-modules:

[Z)x+i/c/4(^(«),io,rfnA]

ss [dCn(Ñ(n), H),dUA-ipi ]/[Z>x~ dC-¿K(n), H)dUA-,P> ],

[DxdC„(K(n),IT),dUA-ipi]

s [dC¿R{n), K), dUA ]/[Z)A+ dC4Ñ(n), H), dUA J.

Of course, we have a similar pair of isomorphisms by interchanging p and p.

(f) If « = 2p, the isomorphisms listed in (e) are the only isomorphisms of U(G(n))-

modules occuring in this case.

(g) If the index i = 1, then [Dx dC^(K(n),IT),d\~lA-iPi] is an irreducible finite-

dimensional U(G(n))-module.

(4) Now assume that n = 2p and assume that there exists a ¡i-admissible class [to]

such that the number Aup = s satisfies the equation X + s — p + 1 =0. Assume also

that s < 0. Then X' = - X + « - 1 satisfies the equation X' + s' - p + 1 = 0, with

s' = -(s + I). Hence, we may define the projections Z)^, D^,, and D(,p as in the

statements of Theorem 5. Then the following are irreducible U(G(n))-modules:

[D¿¿C,(A(«),H),dIlA], [D^dC^Ñin),H),dUA],and[D(,pt/C,(A(«), fi^IW].
We also have the following equivalence of U(G(n))-modules:

[D^dC^nim^U^^]

s [dC^nllDdíl^/KD^ + D^,)dC,(K(n),ID,dnA],

[D^dC¿K(n),IT),dIlA] © [D^dC„(K(n),If),dUA]

s [dC¿É(n),H),¿LW]/[D[,pdC^(n),¡T),dUA-lpI].

These are the only U(G(n))-module isomorphisms occuring in this case.

(5) Let [Hn ,11] be a strongly continuous representation of G(n) on a Banach space

Hu. Assume that [Hn, IT] is irreducible and quasi-simple, or topologically completely

irreducible. Let [cZZZn,tZIÏ] denote the U(G(n))-module of K(n)-finite vectors in this

representation. Then there exists a finite-dimensional irreducible representation

[H, Ap] of the subgroup S(n)M(n) such that precisely one of the following statements

is true:

(a) The character A satisfies conditions (a) or (b) of statement (1) and we have the

following isomorphisms of U(G(n))-modules:
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[dHu,dU] s [dCll(Kin),m,dnA]

^[dC^(K(n),H),dUA-lp2].

(b) The character A satisfies the hypothesis of statement (3) and we have precisely

one of the following two possible U(G(n))-module isomorphisms:

[dHn,dU] s [DtdC¿K(n),H),dTlA}

or

[dHn,dn] s [7A-¿CM(£(n),,H)t/IW].

(c) The character A satisfies the hypothesis of statement (4), and we have precisely

one of the following three U(G(n))-module isomorphisms:

[dHn,dU] ss [7^t/CM(Â(rt),7i),tmA],

[dHn,dU] s [ß£rfCM (*(»), Ä),</nA],

or

[dHu,dU] ss [^^(Â^/i)^^-,^].

Proof of statement (1). First we show that statement (a) or statement (b) is

sufficient for irreducibility. The fact that statement (a) is sufficient is immediate

from Theorem 2. If statement (b) is true, then either one of two possibilities

occur:

(I) A + Aw■ + 1 - i = 0, i > 1, and Aui = A^_,,

(II) X - Aui - n + i + I = 0, i < p, and Au, = A^.

If possibility (I) occurs, we set s = Aui = AfU_x. If /' ^= p, or if n = 2p + 1, we

define the projection D^ as in the statement of Theorem 3. By the inequalities

(7), every «-admissible class [d] satisfies the condition that AM- < s. Thus

Dx = 1, so that irreducibility follows. In case n = 2p, and /' = p, irreducibility

follows from the remark made after the statement of Theorem 5.

If possibility (II) occurs, we set s = Aui— I = A^ — I. In this case, every in-

admissible class [to'] satisfies the condition that Au¡ > s. Hence the projection D£

defined in the statement of Theorem 4 is equal to the identity. Hence irreducibil-

ity follows.

In order to prove that statements (a) or (b) are necessary, we assume that both

(a) and (b) are false. Then we have one of the following two possibilities.

(III) A + A„ + 1 - ; = 0, and in case i > 1, Au/ < A^.,.

