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THE EXISTENCE AND UNIQUENESS OF NONSTATIONARY IDEAL

INCOMPRESSIBLE FLOW IN BOUNDED DOMAINS IN F3
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H. S. G. SWANN

ABSTRACT. It is shown here that the mixed initial-boundary value problem for the

Euler equations for ideal flow in bounded domains of R¡ has a unique solution for a small

time interval. The existence of a solution is shown by converting the equations to an

equivalent system involving the vorticity and applying Schauder's fixed point theorem to

an appropriate mapping.

Introduction. The purpose of this paper is to prove the existence and unique-

ness of classical solutions to the mixed initial-boundary value problem for the

Euler equations for an ideal incompressible fluid in bounded domains of F3 for

a small time interval. This has been shown by Ebin and Marsden [3] for compact

Riemannian manifolds possibly with boundary. In this paper we obtain a new

proof by converting the equations to an equivalent system involving the vorticity

and solving this by using the Schauder fixed point theorem. The technique is

similar to that of Kato [4] where he proved existence of ideal flow in bounded

domains of the plane for an arbitrary time interval. The author also used a

similar method to obtain an existence result for ideal flow in all F3 by showing

that a solution is the limit of Navier-Stokes flow as the viscosity goes to zero [7].

Existence of a solution for a short time in all F3 was originally shown by

Lichtenstein [5].

The Euler equations for ideal incompressible flow in a domain D in F3 with

boundary bD are

(E') 3i//8/ + (v ■ grad> = - grad P + B,       V • v = 0,

with constraints v ■ « = 0 on bD and v(0) = A, where jc is a point in D u bD;

t E [0, T], v(x, t) is the velocity vector, P(x, t) is the (scalar) pressure, B(x, t) is the

external force field vector, n(x) is the outward normal vector to bD and A(x) is

the initial velocity vector.

By formally computing the curl of (E') we get the system
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(E)

(a) dw/dt + (v ■ grad)w - (w ■ grad)t> = V X F = b,

(b) w(x, 0)=VxA(x) = a(x),

(c) V X v = w,        V • v = 0,

(d) v ■ n = 0       on bD.

We solve this system to obtain a solution to (E') in three steps:

In §1 we show that if w is in an appropriate class of functions, then there is a

function v = F, (w) that solves (E), (c) and (d).

In §11 we show that for v = Fx(w) there is a solution, denoted F2(v), to (E), (a)

and (b).

In §111 we show that the mapping F2(FX(-)) maps a closed convex compact set

of functions in a Banach space continuously into itself provided we restrict the

time interval of solution [0, F]. Hence we can apply Schauder's fixed point

theorem to obtain a function w such that w = F2 (F, (w)) and from this a solution

to (E). Finally we show that this gives a classical solution to (E') with v unique

and F unique up to an arbitrary function of / which may be added to F.

The author is indebted to Professor Tosio Kato for his many helpful

suggestions and comments.

The following notation is used in this paper:

F is the domain, connected, open and bounded in F3 with closure D and

boundary bD of class C3+« for some q, 0 < q < 1 (see [6, p. 300]). F X [0, F] is

denoted (F; F), where F > 0 is arbitrary.

Cr(D; T) is the Banach space of vector-valued functions from (D; T) to F3

with continuous space derivatives of order < [q] (denoted conventionally F")

continuously extendable to F and continuous time derivatives of order < [r],

where [q] and [r] are the largest integers less than or equal to q and r respectively.

Space derivatives of order [q] are Holder-continuous with exponent q - [q] and

time derivatives of order [r] are Holder-continuous with exponent r — [/•].

If|f|2=2,i.kl2and

K4y(v) = sup
\v(x',t')-v(x,t)\

i.re[ôj];i^,'    \x - x'\"' +\t - t'\'
x,x' &D;x^=x'

\x-x'\<l,\t-f\<i

we define a norm for Cqr(D; T) as

vwh,= sup  2 |/>;(4) v(X,t)
xeD   |o|<M \at /

+l„s„H'~"'(D"°(á)'")r
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When we allow / G [0, F], t > 0, to vary we will note this by using the norm

notation || Hc*^.,) defined in the obvious way. For convenience, || ||c = || H^o.

