
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 180, June 1973

VARIATIONAL PROBLEMS WITHIN THE CLASS OF SOLUTIONS

OF A PARTIAL DIFFERENTIAL EQUATION

BY

ROBERT DELVERi1)

ABSTRACT. The subject of this paper is the optimization of a multiple in-

tegral over a domain G of a function, containing as arguments the independent

variables, the unknown function and its partial derivatives up to order I, within

the class of all sufficiently smooth solutions in G of a given partial differential

equation of order greater than or equal to 21. Necessary conditions in the form

of a boundary value problem are derived. A physical application occurs in the

control with boundary and initial conditions of a process in G that is described

by a specific partial differential equation.

I. Introduction.  A classical problem in the calculus of variations is the opti-

mization of a multiple integral over a domain G of a function containing as argu-

ments the independent variables, the unknown function and its partial derivatives

up to order /.   Usually the unknown function is required to be an element of the

class of all functions that are  2/-times continuously differentiable defined in an

open domain containing G.

The optimization problem that is dealt with in this paper differs from the one

above in that the class of admissible functions to be considered is the collection

of all sufficiently smooth solutions in G of a given partial differential equation of

order greater than or equal to 2/.

The most important points in this paper are the definition of the variational

adjoint, the derivation of the variational adjoint boundary conditions, and the de-

rivation of necessary conditions.   The necessary conditions take the form of a

boundary value problem.

Somewhat related to the problem of this paper are boundary control problems

where the class of admissible functions is generated by varying controls in the

right-hand side of a given partial differential equation and in certain boundary and

initial conditions.   A. Friedman [4] considers such a problem in boundary control
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theory for parabolic equations.   In his paper a maximum principle is derived.   It

also contains a proof of the existence of an optimal solution for this problem.   K.

A. Lurie, [5, Chapter 5]» considers such a problem for elliptic equations in 2-di-

mensional Euclidian space.   Other related control problems are studied in J. L. Lions [6].

This book gives many further references to the literature.

Chapter II contains a complete derivation of the necessary conditions for the

optimization problem associated with the Laplace equation.   This chapter gives

an indication of the essentials in the later derivations.   Also it gives a first moti-

vation for the definition of the vatiational adjoint function and of the variational

adjoint boundary conditions.   The chapter contains a simple application.

In Chapter III an explicit form of Green's identity for higher order linear par-

tial differential expressions is derived.   This identity plays an important role in

Chapter V.   Due to the symmetric notation of the differential expression, the deri-

vation given is analogous to that for ordinary differential equations.

Chapter IV contains lemmas to be used in the next chapter.   The Lemmas IV, 1

and TV, 3a and b are purely technical.   Lemma IV, 2 is somewhat more important

and may find applications in other related problems.

Chapter V is the most important part of the paper.   It contains a precise defi-

nition of the optimization problem, a definition of the variational adjoint function

and of the variational adjoint boundary conditions.   In Theorem V, 1 a special

form of the variational adjoint boundary conditions is derived.   In the next chap-

ters, this result serves as a foundation for the formulation of the necessary condi-

tions.

For the optimization problem associated with elliptic and parabolic

equations  necessary  conditions   in the  form  of a  boundary  value  problem

are derived in the  last two chapters  respectively.   Each of these chapters de-

pends completely on well-known existence theorems and on the results of Chapter V.   Not

only do these chapters each have a meaning of their own but together they consti-

tute a method for the use of the variational adjoint in variational problems asso-

ciated with other types of partial differential equations for which there is an existence

theorem comparable with the ones in the last two chapters.

The following notation is used.   R    is the ^-dimensional Euclidian space.   G

is an open bounded domain in  R    with boundary dG.   B(a, b) is the open ball in

R    with centre  a and radius b.  ff(0, b) is the intersection of  B(0, b) with the hy-

perplane  xv =0.   In a sequence of elements ,_, denotes elements that are not

written down.   In a multiple product  • • •   denotes factors that are not written down.

If a and b are integers then  i £ [a, b] denotes that i takes one integer value in the

interval  [a, b\ and a < i <b denotes that i takes successively all integer values

in  [a, b\.   If A is an open set in  fi   ,  r¡ is a positive integer, then  C  (A) denotes

the set of all k times continuously differentiable functions defined on  R     and
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C (A) denotes the set of all elements of C (A) that together with their derivatives

of order less than or equal to k can be extended to be continuous on A.   dG £ C

denotes that  dG is k times continuously differentiable.   If  dG £ C   then n is the

outward unit normal vector to  r?G.   If A C R  , then nbhA  is an open set in  R

that contains A.   If u £ C (G), then   ||«(*)|L  denotes the sum of the supremums in

G of the absolute values of the function u and all its derivatives of order less than

or equal to k.   If a £ [l, v] then Dau(x) denotes àu(x)/dxa,  u a is the same as

Dau(x).   If  dG £ Ck and if u £ Ck(nbhdG) then (d/dn)ku(x) is the Aeth derivative

of zz along n on dG.

Convention.  Summation is taken over indices  a . if they are repeated in the

same term.   The summation indices  a. always run independently from 1 to f.   If

the first index in a sequence of indices has a serial number that is one bigger than

that of the last index in the subscript (or superscript), then the quantity is inter-

preted as one without any subscript (or superscript).  (E.g. if  7 = 2 then u        _ a.

must be read as zz.)   The indices  a. run independently from 1 to v — 1.   Otherwise

the same convention is in force.

Results of this paper can be extended to the case of systems of partial dif-

ferential equations.   This investigation will be the subject of a later report.

The results of this paper for elliptic differential equations have been extended

to functionals with derivatives up to the order of the differential equation and

nonuniquely solvable Dirichlet problem.   For elliptic differential equations with

uniquely solvable Dirichlet problems the same techniques have been applied to

get necessary conditions for optimization problems with control variables in the

right hand side of the differential equation and in the boundary conditions.   See [lOj.

II. Necessary conditions for the optimization problem associated with the

Laplace equation.   Let G be a bounded domain in  R    with boundary t9G of class

C  +   .   In this chapter a is the exponent of Holder continuity, a £ (0, 1).   For

f £ C (G) the class of admissible functions W is defined by

u£W iff    (Io)     Âdx) m fix),       X£G,

(2°)    zzeC2+a(G).

A functional /, defined on W, is given by

(1.2) /(«)=   f    Fix, uix), Duix))dV,    with   F £ C2+aÍR1+2v).

Lemma II.1.   // / has a relative extremum within W for some u £ W then the

principal linear part of the variation of ], 8j(u; Su), given in (1.3), vanishes for

all Su £ W„, given in (1.4).

a.3) «««-£{*£♦£.*,(£/)}"■
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<5zz £ WH iff   (Io)    ASuix) = 0,       x £ G,

(1.4)
(2°)    Suix) eC2+a(G).

Somewhat more in general the definition of a relative extremum and the proof

of the lemma are given in Chapter V.