(IV) A - A„, - « + / + 1 = 0, and in case i < p, Aui > A^.

If possibility (III) holds, and /'=£ p, or n = 2p + 1, the projection 7>x defined
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in the statement of Theorem 3, is not the identity on dC^K(«),//). Similarly, in

case /' = p, and « = 2p, the projection Z)^ defined in the statement of Theorem

5 is not the identity; so that î/C/1(Â(«), If) contains a proper invariant subspace.

Similarly, if possibility (IV) holds, and i ^= p, or n = 2p + 1, then the projec-

tion Dx is proper, and hence, by Theorem 4, ¿C^Â («),//) is not irreducible. If

n = 2p and /' = p, then t/Cj/A/«),/7) is not irreducible, by Theorem 5, because

the projection Z)^, is proper. Hence statement (1) is proved.

For the proof of statement (2), as well as other equivalence statements, use will

be made of some results of Harish-Chandra on the characters of the induced

representations under consideration.

Let / be a C00-function of compact support on G(n). Let nA/l(/) be the

operator on the space L2(K(n),IT) defined by

nA,(/) = fó(n)f(g)uA(g)dg.

As pointed out by Harish-Chandra, in [9c, pp. 241-245], this operator is of trace

class. Moreover, let TAjl(f) denote the trace of this operator. Then the map

/ -* TA¡í(f) is a distribution on G(«), in the sense of Schwartz.

Let x,, denote the character of the representation p. As pointed out in the last

section, when « = 2p, this character remains unchanged under complex conjuga-

tion. While for « = 2p + 1, the character xM = Xp corresponds to the highest

weight Ap which is related to A^ by the equations Ap = A^, 1 </</», and

App = -Aw. Let H~ be a Cartan subalgebra of M(«). Then H„ = span{H~,//}

is a Cartan subalgebra of G(«). Let H0 denote the centralizer in G(«) of Hq. Let

/ be a representative in Â(«) of the nonidentity element in the Weyl group of the

symmetric pair (G(n), K(n)). Then Ad / fixes the subalgebra H~, and we have

X^(fmf~l) = Xp.(m) f°r all m E M(n). It follows from Theorem 2 of Harish-

Chandra [9d, p. 511], that the character TAß(f) is given by the following formula

TA,(f) = C fG(n)f(g)&All(g)dg,

where C is a constant, and where g -> ®Af¡(g) is a function which is defined

almost everywhere on G(n), more explicitly, on the set G,, consisting of regular

elements conjugate to elements in H0, by the formulas

eA(1(Ad gh) = 0Afl(«)

(8) = (1/sinh 0 {exp[(x - ^"^^(/O

+ exp[(-A + (^))/]Xí¡(«_)}
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where h = exp(tH)h_, h_ E 770 n M(n).

The effect of the nontrivial Weyl reflection on the character A is the following:

A —> -X + n - 1. Hence by Lemma 12 of [9d] it follows that two characters TA¡¡

and Z¿y are equal if and only if « = «' and A = A', or »' = Jx and A' = A"^2.

The last condition is equivalent to the condition that A' = -A + n — 1. By

Theorem 6 of [9c, p. 248], it follows that the irreducible t/(G(«))-modules

[dC¿kiri),H),d\xA] and [</C„.(A>),/i),</nA.] are equivalent if and only if «' = «

and A = A'; or « = p and A' = A"1 P2.

Proof of statement (3). We note that under the hypothesis of statement (3), 2>x

is a proper nonempty subset of ß^AT«)). Also from the inequalities (7), 2>x is a

proper nonempty subset of ßii(A(«)). Conclusions (a) and (b) follow immediately

from Theorem 4. Let [u>] be the class such that A + Au, - n + i = 0. Then we also

have A' - A„, — / + 1 = 0. Hence, the set 2\. is a proper subset of ß^AT«)) such

that 2v U 2>;t = ß^TiOO) = Q^Kfa)). Hence, conclusions (c) and (d) follow

from Theorem 3. We now turn to the proof of conclusion (e). By Theorem 6 of

[9c] it is sufficient to show that for each C00 -function of compact support / the

traces of the operators i)A+IIA|1(/)i)A+ and D£ U.A->P2li(f)Dx are equal, as are the

traces of the operators 7?ynA/J(/)Z)y and DyYlA-\Pill(f)Dx. The proof of

statement (e) then follows by the discussion at the end of the last section. For

each class [to] G Q(k(n)) we define a C°° -function Eaf by the formula

fm Xa(k)R(k)fdk = EJ.