We occasionally use analogously defined C(D) with only space variables

(t E [0, F] is fixed if present).

vx is the array with z'th row (dv¡/dxi,dv¡/dx2,dvi/dx3), i = 1, 2, 3.

for various norms (•).

L2(D) is the Hubert space of vector-valued functions u over D with inner-

product denoted

(ux,ui) =  2   ¡Du)u}dV.
/=1,3 JU

Cn = {/ G C(D) | f(x) = g(x)n for some scalar-valued function g(x) on bD},

C? = {/ G C^S) ¡ / • « = 0 on ¿>Z>}.

#„  is  the finite dimensional subspace of Cx„+q  of functions « such  that

V X « = 0 and V • h = 0 (0 < q < 1).

//T  is the finite dimensional subspace of C\+q  of functions « such that

V X h = 0 and V • « = 0. We let {«'}, /' = 1,...,«/, be an L2-orthonormal basis

of //T. (See [6, Chapter 7] for a further discussion of these subspaces.)

I.

Theorem 1-1. Let A E Cx+q(D) and B E Cx+qfi(D; T). If w G Cqq(D; T) and

0 = V • w (generalized) and, for fixed t, w G L2(D) Q H„, then there exists a

unique v E Cx+q'°(D; T) such that

V • v = 0,        V Xv = w,        v ■ n = 0    on bD

and

(d/dt)(v,H) = (-(v grad> + B,H),       (v(0),H) = (A,H)

for any H E HT.

If we let v = u + h where u E F2(/J) 0 HT and « G Hr then there are

constants Cx(r), C3(r) and CA(r) depending on D and r, 0 < r < q, and a

constant C2 depending on D such that
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(i) Nie»« < Cx(r)WwWc,o

and

(ii)      ||n||c,+,„ < (C2(WAH\\C + F||F„||C) + C3(r)||w||c,„) exp(C4(/-)||w||c,„F)

where AH and BH are the projections of A and F respectively onto 77T.

We denote this unique v = u + h = Fx (w).

Proof. We will have recourse to the following representations of / G Cr(D) at

several points in this paper.

When interpreted as a statement about vector-valued functions Theorem 7.7.4

of Morrey [6] gives the existence of vector-valued functions pj and pj for any

/ G C(D) such that

/= Vx(Vx^)- V(V -p^ + hj,

/= Vx(Vx/>/)-V(V   pj) + hj

with hj E 77T, hf E H„, V X pj and pf E Cj+r; V Xpf and pj E CxT+r; V • pf

and V • pj E Cx+r(D) (as scalar-valued functions) and V • p} = 0 on bD. The

three terms of each representation are mutually L2-orthogonal.

Since w E Cqq(D; T) and w E L2(D) Q 77„, w = V X (V X pw) - V(V • pw)

with these two terms orthogonal. However, since (w, Vq) = 0 for all smooth

scalar-valued functions q with compact support in F, a conventional mollifier

and limit argument can be used to establish that (w, V(V • pw)) = 0, for V • pK is

zero on bD. Hence V(V ■ pw) = 0 and w = V x (V X pw). Letting u = V Xpw

and interpreting it as a two-form, Lemma 7.5.3 of [6] can be used to show that

u E L2(D) Q HT, which easily establishes uniqueness as well.

The operator taking w into u (for fixed 0 is clearly a closed linear operator

from the subspace Q of Cr(D), 0 < r < q, defined by

Q = {w E C(D) n (L2(D) 0 77„) | 0 = V • w generalized}

into Cx+r(D) with associated norms. Hence, by the closed graph theorem, a

constant Cx (r) exists satisfying (i) for fixed / G [0, F]. However, the linearity of

the operator easily establishes that u E Cx+rfi(D; T) and (i) follows.