Existence  Theorem (see e.g.   [7]).   AsszzTTze   that    f £  Ca(G), g £ C2 + a(dG),

and that  dG £ C   +a, then the  Dirichlet problem   Azz(x) = f(x), x £ G; and

u(x) = g(x), x £ dG, admits a unique solution which is of class  C  +   (G).

Now the necessary condition 8](u; 8u) vanishes for all functions <5z^ that

satisfy (1.4) will be put in the form of a boundary value problem.   After integration

by parts of (1.3) one obtains

(1.5) 8](u; Su) =   f   8u(x)[F]^u dV + fdG ¡Suix)   ¿   L ~ \\dS;

here

[p]     =-V   D.Í-*-1     (Euler expression).
'"     du       \T\      ' \°u,i'

In the classical problem of the calculus of variations, where the class of ad-

missible functions is C (G), one obtains at this point from some variational argu-

ments that the condition S](u; Su) = 0, for all 8u £ C  (G), is equivalent with

[F] u = 0, for  x £ G  (Euler equation),

(1.6) v  '       dF
/. ni ;- = 0,    for x £ dG (transversality condition).
t ■ 1 ,i

In the problem that is considered here  8u satisfies (1.4).   In consequence u

can only be varied in G if it is varied on  dG.   This indicates that it may be useful

to transform <5/(zz; Su) into a boundary integral.   To this end let v be any function

that satisfies

Aiz(x) = [F]    ,        x £ G,

(1.7)

v £ C2iG).

From Green's identity, from (1.4) and from (1.7) one obtains

f   ¿SzA»[F]    dV =  (   \8uix)AAx) - Ax)Ai8uix))\dV
J G tu J G

Substitution of this result in (1.5) yields

(1.8)      Sjiu; Su) = jdG {Saix){(£)vix) + | n{ g - |(¿)S«<*)J *(,)} dS.
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If Su is restricted to  W„, it follows from the existence theorem for the Dirichlet

problem that Su(x), for x £ dG, still can   be chosen arbitrarily in  C2 + a(f9G), while

the following boundary condition can be chosen for v.

(1.9) vix) a 0,     for  x £dG.

After substitution of (1.9) into (1.8) and using the freedom of Su one obtains that

<5/(zz; Szz) = 0 for all Su £ WH, if the solution of (1.7), (1.9) satisfies also the

boundary condition:

dF
n.

z
=0

The results can be summatized as follows:

(lio) í-k) = -y».^-,    x£dc
\dn/ frU    l du .

Theorem ILL   // / has a relative extremum within W for some u £ W then the

boundary value problem (1.11), evaluated for this u, is satisfied.

Au(x) = f(x),       x £ G,

Av(x) = [F] u,       x £G,

(1.11)
vix) = 0,       x £ dG,

(¿>
(x) =-  y   Ti. 3-, x £ dG.

« du
,i

Instead of the existence theorem for the Dirichlet problem an existence theorem

for the Neumann problem could be used to derive the same theorem.   In that case

the condition (1.10) is chosen and substituted into (1.8), while, from the freedom

of (d/dn)Su, one obtains now (1.9) as a necessary condition.

Sufficient motivation has been given so that some terminology may be intro-

duced.   A solution of (1.7) that satisfies the boundary conditions

(1.12) 8](u; Su), as given in (1.8), vanishes for all functions 8u £ C  (nbh dG)

is called a variational adjoint function of u with respect to A and ].   The boundary

conditions (1.12) are called variational adjoint boundary conditions.   It is clear

that they are equivalent with (1.9) and (1.10) together.   (More generally, this is the

content of Theorem V.l.)   Depending on the existence theorem that is used, chosen

and imposed variational adjoint boundary conditions are distinguished.   With re-

spect to the Dirichlet problem (1.9) is chosen and (1.10) is imposed.   With respect

to the Neumann problem these are reversed.

Now Theorem II.1 can be phrased as:  If / has a relative extremum within W

for some  u £ W, then u has a vatiational adjoint function, with respect to A and /.

The boundary value problem (1.11) is called the associated boundary value

problem.

The chapter will be concluded with an application of Theorem II.1.
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Example.   Let G, W and / be defined as before in this chapter.

Assertion.   The functional /(zz) = /G%2._ Au   .)2 dV has a relative minimum

within W for any u that satisfies Au(x) - f(x), x £ G; and u(x) is constant on dG.

Proof.  The associated boundary value problem takes the form

(1.13)

So that

(1.14)

Auix) = f(x),       x £ G,

Ai/x) = -Auix),       x £ G,

vix) = 0,       x £ dG,

Wy(x) = ~(¿)*U)'   xeêG-

Aiuix) + vix)) = 0,       x £ G,

( 3— ](zz(x) + Jx)) = 0,        x £ dG.

The solution of (1.14) is   u(x) + v(x) = C, for x £ G, where C is any constant.   As

v vanishes on  dG one obtains the necessary conditions   u(x) = C, for x £ dG.

That this condition is sufficient for a relative minimum within IV follows from

](u + Su) - J(u) > 0, if u £ VI; u(x) = C, for x £ dG,  u + Su £ VI.   With this condition,

writing • for inner product and V for the gradient, this is proved by

2{/(zz+ Su)- ](u)\

-I

-/<
-f

-/«

-/<

VMx) +-Szz(x)) . VU*) + SzXx)) - VaU) . Vuix)\dV

y Suix). y Suix) + 2VzzU). vsuix)\dv

y Suix) . VzSz/x) + 2V . (s(x)Vfiu(x))}rfV

V8«(x) . y Suix) \dV +2C   f     ( ^-) SzXx) ¿S

y8Ax) . V8uix)\dV> 0.

III. Green's identity.   In this chapter an explicit form of Green's identity will

be derived for a linear partial differential expression of order m in v independent

variables with real coefficients.

A differential expression L and its formal adjoint L   are defined by

(1.1)

(1.2)

a,, -,a,
L=£   Aix)   »'   ' kD     ...D

L*=¿   i-l)kDa   ... Da  AU)   l"       fe

£=0 1 *

x e G.

x £ G.



VARIATIONAL PROBLEMS 271

The coefficients  A(x)     '   '       are assumed to be of class   C  (ii),  0  is an open

domain in  R    containing G, and symmetric in the indices   a    —, a     fot 1 < k < m.

For two functions  u £ Cm(Q,),  v £ Cm(il) and a domain G with dG £ C1, the Green's

identity is given by

f   \Ax)Lv(x) - v(x)L*u(x)\dV
J G

(1-3) c   i     • i )/• Í 772 —I    77Z-Z-1 a,.     ,a. , ./

•""J    /   ;=0 ;=0 -    1       *   * 1+1 '+1 )

For  1 < i < m — 1; l<;'<m — i—l;x6 dG, the functions  P(z; ;') ! + ;   ate

defined by

„,,  «,/.--.«.   f   <-')'-'-CT'XC«.-.-.."^'fe=i+y+1 \      Z        / z+7+1 k-l        k

Proof.   From the product formula for differentiation one obtains, for  k £ [l, m]

o  \ky (-Dh\uAav"aki 0     . v a

ze—1 I       a,,_ ,a

z, =n

(1.5)

x:(-1)fej*A    *U-V.<w.-.**

fe-1 a,,    , a,

h=0
S^H1,"^f..1.-.v^-.s«.-.^

a,.      a,

For k> 2, the last identity is true because, by virtue of the symmetry of the func-
a.,,— ,<Xi

tions  A in the indices, (1.6) and (1.7) cancel each other.