Then, by a straightforward application of the invariance of the Haar integral, and

the Schur orthogonality relations we have, for all A and «, YlAfí(f)E¡¡!

= nA)l(£„/). Thus, we have, by the equality of the characters 7^ and TA-\P21¡,

traceiEuUAllif)Eu) = tracein^ (£„/)]

= trace[7iunA-,p2(i (£„/)] = trace[EunA->plll(f)Ea].

By the discussion in [9c, p. 242], it follows that the series

2 {Traced nA/1(/)7sJ : [to] G ß^Tci/t))}

converges absolutely to 7Aft(/). Hence the series

2 {Trace[£unA(1(/)£J: [to] G 7>A+}

converges absolutely to the trace of D£l~lAllif)Dx as well as to the trace of

DxH^iPniftDx. Similarly, the series

2 (TracednA(1(/)7.J : [«] G D~x.}
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converges absolutely to the trace

trace[Z)A-nA-,^(/)Z)A-] = traced nAll(f)D¿].

Finally, the fact that the t/(G(«))-module isomorphisms appearing in statement

(e) are the only ones possible is deduced from the following argument. Let [to] be

a class in the set 2>x . Then we define for each C°° -function of compact support

/ defined on the interval (0, oo), the conjugacy class function F:

F(Adgh) = F(h)=f(t)x^(h.),

where g E G(n), h = exp(/ZZ)«_, and «_ G M(n) n H0. Then there exists a

measure A_(«_)t/«_ on the A?(«)-conjugacy class of A^(«) such that

TA,(F) = C f0Xf (t)[sinh /]«"' / 0A(i(exp(íZY)«_)Xu(«)A-(«-)¿«_

where C is a constant different from zero. See [9d, p. 510]. We also note that by

the remark made above

nA„(F) = UAll(F)Eu = nA)1(F)Z)A+.

Hence, by (8),

Trace(nAfl(F)Z)A+) = C'AW(l f™ f(t)exp[(X - (n - \)/2)t]dt

+ CKuji f0X f(t)exp[(-X + (n- \)/2)t]dt

where Ka¡l = Auji =^= 0. Since / is an arbitrary C00 -function having compact

support, it follows from the linear independence of exponential functions

belonging to distinct exponents, that the distribution F -> D¿ HAll(F)Dx is equal

to the distribution F->Z)A+nAy(F)/)x+ only if A = A" and p = n", or if

A" = A^'Z^ and p" = p. The corresponding statements for the representations

Dx nA/I Dy follow similarly. Hence the uniqueness conclusion follows from the

theorem of Harish-Chandra quoted earlier.

Statement (f) is obvious since in case /' = 1, the set 2\ is finite.

Proof of statement (4). The irreducibility conclusions are a restatement of those

in Theorem 5. We note that under hypothesis of the statement we have

1 = Dx~p + Dx), + D[p, and we also note that the projections D^,, D^, and D[p are

mutually orthogonal. The equivalence conclusions follow from the discussion at

the end of the last paragraph and the results of Harish-Chandra quoted above,

exactly as in the proof of statements (3e) and (3f).

Proof of statement (5). Let [Z/n, n] be a strongly continuous representation of

G(«) on a Banach space Hn, and assume that this representation is topologically
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irreducible and quasi-simple. As pointed out in the introduction, these conditions

are equivalent to assuming that [77n,II] is completely irreducible. We note,

moreover, that every class in Q(K(n)) occurs in the restriction to K(ri) of some

finite-dimensional representation of G(n). Hence, the hypothesis of Theorem 4 of

Harish-Chandra [9b] is satisfied. Hence, by that theorem, there exists an

irreducible representation [77, A«] of the parabolic subgroup S(ri)M(ri) and a

projection P on the space L2(K(n),H) such that P is an invariant projection in

the representation [L2(K(n),H), nA], and the representation [77n,n] is infinitesi-

mally equivalent to the quotient representation [L2(7?(h), 77), UA]/[PL2(K(n),77),

IIA ]. By the previous statements of the theorem, all such quotients are completely

classified, up to the infinitesimal equivalence. Hence the theorem follows.