With u defined from w by the preceding, we let v = u + 2,™ i g/(0w' where the

scalars g''(i) are unknown and {n'} is a basis of 77,. Since (v, h') = g'(t), we can

form the ordinary differential equations in {g'}:

dg'/dt = (d/dt)(v,h') = (-(v grad> + B,W),

g'(0) = (i<0), n') = (A,h'),       i=l,...,m.
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An argument similar to that in [4, p. 195] gives, for suitable constants Kx and K2

which depend on D,

\jt 2 s'(02 < «.(Pille + NEKS g'(02)1/2 + «2ll«llc 2 «W-

This leads to the estimate

Œ?'(02)l/2 < (||/lwllL2+^.P//llc)exp(íF2||M||c)

+ ^-||u||c(exp(/*2 Huile)- 1).
A2

Thus h(t) = 2 g'UW exists in [0, T]. This inequality can be combined with the

estimate (i) to yield (ii). Thus v = u + h = Fx(w) exists and is unique and has

the required properties.

II. We wish to establish

Theorem II-l. If v E Cl+«°(5; F), V • v = 0, v ■ « = 0 on bD, a G 0(0),

b E Cq-°(D; T), then we can construct w E Cqq(D; T) uniquely with w(x, 0) = a(x)

and, for all f E CX(D),

(d/dt)(w,f) = (w,(v • grad)/) + ((w ■ grad)v,f) + (b,f).

The following theorem from [1, p. 105] is sufficient to establish our estimates:

Theorem A. Let E be some bounded domain in F3. // Y(x,t) G Cxfi(E, T) and

Z(x, t) G C(E, T) and

y(t) solves dy/dt = Y(y,t),

and

z(t) solves dz/dt = Z(z, t)

then

\y(t) - z(t)\ < {\y(s) - z(s)\ + \t-s\\\Y- Z\\c} exptFHFJIe).

We begin by solving for the streamlines of the "flow" v.

Lemma II-l. If v E Cx+q0(D;T), V • v = 0, v ■ n = 0 on bD andX(x,s; t) solves

dX/dt = v(X, t) with initial condition X(x,s; s) = x2 then (i) X(x,s; t) is unique and

continuously differentiable in x E D and s, t E [0, F] and
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(a) \X(x,s; t) - X(x',s; t)\ < |* - *'| exp(F||i;iX||c),

(b) \X(x,s;t) - X(x,s';t')\ < (\t - t'\ + \s - 5'|)||f||cexp(F||^||c)

and (ii) for fixed t and s, X(-,s;t) : x —> X(x,s;t) is a one-to-one measure-

preserving map of D onto D such that det(Ax) = 1 and bD -» bD;

X(- ,s;s) = Identity,   X(- ,s;t) = [X(-, t; s)]~x.

Proof. Since v E Cx+q,0(D; T), there exists a unique local solution for the

streamlines; they can be continued until they reach bD. Hence to show that F is

mapped into F and bD into bD it suffices to show that a solution starting on bD

remains there, i.e. on the "sidewall" bD X [0, T], Since v • n = 0 on bD and bD is

smooth we can define a system of ordinary differential equations on bD X [0, T]

whose solutions are solutions of the original system and will stay on the "side-

wall" by definition and this is sufficient to obtain our result.

The remainder of (ii) and the differentiability stated in (i) are standard results

of ordinary differential equations since v E Cx+qfi(D, T) and V • v = 0. (See [2,

Chapter 1, §7].)

The estimates in (i) are standard or follow from Theorem A; for example

\\X(x,s;t) - X(x,s';t)\ = \X(x,s;t) - X(X(x,s';s),s;t)\

<\X(x,s';s') - A(*,s';s)|exp(7]|i/iX||c)

< |*->|NIc««P(7TI^|Ic).

To obtain a solution to the equations of Theorem II-1 we first solve the system

(O) of ordinary differential equations:

(O) dy/dt - vyX(X(x,s; t), t)y = b(X(x,s; t), t)

with initial conditiony(x,s;0) = a(X(x,s;0)). We will then establish that w(x,t)

= y(x, t; t) is the solution required by Theorem II-1.

Lemma II-2. Under the conditions assumed for a, b and v in Theorem II-1, there

is a unique solution y(x, s;t) to (O) for t E [0, T] and if

\\y\\c(D;T,T) =      sup     \y(x,s;t)\
xeD;s,ie[0,T]

then

(i) | y(x, s; t) - y(x,s; t')\ < \t - t'\(Wpx ||c IMU™ + ||¿>||c)



NONSTATIONARY  IDEAL INCOMPRESSIBLE FLOW 173

and

\y(x,s;t)-y(x',s';t)\

< (\x - x'\" + \Wc\s - s'nWaWç, + í(IIHIc^o|bllc(z>;r,r, + IMIcOl
(»)

•exp(3F||yJ|c),

w(x,t)=y(x,t;t) E Oq(D,T).