(1.6) ¿Ul)TA '"'^i

k~2 u a,.-.aJ

(1.7) lA^Y      h-v/.w-w
Because of the same symmetry (1.8), Leibnitz rule, can be derived analogously to

that for functions of one independent variable   (k £ [l, m\,  h £ [0, ze]).

(i8) La*1"-°*l v„ /A/i-at
I \'   1'    '   /j      !=o 1 *    '   z \z /      '   z+l'    '   ft

From (1.1), (1.2), (1.5) and (1.8) one obtains, for x £ Q,
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u(x)Lv(x) - v(x)L  u(x)

(1.9) m \ fe-1 ,U / ,\     a        » ) j

À a*U=o      );e0 .«i.-.«A«/ 'az+i—a»¡ •'w-\~i\

From an integration by parts, using this result, one obtains

jG \uix)Lvix) - vix)L*uix)\dV

r       Í   m      k-l     h

^     - L z z z (-d\v_,c,
(fe = l    73=0    Í-0 1 I

•(^X7.\v^+i--.^-ixr5-
Now, in order to get the more convenient structure of (1.3), (1.4), the summation

must be rearranged.

Letting j = k — h — 1, the integrand of the boundary integral in (1.10) becomes

m    fe-1  k-j-1 .   , (k—i—l\    aT-<aL

Z    Z      Z     u ,a^k-!-\ >1+ ,!,a.     .   x\«k    .„a.    r-V
£Tj     -=0       ¿=0 '    1'-'    z \        *        /       '    z + 1' fe-7-1 fe-J fe-1       fe

For zé £ [l, m\; j £ [0, k - l];  i € [0, ze - /' - l], it follows again from the symmetry

that

a, .    .c, a,,    ,a,
(1.11)     A   |— k v = A   !        * v

.«i+V-^k-j-l   •«*_/—«*-l ."i-tf+l —afe-l   .<*,•+!.-.af+y

m fe-1   fe-;-l .    ,/£_,-_ A      a,,    ,a,
r y  y «      y         i-i)k-'-uk i ^a »— *      »
zlz ^       ^- .a-,,    .a..   ,a.   ,,      a.    .                       V        ;      /     .a.    .   ,,    .a,    ,    a,
fe = l ;-0      i-0 l          '       z+1'-'   z + ;                        \       *      /     "   z+z+l'-'   fe-1      fe

Using the last two results, the integrand of the boundary integral in (1.10) can be

written as

777     fe —1  fe — / — 1

z z z
fe = I   ,«0      z = 0        '    I*"'   i   '   i+1'-'   i + j \       *     I     •   z' + y+l'-'   fe-1      fe

The set of inequalities   ,l<ze<77z;0<7'<zë-l;0<z'<fe-/-lS  is equivalent

with  10 < z < 77Z — 1 ; 0 < ; < 77Z — z - 1; z + /' + 1 < ze < ztz }.   Therefore the previous sum

can be written as

7ZZ-1    777—z'-l m /. ,\

Z       Z Z       «..„■..*...„     ,..(-l^-'-l(*-J-1)^r,%       a       «a
,-=o     ,=o    fe=7'+/+i    '  I'"' z  ' ¿+l —• z+7 \     «     /    • í + / +1 * - » fe-i afe

Substitution of this expression into (1.10) completes the proof.

IV. Technical lemmas.

(1) Lemma IV.1. Let G be a bounded domain in RV with dG £ Ck + h, k > 0,

h > 0, and let Q be an open domain in R that contains G. Then to every set of

functions g.(x) £ Ck + h~'(dG),   0 < j < k, there exists at least one function
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w £ Ck + b(ü) that satisfies (d/du)' w(x) = g ,(x), for x £ dG and 0 < ; < k.

This lemma is a direct consequence of C. Miranda [7, 16, Vl] and H. Whitney

[8, Theorem 1 with Lemma 2].

(2) Lemma IV.2. Assume that

(Io) G is a bounded domain in  R    with dG £ C  ,

(2°) w £ Ck(G),

(3°) (d/dn)' w(x) = 0, for x £ dG and 0 < / < k - 1.

Then

(i) Daw(x) = 0, for x £ dG and 0<o<k-l,

(ii) w „ = 77      •••  77     (d/dn)k w(x), for x £ dG.

Proof.   Let 0 be an open neighborhood of  dG.   Using H. Whitney [8, Lemma 2],

x is extended into  C (il).    Now normal derivatives  of   order less than or equal

to k can be defined by

/ d\°
I—I w(x) = w(x),        x £ ÇI,
\dn/

(2.1)

So that  (d/dn)1 w(x) is the restriction to  dG of a linear differential expression on

ÍÍ with principal part

(2.2) na  ••• na Da  . . . Da .
i 11 i

Assume now that  Daw(x) = 0, for  0 < o < j - 1 < k - 1 and x £ dG.   As the gradient

on  dG of a function which is constant on  dG is normal to  dG

n ii iz7 = n    a ,       x e dG.iz-->) ,<*,,_, a.      "a,    a,,_,a.>
1'        7 1      2'        7

Here the functions  a are scalar functions defined on  dG.   As  w £ C (ii),
a2>~ '   j

the expressions in (2.3) are symmetric in the indices a.j,-, a., so that for some

h£[l, v],

nha{x)^,_,a. = no."(x)ha,,_,*.
7-1 2 5 1

nha(x)hay.,a. = nai^x)hhaA,.,a.

(2.4)

nh^x)h  -,h,a. = naa(x)h,_,h-
1 1
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Let  dG,   be the part of  dG where 77,   does not vanish then, for x £ dG,, one obtains

from (2.4)

(2.5) %,_,<*. = K,-,*/B*     K   •"»a.'        xedGh-

From (2.5) and (2.2) one obtains

(2.6) "«       ,a. = Ba, -"«^        * edC-
1        7 1 7

Here </j is a scalar function defined on  dG.   Still under the assumption D w(x) = 0,

0<ct<7-1<&-1,  x £ dG, one obtains from (2.2) and (2.6) that cf> =   (d/dn)' w,

so that

(2.7) If  Daw(x) = 0, 0< o< j - 1< k- 1, then  w „ „=«„•••

77 „  (d/dn)'ly(x),   X £ dG.
a7

Application of this result for / = 1, ;' = 2, up to and including / = k, completes

the proof.