13. Some special cases. In this section we compare some special consequences

of Theorem 6 with some results in the literature. For the purposes of these

comparisons, it is sometimes convenient to consider, in addition to the character

A which occurs in the hypothesis of Theorem 6, the "inducing" character

Aq = AP~X. (See the definition of induced representations given in §2.) For the

corresponding infinitesimal character we write An = dA0(H). Thus we have

A0 = A - (n - l)/2. In terms of this parameter the Weyl reflection A -» A'

= - A + n - 1 becomes Ao -» — Aq .

A. The case n = 2. In this case, as was pointed out earlier, G(2) is isomorphic

to SL(2, R), and the subgroup Â(2) is isomorphic to a circle group. The set

ß(A(2)) may be identified with the set of half integers. The space of Â(2)-finite

functions on the subgroup K(2) is given by the space of trigonometric polynomi-

als

spanc{em(-) : m E Ü(K(2))},

where em(éxp(@Al2)) = exp[m((-l)1/20)], 0 < 0 < 4tt. In this case, the sub-

group M(2) is a two element group comprising the center of G(2). Let ¡Xq and «,

denote the trivial and nontrivial characters, respectively, of the subgroup M(2).

Then the set of «„-admissible classes ß0(A(2)), and the set of «,-admissible

classes ß^A^)) can be identified with the set of integers and with the set of half

odd integers, respectively.

We write dC¡ = spanc{em(-) : m E ß,(Ä(2))}, for / = 0 or 1, and we write Lj

for the Hubert space closure of dC¡ in L2(k(2)). Then the space dC(K(2)) is

linearly equivalent to an algebraic direct sum of the subspaces dC0 and dCx, and

both of these subspaces are invariant under the action dl~lA of G(2), for any

character A. The Hubert space L2(K(2)), in turn, is unitarily equivalent to a

Hubert space direct sum of the closed subspaces L2, and L\, and both of these

subspaces are invariant under the group of operators nA(G(2)), for any character

A.
In statement (1) of Theorem 6 only condition (a) for irreducibility applies. This

condition can be put in the following form:
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The £/(G(2))-module [dC0,dUA] is irreducible if and only if the character A

satisfies the condition (A + «i)(A - m) =£ 0, for all integers m. The U(G(2))-

module [dCx, dUA ] is irreducible if and only if (X + m)(X — m) =^= 0, for all half

odd integers m.

According to Bargmann [1, Theorems 1 and 3], the following irreducible

induced representations are unitarizable. (In case « = 2, An = X — 5.)

The t/(G(2))-module [dC0,dUA] is unitarizable for Aq imaginary (the principal

series), and for real A0, with —J < \ < \. The C/(G(2))-module [dCx,dl\A] is

unitarizable for Ao imaginary and different from zero. It follows from our results,

incidentally, and it is well known that the t/(G(2))-module [dCx,dUA] is not

irreducible for Aq = 0.

The equivalence of the irreducible induced representation under the Weyl

reflection Xq —> — X0, follows from Theorem 6, statement (2). In the unitarizable

cases mentioned above this equivalence is implicit in the results of Bargmann

referred to. In fact, Bargmann's classification is in terms of the eigenvalues of the

Casimir operator, namely, X2 — X = Xq — \, which are invariant under the Weyl

reflection.

We turn now to the nonirreducible situation. Assume that s is an element of

the set Q¡(K(2)), for /" = 0 or 1, and that 5 < 0. Then in the notation of Theorem

6, statement (4), s' = —s - 1. We assume that the character A satisfies the

condition À + 5 = 0, or equivalently, that the dual character A' = AZ^-1 satisfies

the dual condition: X' + s' = 0. Then by specializing the statement (4) of

Theorem 6 we have

D\\dCi = spanc{em(-) : m > -s},       ¿»^tZC, = spanc{em(-) : m < s},

and

H\dCi = spanc{t?m(-) : -s' < m < s'}.

The spaces D(x dC¡ are finite dimensional, and invariant and irreducible under

the group action I1A., while the t/(G(«))-modules [D{xdC,-,dUA] and [DxXdC¡,

dTLA] are irreducible, by Theorem 6.