Proof. From [2, p. 74], we know that there is a "fundamental matrix" Fv(t) for

linear system (O) and the solution has form

y(x,s;t) = Fv(t)Fv(0rl"(X(x,s;0))

+ Fv(t) f^ Fv-x(T)b(X(x,s;r),r)dT

and is a continuous function (for fixed v) of the parameters x E D and

í G [0, F]. Hence ll^llcp^.r) exists. We use Theorem A and Lemma II-l to

obtain additional smoothness and estimates for y(x,s; t).

\y(x,s;t) - y(x',s;t)\

< {\y(x,s;0)-y(x',s;0)\

+ t[ sup ¡v^X^suXt) - vrX(X(x',s;t),t)\ ||.y||C(A7-;r)
Ve[0,r]

+   sup \b(X(x, s; t), t) - b(X(x', s; t), t)\ ) }
ie[0,T] VJ

■ expÍF sup \v_x(X(x,s;t),t)\)
\     re[0,rj /

< {\X(x,s;0)-X(x',s;0)\"\\a\\c,

+ \X(x,s;t) - X(x',s;t)\'lt(\\v\\cl„,\\y\\CiD.iTT) + ||è||c„o)}exp(F||^||c)

< \x - x'\"exp((q + l)T\\v,\\c){\\a\y + t\\v\\c^, \\y\\C{D.¡ZT) + \\b\[c,,}.

That

\y(x,s;t) - y(x,s';t)\ = \y(X(x,s; s),s; t) - y(X(x,s';s),s,t)\

can be shown by reference to the definition of X and y; then the Holder-

continuity in x can be used to obtain the result for i. Verifying the Lipschitz-

continuity in / is straightforward. These results easily show that w(x, t) = y(x, t; t)

E Cqq(D; T).
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Proof of Theorem II-l. Let.y(*> t; t) be the solution of (O) of Lemma II-2. Then

if w(x, t) = y(x, t; t), w(x, 0) = y(x, 0; 0) = a(X(x, 0; 0)) = a(x) and

dy(x, t; t)

dr
t=(= víX(X(x, t; t), t)y(x, t; t) + b(X(x, t; t), t)

= vx(x, t)w(x, t) + b(x, t) = (w • grad)f + b.

fD (y(x, t + A/; i) - y(x, t; t))f(x) dx

= fD (y(X(x, t + Ai; /), t; t) - y(X(x, t; t), t; t))f(x) dx

= / y(x, t; t)f(X(x, t; t + At)) - f(X(x, t; t)) dx

by the measure-preserving and inverse properties of X(-,s;t) (see Lemma II-1

(ii)). Hence we can multiply by (A/)-1 and take the limit to obtain

Jim ¿ fD (y(x, t + Ai; /) - y(x, t; t))f(x) dx = (w, (v • grad)/).

This establishes that w(x, t) is the weak solution required.

III. In this section we apply Schauder's fixed point theorem using the two

mappings F, and F2 defined in §§I and II applied to the set

S = {w E CM(5; T)\ IMIc < K3;kq'q(w) < KA;V   x = 0;

w E L2(D) Q H„ (for fixed t E [0, T])}

defined for suitable constants A3, KA and F > 0 (see introduction for notation).

Lemma III-l. The set S is a compact convex set in the space C(D; T).

Proof. Convexity is immediate. Compactness in C(D; T) follows from the

equicontinuity implied by the requirement Kq,q(w) < A4 and the Arzela-Ascoli

theorem and straightforward verification of the closure requirements.

Lemma III-2. Let Cx = Cx(q), C3 = C3(<7), C4 = C4(q) and

Q=   (Cx + C3eyxC2e(WAHWc+WB„\\c),

^ = (3/2)1^1^+ 1/2,

KA = (K,(2e(Cx + C,e)q + 1) + C^^ - (A3 + C5),

T1'" < (1/3){(A3 + K4)(CX + C2e + (C4)/3)

+ C2e(\\AHWc+WBHWc)+\\l>\\c<°rl,
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and assume T < 1. Then w E F2(FX(S)) implies \\w\\c < K3 and Kq«(w) < KA.