Lemma IV.3a.   Let there be given functions  B   1'"'  ' £ C'(B(0, b)),  0 < j < k,

that are symmetric in the indices.   If the integral

(3.1) f        y p       aB(x)ai'"a'ds,
Jo-(O.b)  fe      <aV-'aj

vanishes identically for all functions p £ CQ (S(0, b)), for some k   > k, then

„  ,, fe-f . /,' .   ,\    v,_,va'.   ,,_,a. ..(3-2) Ei-D'H')5-'   ,  '+I       7+!=0       0>^),
¿ = o \  »    /    • i*l'~' l+i

for x £ o(0, b),  0<j<k.

Conversely, (3.2) implies that (3.1) vanishes for all p £ Cn (6(0, b)).0

al,_,a7       O <-   ,■ <T   f,     Qre     c„mmPfr;r Ac     n   É   Tfe IProof.  The functions   B 7,  0 < j < k, ate  symmetric.   As  p £ CA (B(0, b)),

also the derivatives p ,  0 < 7'•< k, are symmetric in the indices.   After a

simple rearrangement, using this symmetry, the integrand of (3.1) can be written as

k     k~!    /;4-A v,_,va'. ,,,_,a'..

z z (7 K -',. x ßU)    ' {jv's)-
y=0   z' = 0    \    *     / '     7+1 7+z

After identifying n with (0,—, 0, 1 ) this expression can be written as

Using this expression, and the fact that the functions   (d/dn)'p,  0 < ;' < k, have

compact support in o(0, b), one obtains from an integration by parts that (3.1) is

equal to
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-MO.è)^   l\<9n/ J    ¿£¡¡ V   *    '     •a7' + l'-'a7'+l

From Lemma IV.1, it follows that the functions   (d/dn)'p,  0 < j < k, can be chosen

arbitrarily and independently in  Cn -7(cr(0, b)).   Using this, one obtains the first

part of the lemma from a variational argument.   The second part follows from sub-

stitution of (3.2) into (3.3).

Lemma IV.3b.   Let there be given junctions  B(x) '  ' £ C'(nbhdG),   0<

j < k, that are symmetric in the indices and assume that  dG £ C    , for some k > k.

If the integral

(3.4) f     y  p _ Bixfl'"AdS/*■ a,.    .a.
y p a    aBix) l*   ',

°G   fa)     'aV-a,

vanishes identically for all functions p £ Ck (nbh dG) then there exist linear dif-

ferential expressions

(3.5) \(j; j) a     ,       0 < / < k, 0 < i < k - /', x e nbh dG,
l'-'   i+j

of order i, such that

(3.6) ¿7Mi';;)a       a     Bixf1'''^*' = 0,    foi x edG, 0 < j < k.
í=o i'"*' «♦;'

fe'
Conversely, (3.6) implies that (3.4) vanishes for all p £ C    (nbh r?G).

Proof.   Let x,  be a point of  r5G.   As   dG £ C    , there exists an open neigh-

borhood of x,,  N(x,), and a one-to-one mapping x = x(y), of  N(xA onto ß(0, 1),

that is together with its inverse  y = y(x), k -times continuously differentiable,

and such that N(x,) n dG is mapped onto  cr(0, 1).

If p £ CkQ (N(xh)\ then (3.4) reduces to

(3-7> Lh)nec  t0 P,ax,_,aBMai'-'a'äS.
h 7=0 i 7

Now the coordinate transformation  x = x(y) is applied to (3.7).   Then Lemma IV.3a

is applied to the corresponding integral in y-coordinates.   Finally the coordinate

transformation y = y(x) is applied to the identities  corresponding to (3.2).   After

this transformation, the identities take the form

(3.8) ¿J **(£;/).       a     BU)*1"""'*' = 0,       x ezJGn /V(xfe),  0 < / < fe.
¿=o p  ' !'+/

Here the expressions

(3.9) A*(i;;")a       a     ,       0 < / < fe, 0 < z < k - j, x e /V(*¿),
1 ' - '   z + 7
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are linear differential expressions of order z.   Thus one obtains from Lemma V.3a

(3.10) The integral (3.7) vanishes for all  p £ C* (N(x  )) iff (3.8) is satisfied.

As   dG is compact in  R   , there exists a finite number of points  \x, \,   1 < h <

r, r < °°, with suitably chosen corresponding open neighborhoods N(xA, that to-

gether constitute a covering of  dG, such that the procedure above can be carried

out for all the  N(xA's.   Thus one obtains (3.8), for  1 < h < r.   The proof of the

lemma is completed with the definition

(3.11) Mz';/)a        a       =Xh(i;j)a        a      ,     fotx£M(xh).
I'-'   z'+7 l'-'    z+7

Here  \M(xA\,  1 < h < r, is a disjoint covering of dG that satisfies  M(x  ) C N(x  ),

for  1 < h < r.

V. The variational problem.

(1) Definitions.

The differential expression L is defined by

d-1) .L=   £   A(x)ai'-,a*Da   ... Da ,       x£G.

fe=0 i fe
a 1 , — ,a z, z. —

The coefficients are real and symmetric in the indices and A(x) e C  (G),

for 0 < k <m.

The noncharacteristic part of the boundary of G, c?G  , is defined by (1.2).

(1.2) dG'= \x £ Rv; x £dG A na   ■ ■ ■ na  A(x)av"am ¿ 0¡ .
1 777

The functional J, defined on  C (G), is given by

(1.3) /(«) = JG F(x, zz(x), Da(x),_, Dlu(x)) dV,

with  /e [l,-, Tzz],   F £ C2(RV),  77 = 1 + S._n(i/*)and dF/du „ .      „is symmetric

in  a j,—, a. for 2 < j < I.   As zz is chosen in   C (G), the last assumption is made

without loss of genetality.

For a given function / £ C(G), the function spaces U, UH, E(:) and U A    ate

defined by

U = \u £ Cm(G) : Lu = / A ](u) is defined},

(1.4)
UH = \u £ Cm(G): Lu= 0!.

(1.5) u(i) a un C(G);      i$> = (7Hnc!'(c).

The class of admissible functions W and the corresponding class of admissible

variations  W„  are chosen in accordance with

WcU is an affine subspace of  Cm(G),
(1.6)

WH = \8u £ Cm(G): 8u = ux - u2 A ux, zz-, e IV}-.
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Remark.   If  u £ W and <5zz £ W^, then it follows from (1.6) that  L(Su(x)) = 0,

x £ G, and that  u + Su £ VI.

The variation of J at u £ V, with respect to  Szz £ VIH, is defined by

(1.7) \]iu;8u) = Jiu + 8u)-jiu).

Finally, the definition of a relative extremum is

(1.8) The functional / has a relative extremum within the class of admissible

functions W if there is a positive real number 8 such that Aj(u; Su) is either defi-

nite positive (relative minimum), or definite negative (relative maximum), for all

Su £ WH that satisfy ||<5zz||. exists and is smaller than 8.

(2) The principal linear part of the variation.