The G(2)-modules corresponding to the last two t/(G(2))-modules are unitariz -

able, according to Bargmann [1], and form the discrete series of unitary

representations. We remark that as s' ranges over the nonnegative elements of

Í2,(A(2)), and with X' + s' = 0, the modules Z)£, dC¡ exhaust the finite-dimension-

al irreducible representations of G(2). This fact is implied by statement (5) of

Theorem 6. It also follows directly by noting that the eigenvalues of the Casimir

operator in these representations, namely A'2 - X' = s'(s' + 1), correspond

uniquely to the finite-dimensional irreducible representations of G(2) with

highest weight s'.
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In the nonreducible cases we have the following sum of mutually orthogonal

projections: Dxx + Dxx + D[x = 1. We emphasize that although the representa-

tions [Dfx L2,11A ] are unitarizable, they are not unitarizable by the inner product

on Lj, in general. An exception to this statement occurs when i = 1 and An = 0,

or equivalently, when A = 5. In this case we have £)£, = 0, and the representa-

tions [DfxL2x,UA] are supplementary subrepresentations of [L2,I1A]. This is the

single nonirreducible case of the principal series. We note that the finite-

dimensional representations occur as subrepresentations of induced representa-

tions corresponding to the character — An, while the supplementary discrete series

occurs as a subrepresentation of the induced representation corresponding to the

parameter A0. This fact is a folk theorem, and was recently pointed out explicitly

by Sally [16].

Finally, we observe that the infinitesimal equivalence of quotient representa-

tions and subrepresentations given in statement (4) of Theorem 6 reduce to the

following statements in the nonirreducible situation. We recall that for s

E ß,(A(2)) and s < 0, we have A + s = 0, X' - (1 + s) = 0, X = <7A(77), and

A' = dA'(H).

[D[xdCi,dUx] - [dd,dUA]/[(£>,-, + Dtx)dCi,dIiA],

[DüdCi,dIlA] + [D^xdCi,dUA] s [dCi,dUA.]/[D[.xdd,dUA,].

In this case, these isomorphisms can be obtained by elementary methods, but we

will not pursue this point here.

B. The case n = 3. In this case G(3) is isomorphic to the group SL(2, C), and

also the universal covering group of the identity component of the standard

homogeneous Lorentz group. The subgroup A(3) is isomorphic to Spin(3) and

SU(2). We recall that the symbol txp denotes the exponential map of G(3) into

Spin(l,3). The subgroup M (3) is the circle group given by (exp(0A23) :

0 < 0 < 4tr}. Thus, the irreducible representations of this subgroup are parame-

terized by half integers corresponding to the characters of this abelian group. We

note that the Lie subalgebra M(3) is a Cartan subalgebra of K(3). The irreducible

representations of Â(3) are parameterized by the highest weights hx, with 2/ a

nonnegative integer. The irreducible representation of Â(3) corresponding to the

highest weight /e, has dimension 27+1. We identify the classes of irreducible

unitary representations of compact groups with their highest weights. Thus,

ß(M(2)) = {we, : 2m E Z},

and for mex G ß(Ä/(2)), the corresponding w-admissible classes comprise the set:

ßm(A(3)) = {hx : / = \m\ + n, n = 0,1,2,3,. ..}.

This fact is a special case of inequality (7b) in Lemma 4.
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Let mEx E fi(M(3)). Then the spaces L2(Â(«), H) and í/C„ (£(«), H) specialize,

in this case, to the spaces L2, and dCm respectively, where L2m denotes the space

of square-integrable function classes on A(3) which satisfy the condition

F(exp(@X23)k) = exp[m((-l)x/2@)]F(k),

with k E R(3), F E L2m, and dCm is the corresponding dense subspace consisting

of A(3)-finite functions. We remark that in case «/ = 0, the space dCm reduces to

the algebra S used in the proof of Theorem 2, which in this case reduces to a set

of finite linear combinations of the classical spherical harmonics on the 2-sphere.

From Theorem 6, statement (1), the necessary and sufficient condition that the

i/(G(3))-module [dCm,dUA] be irreducible, or equivalently, that the G(3)-module

[L2m, nA] be topologically irreducible, is that, for all hx E tim(R(3)), X + I =£ 0,

and A - / - 1 t¿= 0, or if A — / — 1 = 0, then / = \m\. This condition may be

rewritten in terms of the inducing parameter as follows: (In this case Aq

= A- («- l)/2 = A- 1.)