Proof. If w G 5 and v = F, (w), then Theorem 1-1 and the restriction on F gives

IMIc"*> < (C, + Qe)(F3 + F4) + C2e(||yitf ||e + F||FW||C)

< (3Tx-q)-x < (3T)~X.

Let y(x,s; t) be the solution of system (O) of Lemma II-2 with v = Fx(w). Then

y(x,s;t) - a(X(x,s;0))

= J0 vrX(X(x,s;r),T)y(x,s;r) + b(X(x,s;r),T)dT,

so

\y(x,s;t)\ < ||a||e + t\ \\v\\cw sup \y(x,s;r)\ + ||6||c }.

Since jLx, /; /) = w'(*> t) = F2(FX (w)) we get

IMIc(Z>;„ < Halle + i(t/T)\\w\\cm + t\\b\\c    or

IK'llc(B;r)<(3/2)||a||c. + i = ^3.

Similarly

\y(x,s;t)-y(x,s;t')\ < \t - t'\"Tx-q((K,)/(3Tx-q) + \\b\\c)

<\t- t'\"(K3 + l)/3 < |/ - t'\"(KA)/2.

Lemma 11-2 gives

\y(x,s;t)-y(x',s';t)\ < (\x - x'\" + \\v\y\s - s'\")eK3.

Hence \w'(x,t) - w'(x',t)\ < \x - x'\q(eK3) < \x - x'\qKA. We also have

\y(x,s;t) -y(x,s';t)\

<\s- s'\"eK,(C2e(\\AH\\c + T\\BH\\C) + (K3 + F4)(C, + C,e))q.

To show that this final inequality yields the desired result, we note that the right-

hand side has form \s - s'\qK5(K6 + KA)q; we require that this be less than ¿K4.

Since 0 < q < 1, the existence of such KA follows from considering the

equivalent problem of finding F4 such that
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2A5 < (K6 + K4)x~q - K6(K6 + K4yq,

which is clearly obtainable for sufficiently large A4 and will remain true for larger

A4. Verification that our estimate is adequate is straightforward.

Lemma III-3. The map F2(FX( )) is continuous in the C(D; T) topology from S

into C(D; T).

Proof. Suppose w¡ E S, i = 0, 1, 2,..., and ||w, - w0||c -» 0 as / -> oo. Then,

using the notation of Theorem 1-1, Fx(w¡) = u¡ + n, = v¡.

First we wish to establish that {vix} is an equicontinuous set. To show that {n,x}

is equicontinuous, since h¡ E Hr (finite dimensional) for fixed t, it suffices to

show that {hix} is equicontinuous in /; but it is immediate that they are uniformly

Lipschitz-continuous from the bounds of Lemma III-2 and the defining ordinary

differential equations for n, of Theorem 1-1. Equicontinuity of {uix} in x E D

follows from inequality (i) of Theorem 1-1. To show equicontinuity in t E [0, T],

we note that since w, G Cqq(D; T), w, E Cq'rq(D; T) for any r, 0 < r < q, and

< Cx(q-r)(\\^(-,t)-wi(-,s)Wm

\wt(x,t) - w,(x,s) - wt(x',t) + Wi(x',s)\(q-r)/q+r/q\

+    SUP- -1* - XT'-/
|x-x'|<l

x^x'

,rt        Jru       „ , (2K4\x-xT)(q-'Vq(2K4\t-s\qyq\
<Cx(q- r)[KA\t - s\q +-|x _ A*-r-)

< Cx(q-r)3K4\t-s\r.

We wish to show that ||k,• — v0Wcm -» 0 as / —> oo. Suppose not. Then, using the

equicontinuity just established and the Arzela-Ascoli theorem, there is a subse-

quence {vj} and v' E CX0(D; T) and e > 0 such that ||i^ — follc10 > £ and

||i;- - v'Wçis -» 0 as7 -» oo. However, the criteria for the existence of a unique v0

satisfying the constraints of Theorem 1-1 are maintained under CX0(D; T)

convergence (defining h' = 2 (v',h')ti', etc.), hence ¡/ = vQ and we have a

contradiction.