Lemma V.l.   Let  F £ C2(RV);  u £ W;  IV £ UU); 8u £ WH, then the principal

linear part of the variation of ] at u with respect to 8u  is given by

(2.1) 8j(u;8u)=f    Z   Su -3-^-dV.
JG   fe = o        '    I'"'   fe du,0L,,_,aL

1 K.

If moreover ] has a relative extremum within VI for some  u £ U then 8](u; Su) = 0,

for all Su £ WH.

Proof.  Applying the mean-value theorem to the integrand of Aj(u; Su) one

obtains

Aj(u; Su) = S](u; 8u) + R(u; 8u),

(2-2) • u   of    ft \       f     V   Ä ¿(E-E)     ,vwith   R(u;8u) =   I      Z   S" a,,     a   57-- dV-
JG   fe=0 '    I*-'   fe 0u,a,,_,a,

l k

Here the overbar indicates that the corresponding derivatives are to be evaluated,

for  (x, u + dSu-, Dl(u + dSu)),  6 £ (0, 1).   From (2.1) and (2.2) one obtains

A] (u; aSu) = a\8](u; Su) + (l/a)R(u; a8u)\, for any real number a.   As the functions

dF/du ,  0 < k < I, corresponding to  aSu, converge uniformly to
,al>->ak       —     —

dF/du , as  a —> 0, it follows that
,1>~ •  fe

(2.3) lim   -R(u;a8u) = 0.
a-0   «

Therefore 8](u; Su) is the linear principal part of A](u; Su).   If /has a relative

extremum within IV for zz £ IV, then there exists an  ( > 0, such that Aj(u; aSu) has

the same sign for all a £ (— c, + e).   It follows from (2.3) that this can only be true

if S](u; Su) - 0, for that u and any Su £ 8W.   This completes the proof.

Lemma V.2.   If F £ CUl(Rv);  u £ C2I(G); 8u £ C!(G); and dG £ C1, then

8](u; Su) can be transformed into
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'-1 a.   _.a.

dS.(2.4) fG 8u(x)[F]tUdV+  feG   Z   d»,«x,-,aQ   V" '

Here  [F]    , the Euler-expression, is given by

(2.5) [P]>u a Z   (-!>*£>     ...D    (^-),
fe = 0 1 *\     '«V-V

and the expressions Q   **""'  ',  0 < / < / - 1, defined on  dG, are given by

x £ G,

(2.6)     „V-.-V.    ¿     <_,)*-/-. jD.        ....„        (^*_\L.
fe=7+l (       '+1 4-! V       .»l.-.^/J        *

Proof.   Let 0 be an open set in  R    that contains G.   It follows from H. Whit-

ney [8, Lemma 2], that u can be continued into  C    (il)   and that Su can be con-

tinued into  C'(fi).   Therefore  Su „ „  and dF/du , both for 2 < & < /,
,     li'i'i ,     li~»",fe

are symmetric in the indices.   Thus one obtains as in (III.1.5), for x £ Ù and

k £ [1, I],

8«„       „         dF
•  i —• * 5-

= (-l)k8uD„   ... D„   '

(2.7) - ", ^i*,,.^.../

+ D       V1 (-1)¿   D     ...D       ,     dF
a. ) ^ '    )    a, a. ) ¿,, 11       .a..,_a

^'(^Vj.-^feM

Hence, for x £ fi,

«?F

fe=o        I'     *dB.«1.-.^

fe=l        *(i=0 (      1 '(°U,ax,_,a   \)       '  I
a,

1—•  fe

After substitution of (2.8) into 8j(u; 8u), as given in (2.1) and integrating by parts,

one obtains

8j(u; z5zz) =  j   8uix)[F] u dV

<2-9) r      «L  \=J •< \ r7F        z)
+   f      Z   Z   (-1)'   D„   •••Dn     ,-—-USaa _      77a Ä

MfofA \al ai\du,ax,_,ak\\       -a7 + l-afe-l   "fe

After rearranging the summation this identity takes the form (2.4), with (2.6).   This

completes the proof.
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Lemma V.3. Assume that

(Io) E £ Cl+1(RV);  u £ C21(G); Su £ U(Hm);  dG £ Cm.

(2°) Aai'~'ak £ Ck(G), for 0<k<m.

(3°) There exists a function v £ Cm(G) that satisfies L   (v(x)) = [e]     , for

x £ G.

Then, using the definitions (2.5) and (2.6), 8](u; Su) can be written as

r     I'-1 (     a.,.      a m-j-l a a        )

/JZ    ̂  ,a.]Q    1_     '-       Z      V-    ,.    .-+.P(^)    V i + !\
Jö(j(j=0       '   I'"'  i ( ¿=0 ;+l —*  7 + z }

(2.10) m_, m_y_, J

-  Zs",cx7, ...    Z   v     „ ,a. .**•;/> 1_  ,+7  <«•
7 = 7 I'-'   7        z-=0 '   7+1'-'   7+z )

Proof.   Under the above conditions, the following identity is valid.

(2.11) f   8Ax)[F]    dV = - f   \v(x)LSu(x) - Suix)L*vix)\dV.

By virtue of Green's identity, (III. 1.3), the last expression is equal to

- 771-1   772-2-1 a a

<2-12>     - L Z    Z   v,,.,^,%1,.,a./(';/) |- '♦'*.i = 0      y=o I*   *  t i+l'    '   ï+;

By virtue of the symmetry of  P(z; /") Z + J, (2.12) can be written as

m—\ i?7 — /—1

<2-13>     -/iG Z    Z   *«..,.   .."... ,    a. .*<;/> v    I+'ds.
-/tfu   ,=0        ¿=0 ! J        7+1'-'   2+7

Substitution of this result into (2.4) completes the proof.

(3)  The variational adjoint.

Definition.   Assume that  F £ Cl+l(Rv);  u £ U(2l);  dG £ Cm;  A*1'-'^ £ Ck(G),

for  0 < k < 77Z.   If there exists a function 77 £ Cm(G) that satisfies

(3.1) L*(,;(x))= [F]   u, x £ G, and

(3.2) <5/(zz; Su), as given in (2.10), vanishes for all functions  Su £ Cm(nbhdG),

then this function v is called a variational adjoint of u with respect to L and ].

Definition.   The boundary condition (3.2), or conditions that are equivalent

with (3.2) are called the variational adjoint boundary conditions.

Theorem V.l.   // v is a variational adjoint of u, with respect to L and J , then

the variational adjoint boundary conditions on dG    are given by (i), (ii) and (iii)

as follows:

(i) id/dn)'vix) = 0,

for 0 < j < m — I — 1 and x £ dG  .   (If I = zzz, then this condition is vacuous.)