(Ao + / + l)(Ao - / - 1) ̂  0,

for all /e, G Q,m(R(3)). This condition agrees with the one given in Naimark [12,

Theorem 16, p. 295]. The statement in that theorem relating to the nonirreducible

situation is inaccurate, however. (See the discussion below.) We remark that the

parameter A0 corresponds to the parameter (— l)x/2p/2 in the statement of that

theorem, and the parameter m used here corresponds to the parameter »i/2 in the

statement of the theorem of Naimark cited above.

We note that if mEx is an element of fi(A?(3)), then -msx corresponds to the

complex conjugate representation of A?(3). Hence, by statement (2) of Theorem

6, the induced representation corresponding to the parameters (-«/,-Aq) is

infinitesimally equivalent to the induced representation corresponding to the

parameters (m,Xo). This fact is also stated in the theorem of Naimark cited

above.

The unitary representations of G(3) were classified independently by Barg-

mann and by Gelfand and Naimark. A complete discussion of the unitary

representations is contained in the book by Naimark [12]. The unitarizable

representations are the following ones. For «ie, G ñ(A?(3)), and for Aq imagi-

nary, the representation [Ljj,,^] is unitary. This is the case of the principal

series; they are irreducible according to the condition stated above. When «j = 0

and when Aq is real with Aq ̂  0, -1 < Aq < 1, the induced representations are

unitarizable, corresponding to the complementary series, with Ao and — Aq

yielding infinitesimally equivalent, and hence, unitarily equivalent representa-

tions. We remark that the identity representation occurs as a subrepresentation

of the induced representation in this case when An = 1. All other unitary

representations are, by the remarks made above, infinitesimally equivalent to the

above irreducible induced representations.
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We turn now to the nonirreducible situation. Let sex E ßm(A(3)). According

to Theorem 6, statement (1), this situation occurs when either A + s = 0, or when

A — 5 — 1 = 0 and s + 1 ^= m. As in statement (3) of that theorem it is only

necessary to assume that A + í = 0, since the Weyl reflection A' = — A + 2

satisfies the second condition with s replaced by 5 + 1. The sets 2^ and 2\< in

that statement specialize to the following ones:

2>¿ = {hx : ( = s + l,s + 2,s + 3,...},

2v = {/e, : i - s,s - 1,...,\m\ + 1, |m|}.

We note that the set 2\- is finite. Let Dx and Dy be the projections correspond-

ing to the sets 2>A and 2^. respectively, as in Theorem 6. By that theorem, the

representations [D¿dCm,dUA] and [DydCm,dUA] are irreducible, the latter

being finite dimensional, where we recall that A' = A-17*, or infinitesimally,

A' = -A + 2. The module isomorphisms of statement (3e) reduce to the following

ones:

[DtdCm,dIiA] s [dC_m,dUA.]/[DydC_m,dUA,],

[DydCm,dnA.] s* [dC_m,dUA]/[DtdC.m,dîlA].

Note that in this case there is a nonunitarizable discrete series of representations

which bear the same relationship to the finite-dimensional ones as in the case of

SL(2, R). This fact was ignored in the results of Naimark cited above.

C. The cases n > 4. The case n = 4 corresponds to the deSitter group, and G(4)

is its universal covering group. A complete classification of the unitary represen-

tations of this group can be found in Dixmier [6]. The methods used by Dixmier

are algebraic, and are a refinement of those of the physicist Thomas. (The

references are given in [6].) Dixmier uses those results of Harish-Chandra, cited

in the introduction, which give a one-to-one correspondence between unitary

equivalence classes of unitary irreducible representations and certain infinitesi-

mal equivalence classes of irreducible quasi-simple representations. Dixmier then

proceeds "from scratch" to analyze the irreducible t/(G(4))-modules that corre-

spond to the irreducible unitary representations. A global description, in terms of

induced representations, of Dixmier's representations is given by Takahashi [15].

Some of Dixmier's results are generalized by Takahashi to general n.

We will now list all the irreducible quasi-simple representations for G(4) as

determined by Theorem 6, and point out which of these correspond to the

unitary representations of Dixmier.

In case n = 4, the group K(4) is isomorphic to the direct product of two

subgroups each isomorphic to Spin(3). Dixmier takes advantage of this splitting

by expressing the highest weights of K(4) in terms of the roots e, + e2, e, — e2.

Let Au be a highest weight of K(4), and let k and k' be the components of Aw
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with respect to e, + e2 and e, - e2 respectively. Then k and k' are half integers

and

Au = Aw, e, + A^e2 = k(Ex + e2) + k'(£x - e2).