Let X¿(x,s; t) be the streamline associated with v¡ and

w,l = F2(Fl(wi)=Mx,r,t)

where y¡(x,s;t) is the solution  to  system (O) defined by v¡.  Then Theorem

A gives

!*,(*,*; 0 - X0(x,s; 0| < |< - i| \\v, - v0Wcem

and, using this,
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\y¡(x,s;t) - y0(x,s;t)\

< {\a(X,(x,s;0)) - a(X0(x,s;0))\

+ t sup (F3 \vi¡x(X¡(x, s; t), t) - v0<x(X0(x, s; t), t)|
tS[0,(]

+ \HX,(x,s;r),T) - è(A-o(*,5;T),T)|)jexp(F||t,0,Je)

< e|(||a||c. + TK&{bWT\\Vt " "ollc^3)'

+ TkÁ sup (\vlyX(Xt(x,s;t),t) - vi¡x(X0(x,s;t),t)\
VelO.r]

+ \viyX(X0(x,s;t),t) - v0rX(X0(x,s;t),t)\)jj

< e{\\a\y + TKq»(b) + (K3/3)(F||f,. - «v0llc^,/3)* + TK3\\v, - folie'»}

from the restriction on F (see Lemma III-2). Since \\v¡ - folle10 -» 0 as /' -> ce,

this establishes the continuity.

Lemma III-4. IfwE F2(FX(S)), then V • w = 0 (in the generalized sense).

Proof. If we assume v E C30(D; T), b E C20(D; T) and a E C2(7J) then, by

standard results concerning differentiable dependence on parameters of ordinary

differential equations [2, p. 31] applied to both the streamlines and the system

(O),y(x, t; t) = w(x,t) E C2X(D; T) and so the weak solution of Theorem II-l of

(E) (a), (b) is classical. Hence we can take the divergence of system (E) (a), (b)

to obtain (d/dt)(V ■ w) + v ■ grad (V • w) = 0 and V ■ w(x, 0) = V • (V X A) = 0

since several terms cancel and V • v = 0 = V : b. Now, to show that V • w(x, t)

= 0 it is sufficient to show that V • w(X(x,s; t), t) = 0 since X(x, s; t) is a 1-1 map

of D onto D for fixed 5 and /.

0= V • w(X(x,s;0),0)

and

|V • w(X(x,s;t),t) = |(V • w(X(x,s;t),t)) + (£-(V ■ w)) • V¡

= |-(V • w) + v ■ grad (V • w) = 0

was just established. Hence V • w = 0.

For our purpose it is sufficient to show that (w, Vg) = 0 for any smooth scalar-

valued function g with support in some compact D' c D. Using Friedrich's

mollifier we can construct sequences {a'}, {b'} and {V1} of the required smooth-
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ness that preserve the relations V • a' = 0; V • b' = 0 and V • v1 = 0 and converge

uniformly together with the necessary derivatives to a, b and v respectively on any

compact set D" c D. Although the associated streamlines X'(x,s;t) may lead

out of the original compact set F', the continuity arguments of Lemma III-3 and

the result that X(x, s; t) takes bD into bD of Lemma II-1 (ii) show that by taking

i/ sufficiently close to v in a chosen set D" compactly contained in F and

containing D' in its interior, streamlines starting in D' will stay in D" for j and

/ G [0, F]. Hence we can define solutions w' of (E)(a), (b) using a', b' and v' and

the previous reasoning will yield V • w' = 0 in D'. The continuity arguments of

Lemma III-3 show the dependence of w' on ¡/ and the representation of solutions

y'(x,s; t) to (O) with v' of Lemma II-2 show the dependence on a' and b' ; together

these allow us to assert that w' approaches w uniformly in D' X [0, F] and hence

(w, Vg) = 0.

Lemma III-5. w E FX(F2(S)) implies that w E ^(D) Q H„ (for fixed t E [0,

71).

Proof. First, note that if h E H„ and hence h = g(x)n on bD where g(x) is a

scalar (V X F, n) = (F, V X n) = 0 for any F G C(D).