(d\m-l ,/ a,._,a   \-l a,,_,a,   ,

B ^(-^-'(%---vu)    m) "vv,2
for x £ dG .
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l-j-j m-j-h-l a a

Z     ^;j) £ »...   u   „     ,.   u     ««•;/+«   l'~'   i + !' + h
77=0 1 7+*       iam-l 7+A+l 7+A + z

(ÍÍÍ) '-1-'

-     Z     *h;j) a      Q   '-»+*
i = 0 I ' - '   ; +6

/or x e dG' ziTZzi / — 2 > ; > 0.   (If I = 1, then this condition is vacuous.)   For

0 < / < / - 2,   0 < /> < / - 1 - /,  x e <?G, /¿e A.(/>; /) 's zieTzoZe linear differ-
— — — — al»—   »ay-'+Z7

enlial expressions of order h.

Corollary.   // v is a variational adjoint of u, with respect to L and J while

1=1, then the variational adjoint boundary conditions on  dG    are given by

(i) (d/dn)'v(x) = 0,    for  0< j <m- 2  and x £ dG',

(ii)       (r9/c7n)m-1zXx) = (-l)m-,(7za   ■•■ na  Aix)av-'aA~\aidF/du^),

for x £ dG'.

Definition.   Each of the conditions in Theorem V.l or in the corollary is called

variational adjoint boundary condition k if the highest order of differentiation of v

in that condition is k.   So  fe = ;  in (i), k = m - 1   in (ii) and  fe = ttz - / - 1   in (iii).

Definition.  Depending on L and dG, a function w is of class  B . if it is of

class   Cm (nbh dG) and if (d/dnf w(x) = 0, for 0 < i < / - 1 it x £ dG', and for

0 < i < ttz - 1 if x e dG ~ dG '.

Proof.  From (III. 1.4) one obtains

(3.1) P(z';7)ai""a;' + '' = (-l)m->'-17za   A*1'-'"™,     for  z' + 7 = 77z- 1.

77Z

Hence

(3.2) 77     ...«        P1'~'i + '^0,    for  i + j = ttz - 1  and x 6 dG'.
1 i+j

From Lemma IV.1 it follows directly that

(3.3) If <5zz is restricted to the class   B. then (d/dn)'Su still can be chosen

arbitrarily within the class  C™~'(dG').

Now variational adjoint boundary condition 0 is obtained as follows.   Let Su

be restricted to  B   _., then in consequence of Lemma IV.2,

Su a a  = °>     for  x e (9G,   0 < z < ttz - 2.
'   1 ' ~ '   i

Su a        a        =na   ...na       (d/dn)m-l8u(x),     for  x £ dG.
'      1 ,_ '    TTZ-1 1 777-1

Substitution of (3.4) into (2.10) yields
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8]iu;8u)

- L> {(ä^^N ••• n°-mj{0>m- ^l",am-lds,

for Su £ B       ,.
TTZ— 1

From the definition of the variational adjoint boundary conditions and from

(3.3) it follows that 8j(u; Su), as given in (3.5), must vanish for arbitrary

(d/dn)m~lSu e clidC').

From a variational argument and from (3.2) one obtains that  v(x) = 0, for

x £ de  .   If m - I > 2, the variational adjoint boundary condition 1 is obtained as

follows.   Let 8u be restricted to  B       ,  then, in consequence of Lemma IV.2,
TTZ— 2 ' * '

Su a a   " °     'd   x £dC^ de',   0 < i < m - 1,
'   !-•  i

if  x £ âC',  0 < i < m - 3,

(3.6) Su =na   ■••na      (d/dn)m~28u(x),      x e dG',
1 m —2 1 ttz —2

v(x) =0,       x £ dG',

v =77 (r9/f7n)iz(x),        x e (9G.
>a      i ^      i

TTZ —I 777—1

Substitution of (3.6) into (2.10) yields

8](u; Su)

■ L {(¿r"2«'»}{(a4)^»V""«„-,',ll--2r""'""",''s-
for 8u£ B

TTZ— 2

Now 8](u;8u) must vanish for arbitrary  (â/dn)m~   8u(x) £ C0(dC').   From a

variational argument and from (3.2) one obtains that  (d/dn)v(x) = 0, for x £ dC  .

By repetition of this process one obtains also the variational adjoint boundary

conditions 2,—, ttz - / — 1.   Therefore

(3.8) id/an)' vix) =0,     for  0 < / < m - / - 1,   x £ dC'.

The variational adjoint boundary condition  m — I is obtained as follows.   Let Su

be restricted to  B._,   then one obtains from Lemma IV.2

Su n =0    if x £dC^dC',  0 < i< m- 1,

if x £dC',  0 <i < I- 2,

(3.9) Szz =»»•••»,     (d/diO'-'Saix),       x £ dC',
•  i*--a/-i       ai a/_i

v a a  = 0,        0 < z < 77Z - / - 1,  x £ dC',
'     l""    i

(3.7)

V

Z *    772 —1 Z 77Z—1

na  ... na       id/dn)m-lvix),       x £ dC.
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Substitution of (3.9) into (2.10) yields

(3.10)

Now <5/(zz; Szz), as given in (3.10), must vanish for arbitrary choice of  (d/dn)       Si

£ C„ -   +  (dG ).   Therefore one obtains from a variational argument that (also set

111(1.4))

(3.11) (d/dd)n ■Ux)ai-ir-iL  ...,a a i  •»} »-•••».   ß1   M,
\       1 m ) 1 Z—1

x e (9G '.

If  / = 1, the proof is complete.   If  / > 2, (iii) remains to be proven.   This is

done as follows.   From (3.8) and Lemma IV.2, one obtains   v a        a. = 0, for

0 < i < m - I - 1 and x £ dG'.   After letting Su satisfy (d/dn)'Su £ Cm~'(dG),

0 < 7 < ttz - 1, and  (d/dn)1 8u(x) = 0, for x e <9G ~ dG-',   0 < j <m; one obtains from

the same lemma Su „ „   = 0,   0 < z < ttz - 1 and x £ dG -^ dG  .   From substitution
,ai,-,<*¿        '      -     -

of these results into (2.10) and from the assumption that v is a variational adjoint

of u it follows that

r        lSÍ {     a,,_,a.      777-7-1 a,,_,a.     .)

(3.12) JdG, Z *•-       ...   ß   !        ;"     Z    »,a.   „   ,«.   .«*/)   '        , + '    *
•""J    y = o I'"'   7/ £=^1,/     '  7+1—'   7 + T )

vanishes for all Szz £ Cm(nbh dG) that satisfy (d/dn)'8u(x) = 0, for  0 < /' < m — 1

and  x e dG ~ (9G  .

If dG = dG  , then (iii) follows directly from application of Lemma IV.3b to

(3.12).   A lemma comparable to Lemma IV.3b can be derived for the case where

the domain of integration is a relatively open subset S of r?G  and where the func-

tion p satisfies besides p £ Ck (nbh dG) also the conditions   (d/dn)' p(x) = g.(x),

0 < 7 < k, x £dG ~ S, with given functions  g.(x) of class C    ~'(dG ~ S).   The

proof of this lemma is analogous to that of Lemma IV.3b.   This lemma is used in

order to establish (iii) for the case where   dG / dG  .   This completes the proof.