Note also that in this case the subgroup A/(4) is isomorphic to Spin(3), and the

Lie algebra M(4) = span^A^,^,^}. Thus, again identifying unitary equiva-

lence classes of irreducible unitary representations of compact groups and their

highest weights, we have

ß(A/(4)) = [m£2 : 2m = 0,1,2,3,...}.

By the inequalities (7a) of Lemma 4, for each «ze2 G Q(AZ(4)), the «/-admissible

classes are given by

MA(4)) = {k(Ex + e2) + k'(Ex - e2) :

k + k' = m,m + \,m + 2,... ;k - k' = m,m — 1,...,—«/}.

The conditions for irreducibility given in statement (1) of Theorem 6 specialize

as follows. By setting /' = 1 in that statement, we must have

(I) A + (k + k') i= 0, and A - (k + k!) - 2 ^ 0, except possibly when k + k'

= «/.

By setting / = 2 in that statement, we must have

(II) A - (k - kf) - 1 9¿ 0, and A + (k - k') - 1 ̂  0, except possibly when

(k - k') = m.

In the important special case when m = 0, the class one representations, we

always have (k — k') = 0 = m. Hence, for class one representations, only condi-

tion (I) applies.

While discussing the A(4)-module structure of the irreducible unitary represen-

tations, Dixmier introduces a parameter p, which is defined as the minimum

value of k + k' occuring in the given representation. For the irreducible case this

minimum value is the minimum value of the quantity k + k! in the set of «/-

admissible classes, which is precisely «/. Hence, the A(4)-module structure for the

irreducible cases corresponds to Figure 2 in the paper of Dixmier. To decide

which of the irreducible cases are unitarizable, according to Dixmier, we examine

the eigenvalues of the Casimir operator. By Lemma 6, the latter are given by

t/nA(l(S2) = A2 - 3A + m(m + 1) = X\ - 9/4 + m(m + 1),

where \ is the inducing parameter given by A = Aq + (« - l)/2 = Aq + 3/2. In

terms of a parameter a introduced by Dixmier, these eigenvalues are

dUA (fi) - -2 - a + m(m + 1).
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In order that the irreducible representations be unitarizable, one must have

(a) For m = 1/2, 3/2, 5/2,..., a > 1/4, or A2, < 0.

(b) For m = 1, 2, 3,..., a > 0, or A2, < 1/4.

(c) For m = 0, a > -2, or A2, < 9/4.

We remark that by statement (2) of Theorem 6, the induced representations

corresponding to the parameters (m,Ao) and (m, —Xq) are infinitesimally equiva-

lent, and that these are the only equivalences. In case these parameters satisfy

conditions (a), (b), and (c) above, (m,An) and (m, — Xq) also correspond to

unitarily equivalent representations, by the theorem of Harish-Chandra quoted

in the introduction. This equivalence of induced representations does not appear

in Dixmier's work, since his classification is based essentially on the eigenvalues

of the Casimir operator and the A>(4)-module structure of the possible t/(G(4))-

modules.

Note that the parameters which satisfy conditions (a), (b), and (c) above indeed

correspond to the irreducible case. In fact, for condition (c) we have, for all

ik + k')>m = 0,

0^X1- [3/2 + ik + k')}2 = iX-ik + k') - 3)(A + (Á: + k')).

Hence, irreducibility follows by the remark made concerning class one represen-

tations. Moreover, if (m,An) satisfies conditions (a) and (b) above, we must have,

for all k + k' > m and k — k' with m < k — k' < - m,

0 ^ A2, - [3/2 + ik + k')]2 = iX-ik + k') - 3)(A + (Â: + k')),

and

0 ^ XI - [1/2 + ik + k')]2 = (X-(k + k') - 1)(A + (A: - k') + I).

Hence, irreducibility follows by statements (I) and (II) above.

If Ajj < 0, then An is purely imaginary. This situation corresponds to the

principal series of unitary representations. In this case the induced representa-

tions [L2(7C(4)),nA] are unitary, where « = e2m. In case (c) we also have the

possibility of An being real with -3/2 < An < 3/2. This is the case of the class

one complementary series. An explicit construction of the appropriate inner

product for this case is given by Takahashi [17], for general n. In case (b) we also

have the possibility of A,, real with — { < Xq < j. This case corresponds to

another complementary series. A global description of these and more general

complementary series is given in the case of general n by Knapp and Stein [15].