Now, if w is the weak solution of (E)(a), (b) of Theorem II-1

(d/dt)(w,h) = (V X B,h) + (w,(v ■ grad)n) + ((w ■ grad)v,h)

and

(w(0),h) = (V xA,h) = 0,

((w ■ grad)f, n) = (w, V(v ■ h)) — (v, (w ■ grad)n).

But, on bD, v ■ h = g(x)v ■ n = 0. Hence, using Lemma III-4 and the limit

argument employed in Theorem 1-1, (w, V(i> • h)) = 0. Then, since (V X B, h) = 0

J f ( 3n 3/i, \

|(^)-Mg^- "7^)^-0

since V X n = 0 implies 3n,/a*y = 3n7/8*,. Hence (w,h) = 0 for all t E [0, 71.

Theorem III-l. If A E Cx+q(D), V • A = 0, A ■ n = 0 on bD, B E Cx+q-°(D; T),

then there exists a unique v E Cx+q'r(D; T), 0 < r < q < 1, such that dv/dt exists

in Cq-°(D; T) and P exists with VF G Cq0(D; T), unique up to a function oft that

may be added to P such that

dv/dt + (v ■ grad> = - gradP + F,
(E')

V • v = 0,   vn = 0   on bD,   and   v(x,0) = A(x)

for t E [0, F] with T satisfying the constraints of Lemma III-2.
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Proof. With A and B construct the mappings Fx( ) and F2( ) of Theorems

1-1 and II-l. The previous lemmas establish that the requirements for applying

Schauder's fixed point theorem to the mapping F2(FX()) from 5 (defined in the

beginning of this section) into itself are met and hence there is a fixed point

w E S. Let v — Fx (w); then v and V X v = w give the weak solution to system (E)

of Theorem II-l. To establish the differentiability in t of v, we note that for any

/ G Cx+q(D) we can use the representation result of Morrey [6] mentioned in

Theorem 1-1 to obtain/= V X (V Xpj) - V(V • pj) + hj. Then

(v,f) = (v, V X (V X pj)) - (v, V(V • pj)) + (v,hj)

= (V X v, V X pj) + (v,hj) = (w, V X pj) + (v,hj).

The /-derivatives of the two terms on the right-hand side exist by Theorems 1-1

and II-l and we get, letting V X pj = Q,

(d/dt)(v,f) = (d/dt)(w,Q) + (-(v grad)f + B,hj);

(d/dt)(w,Q) = (V X v,(v ■ grad)0 + (((V X v) ■ grad)v,Q)+ (V X B,Q)

= (Vxv,(v grad)ß) - (v,((V X v) • grad)0

+ (V X v, V(v ■ 0) + (B, V X Q)

= (-(v ■ grad)f, V X Q) + (V(i/ • v), V X Q) + (B, V X 0

= (-(v ■ grad)v + B,VXQ)

since v ■ Q = 0 on bD and V x Q ■ « = 0 on bD. Now F = -(v ■ grad)f + B

E Cq0(D; T.) We can use the previous representation theorem to obtain R

= V X (V Xp-R) - V(V • p-R) + h-R. Then

(d/dt)(v,f) = (R, V X (V X pj) + hj) = (Vx(VXp-R) + hR,f).

Hence dv/dt exists in Cq0(D, T). dv/dt = V X (V XpR) + hR and furthermore

dv/dt + (v ■ grad)f - B = V(V • pR). We let f = -V • p~R and our solution is

obtained. Also,

(f(0),/) = (w(0),Vxpj) + (A,hj)

= (VxA,VxPj) + (A,hj)

= (A,VX(VXpj) - V(V • pj) + hj)

= (AJ)

since (A, V(V ■ pj)) = 0 (V • A = 0 and A ■ « = 0 on ¿>£>). This establishes that

the initial value is achieved. To establish uniqueness: suppose v¡, P¡ are solutions,

/' = 1, 2. Then, letting v = vx - v2, P = P, - f2,
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dv/dt + (v ■ grad)f] + (v2 • grad)f = -VF.

Taking the L2 inner-product with v and noting that ((v2 ■ grad)r,i/) = 0 = (-VF,

v), we get

(d/dtyml = (-(»■ gradM.F) < AlKJcPlP

with i7(0) = 0.  Such  a  relationship  can  hold  only if v = 0.  The  qualified

uniqueness of F follows from the uniqueness of v.
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