VI. Necessary conditions for the optimization problem associated with a uni-

formly strongly elliptic partial differential equation.

(1) Definitions and existence theorem.

Definition.

(1.1)  The differential expression L, as defined in (V.l.l) is called uniformly

strongly elliptic in G if the coefficients are bounded in G and if
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a a (   v ) m/2

(-lT,2A(x)   V" m{a   ••• 4    >c\Z (^-)2 ,
1 m [i-\ |

for  x £ G, some positive constant c and arbitrary real v-xectot rf.   (This definition

implies that ttz is even.)

The following existence theorem, associated with the classical Dirichlet

problem for a strongly elliptic partial differential equation, follows directly from

[3, Theorem 17.31; [3, Theorem 13.l]; [3, Theorem 14.6]; [3, Lemma 13.3] (all in

part I), and Lemma IV. 1.

Theorem VI. 1.   Let the following conditions be satisfied for some integer p,

p > 0, and t = p + [v/2] + 1.

(Io) G is bounded and dG £ Cm + t.

(2°) L is uniformly strongly elliptic in G.
(3°) Aai'~'a' £ C' + t(G),  0<7<77z.

(4°) / £ C'(G).
(5°) gj e Cm + t~'(dG), for 0< 7 < TTz/2 - 1.

Then the Fredholm alternative holds for the classical Dirichlet problem

L(u(x)) = fix),       x £ G,

(1.2)
id/dn)'uix) = g.ix),       x £dG, 0 < 7 < 77z/2 - 1,

while any solution of (1.2) is of class Cm + P(G).

(2)  Necessary conditions.

Theorem VI.2.  Assume that (1.2) is uniquely solvable and

(Io)   I £  [l,Vim\, q> max!0, 2/ + [v/2\ + 1 - m\.

(2°) The requirements (Io), (2°), and (4°) of Theorem VI. 1 are met with  p = q,

and requirement (3°) is replaced with Aai'~'a' £ C2'+t(G),   0 < 7 < ttz.

(3°)  F £ CÍR71)1^12^2.

(A°) W= U(m*q\

If now u £ W, then the boundary value problem (2.1) admits one solution which

is of class Cm(G).

L*(v(x)) = [E] u,       x £ G,

(2.1)
(¿ydnViXx) = 0,       0<7< Y2m- 1, x £ dG.

If moreover 8j(u; Su) = 0, for all Su £ WH, then the solution of (2.1) also satisfies

the variational adjoint boundary conditions  V2 ttz,—, ttz - 1.   (dG = dG  .) Conversely,

if there exists a solution of (2.1) that satisfies the variational adjoint boundary

conditions  ]/2 m, — , m - 1, then 8](u; Su) = 0, for all Su £ VIH.(2)

(2) The corresponding theorem for nonuniquely solvable Dirichlet problem in L9j

contains an error ('then any' should be 'then (4.1) is solvable and any'). The correct

formulation and proof are given in [lOj.
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Definition.  If the requirements (Io),—, (4°) of Theorem VI.2 are met, then the

associated boundary value problem is defined by

L(u(x)) = fix),       u £ W, x £ G,

(2.2) L*(v(x)) = tF] u,       x £ G,

the variational adjoint boundary conditions   0,_,ttz-1,

as given in Theorem V.l are satisfied on  dG.

Corollary.   // J has a relative extremum within W, for some  u £ VI and if the

requirements  of Theorem VI.2  are  met,  then  there  exists  precisely one

function v £ C   (G) such that u and v together satisfy the associated boundary

value problem.

Proof.   It can easily be verified that (Io), (2°) and (3°) are chosen such that

Theorem VI. 1 establishes the existence and smoothness of solutions of (2.1).

Under the conditions (Io),—, (4°), (2, 1), one obtains from Lemma V.3 that

<5/(zz; Su), Su £ 1V„, can be written as in (V.2.10).   The strong ellipticity condition

implies that  dG = dG  .   It follows from Theorem VI. 1 that the solutions of

L(Su(x)) = 0,     for x £ G,
(2.3)

id/dn)'Suix) = g .ix),    for  0 < ;' < Vim- 1,  and x £ dG,

where the functions  g .,   0 <j< Vi m — 1, can be chosen arbitrarily in  C(dG)m + t~',

are elements of  W„.

It is observed that in (2.1) the variational adjoint boundary conditions 0,—, Vim

are chosen.   The rest of the ptoof of Theorem VI.2 is analogous to the last part of

the proof of Theorem V.l, starting with the derivation of the variational adjoint

boundary condition  Vim from the arbitrariness of (d/dn)ml l "  8u(x) on dG.   The

proof of the corollary follows directly from Lemma V.l and the theorem.    This

completes the proof.

VII. Necessary conditions for the optimization problem associated with a uni-

formly parabolic partial differential equation.

(1) Definitions and existence theorem.   With regard to the domain G the follow-

ing definitions are in force throughout this chapter.   (It is recalled that x   =

(«i»-. Xv-\)A

(1.1)  Gv_ .   is an open domain in  R   ~    with boundary dGu_ ,.   Hv_ j   is the

intersection of the  R   ~   -closure of Gv_ ,   with an open  R   ~ -neighborhood of

dGv_x.  G = Gv_x x (0, T).  dG is the boundary of G.  dG(0) = \x £ Rv: x' £ Gv_jA

xv = 0|.   Similar for  dGCT), dH(0) = {x £ R v: x ' £ Hp_ x A xv = 0].   Similar for

dH(T),dG(Q, T]=\x £ Rv: x' £ dGv_x A xv £ (0, T]\.

The differential expression L in this chpater is defined by
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m a',,_,a',

(1.2)        L = Dv+ L', with  L' =  Y.   A(x)   L        kDa, ■ ■ . Da, ,       x £ G.
fe=o il

Definition.   (1.3)  L is called uniformly parabolic in G if the coefficients are

bounded in G and if

a', ,    ,a' [  v-i -, )m/2

(-lW2A(x)   »—  »£,   ...4,   >c     X (f/f        -
1 TTZ ^    I = 1 I

for x e G, some positive constant c and arbitrary real (v — l)-vector zf.   (This defi-

nition implies that m is even.)

In order to be able to use previously derived formulas, from now on L will be

written as

(1-4) La   £   A(x) kDa'"I>,       x£G,
fe=o ' k

with A(x)     '    '      = 0, if at least one index has value v and fe £ [2, ml, while

Av=l.

The following existence theorem follows directly from [3, part 2, Theorem

9.1 and the second corollary on p. 141].

Theorem VII. 1.   Let the following conditions be satisfied for some nonnegative

integer p.

(Io) r = 1 + [(2p + V + 1 )/2m\;  s = m + p + r + [v/í\;   t = s - r + m(r + 1 ).

(2°)  Gv_ j and T are bounded; dGv_ x £ Cm(r+ l \

(3°)  L is uniformly parabolic in G.
(4°) Aau~'a' £CS(G),  0<j<m.