We turn now to the nonirreducible cases for n = 4. First, we examine the

consequences of statement (4) of Theorem 6, Since p = 2 here, we assume that

¡x = mex E ß(A/(4)), and that there exists an w-admissible class Au such that

s = A^ = k - k! satisfies the equation A + s — 1 = 0. For the dual character A'

we have A' = — A + 3, and we have A' + s' - 1 = 0, where s' = -(s + 1). The

sets 2>x2> 2>x2> and 2>£2 of Theorem 5 reduce in this case to the following ones:
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2>x+2 = {k(sx + e2) + k'(ex - e2) :

k + k! = m,m + \,m + 2,... ; k — k' = m,m — 1,... ,—s},

2>X2 = ik(e\ + £2> + k'(ex - e2) :

k + k' = m,m + \, m + 2,... ; k — k' = — m, — m + 1,... ,s),

2>xi = Wei + e2) + k'(ex - e2) :

k + k! = m,m + \,m + 2,... ; k — k' = s',s' — 1,..., — i'}.

From Lemma 6 the Casimir operator for this case is, with X = dA(H),

dlJA(Q) = -2 + s + s2 + m(m + 1) = -2 + s' + s'2 + m(m + 1).

The Â(4)-module structure represented by the sets 2^ and 2>¿ correspond to

Figures 4 and 3 of [6], respectively, with Dixmier's parameter q equal to —s. By

comparing the eigenvalues of the Casimir operator above with those of Dixmier,

and by comparing the A(4)-module structures, we get the following results:

The group representations corresponding to the t/(G(4))-module [D^dC^,

dflA] are unitarizable, and correspond to Dixmier's representations n*^, with

p = «/, q = —s. The group representations corresponding to the t/(G(4))-module

[DxjdC^^Yi^] is not unitarizable, in general, except when s' = 0. In that case,

the latter representation corresponds to the representation 11^ of Dixmier, with

p = m, and the corresponding Â(4)-module structure is that exhibited in Figure

5 of Dixmier's paper.

When s' is not necessarily equal to zero, the representations [Z){2t¿'C/1,<i'nA] has

a relationship to the unitarizable discrete series as do the finite-dimensional

representations in the case of SL (2, R). In particular, the discrete series occur in

pairs which are mutually orthogonal relative to the inner product on L2(Â(4)),

and we have the t/(G(4))-module isomorphisms as given in statement (4) of

Theorem 6.

Next, we discuss the consequence of statement (3) of Theorem 6. Here one

must assume that /' = 1. Again, p = me2 E £2(M(4)). Assume the existence of a

p-admissible class [to] such that Au¡ = s, and X + s — 3 = 0. For « = 4 the sets

£>x and 2>x specialize to the following:

2\+ = {k(ex +e2) + k'(ex - e2) :

k + k' = s + \,s + 2,... ;k - k' = m,m - 1,...,-«/},

fry = {k(ex +e2) + k'(£x -e2):

k + k' = s,s - 1,...,«/;k - k' = m,m — 1,...,—«/}.

Note that fry is a finite set; it yields the Â(4)-module structure of the irreducible

finite-dimensional  representation with highest weight (s, m). Neither of the
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corresponding t/(G(4))-modules, [D¿ L2(Â(4)),ITA] and [£>A~L2(Â(4)),nA-], is

unitarizable, in general. By statement (3e) of Theorem 6, one is infinitesimally

equivalent to a quotient of the other.

We conclude with some remarks about the class one representations of G(n)

for general n, that is, representations whose restriction to K(n) contain the

identity representation. This situation occurs when « is the identity representa-

tion. Hence, in particular, such an induced representation must be an ordinary

representation, that is, a representation of G(n) as well as of G(n). In the case of

general semisimple matrix groups, Kostant [14] gives general criteria for the

nonirreducibility of the induced representations under study. For the groups

under study here, his Theorem 2 yields the following criteria for nonirreducibili-

ty: |A — (/i - 1)/2| > in— l)/2, and A = 0 mod Z. In comparing this result

with statement (1) of Theorem 6, we note that for / > 1 we have Au, = A^, = 0

= A^. Hence, the nonirreducibility criterion in this case obtains from statement

(la) with /' = 1, and agrees with the result deduced from Kostant's theorem.
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