(5°) / e C\G);  (d/dn)' f(x) = 0, for 0 < 7 < / and x £ dH(0).

(6°) w £ Ct+ m(G); w(x) = 0, if x £ dH(0) x [O, e), for some  e > 0.

Then the intial boundary value problem

Lu(x) = fix),       x £ G U dGÍT),

(1.5) (d/dn)'u(x) a (d/dn)'w(x),       0 < 7 < zzz/2 - 1,  x £ dGÍO, T],

uix) = wix),       x £ dGÍO),

admits a unique solution which is oj class  Cm + P(G).

(2) Necessary conditions.

Theorem VII.2.  Assume that

(Io) / £ [l, Vim\, q> t(0)+ 21- m, where  t(0) = 3ttz + [xV2] + m[(v + l)/2m\.

(2°)  The requirements (Io), (2°), (3°) and (5°) of Theorem VII.1 are met with

p - q, while requirement (4°) is replaced by A(x)     '   '  ' £ C(G)' + S,  0 < 7 < ttz.
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(3°) E £Cl+l + t(0)iRr<).

(4°) IV = u{m + q).

(5°)  (d/dn)'[F~\     = 0, for 0<j< t(0), x £ dH(0), and any  u £ VI'.

(6°) dF/du  v has compact support in  dG(T) for any u £ VI.

(7°) dF/du „        „   = 0, for 2 < j < I and x £ nbh <9G(0) u nbh dG(T).
,rxi ,— ,a.j —      —

// now  u £ VI, then the initial boundary value problem (2.1) admits a unique

solution, which is of class  Cm(G).

L  v(x) = [F]    ,    for  x £ G,

(2.1) (d/dn)'v(x) = 0,    for  0 < j < m/2 - 1 and x £ dG[0, T),

zv(x) = + dF/du v,    for x £ dGÍT).

If moreover 8](u; Su) = 0, for all Su £ W „, then a solution of (2.1) also satisfies

the variational adjoint boundary conditions  Vim,—,m — 1   on the lateral boundary,

dG(0, T) and the condition:  v(x) = + dF/du      on dG(0).   Conversely, if there ex-

ists a solution of (2.1) that also satisfies these extra boundary conditions then

8](u; 8u) vanishes for all Su £ VIH.

Definition.   If the tequirements (Io), — ,(7°) of Theorem VII.2 are met, then the

associated boundary value problem is defined by

Lu(x) = f(x),       u £ VI, x £ G,

L*v(x) = [F]    ,       x £ G,

(2.2)
the variational adjoint boundary conditions   0, -, ttz — 1,

as given in Theorem V.l, are satisfied on  <9G(0, T),

v(x) a + dF/du v,    for x £ dGÍO) u dGÍT).

Corollary.   // / has a relative extremum within VI, for some  u £ W and if the

requirements of Theorem VII.2 are met, then there exists a function  v £ C   (G),

such that u and v together satisfy the associated boundary value problem (2.2).

Proof.   It can easily be verified that the conditions (Io), —, (6°) are chosen such

that Theorem VII. 1 establishes the existence and smoothness of the solution of (2.1).

From substitution of (7°), of  n = (0,-, 0,-1) on <3G(0) and of n = (0,-, 0, + 1)

on dG(T) into (V. 2.6) it follows that

Qal — 'a> = 0,       1 <;< l-l, x e <9G(0) udG(T),

(2 3)
Q = -dF/du v    on <?G(0);       Q = dFIdu^    on dGÍT).

From substitution of the functions  A ', as given in   (1.4), of n = (0, -, - 1 )

on r3G(0) and of n = (0, -, 0, 1) on dG(T) into (III. 1.4) it follows that



a

PU: i
(2.4)

VARIATIONAL PROBLEMS 287

P(i;jfl" 'a¿ + i =0,        1 <i + j<m-l, x £ dGÍO) U dGÍT).

PÍO, 0) = -l,    on dGÍO);       P(0, 0) = 1     onr)G(T).

Under the above conditions one obtains from Lemma V.3 and from substitution into

(V.2.10), of the boundary conditions in (2.1), of (2.3) and of (2.4):

8jiu;8u)= 8u(x) \v(x) — -r—    >
1 JdG(O) ) du    (

dS

r 1(^1 I   a, ,-,a-      m-i-1 a,,   ,a.   A

d l ,n(y=o       l     ;/ ¿=W2

(2.5)

•   7+1—   7+1'

TTZ— 1 TTZ—7-1

z
/=/     '-i— "y  Ä/2   'Tz'+i-

-Z& ...     Z     »,a.„   ,a.   PO;/)1'-^
,=> i— 7   ¿=m/2   ' 7+1— ;+z I

First restrict u to IV   ,

(2.6) W = [zz e VV : (d/dnVUx) - w(x)) = 0,  0 < j < m/2 - I, x £ dGÍO, T)\,

here w is a fixed function in  W O C(G)/ + m.

Now, 8u, restricted to  dG(0), still can be chosen arbitrarily in  C0(dG(0))' + m

while Su        _ a. - 0|  0 < / <  ttz/2 - 1,    x £ dG(0, T).   The last condition implies

that the integral over  dG(0, T), in (2.5) vanishes for all Su £ W„.   Using a varia-

tional argument one obtains from 8](u; Su), as given in (2.5), vanishes for all

Su £ W'H:

(2.7) vix) = dF/du>v,     for x £ dGÍO).

Conversely, if (2.7) is satisfied then the integral over  dGÍO) vanishes for all

8u £ WH.

Next, restrict u to IV   ,

(2.8) W" = \u £ VI : u(x) = w(x), x £ dGÍ0)\,

here w is a given function in W O C(G) +m.

Now  (d/dn)'8u(x),  0 < / < ttz/2 - 1,  x £ dG(0, T), still can be chosen arbi-

trarily in  C0(dG(0, T))t + m~, while <3zz(x) = 0, for x £ dG(0).   The last condition

implies that in (2.5) the integral over  (9G(0) vanishes for all Szz £ VI^.  At this

point it is observed that, because of the Dirichlet conditions on   dG(0, T), Sj(u; 8u),

for zz £ W", has the same form as in the proof of Theorem VI.2, that the same varia-

tion possibilities exist and that  r3G(0, T) is noncharacteristic.   Therefore, from

S/(zz; Szz), as given in (2.5), vanishes for all Szz £ VIH one obtains similar to in the

proof of Theorem VI.2:

(2.9) The variational adjoint boundary conditions   Vim, —, m -1, as given in

Theorem V.l are satisfied on   dG(0, T).
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And conversely, if (2.9) is satisfied, then the integral over  dG(0, T), in (2.5),

vanishes for all Su £ IV „.   This completes the proof of Theorem VII.2.

The corollary follows directly from Lemma V.l and Theorem VII.2.   With the

same assumptions and definitions, it is clear from the proof of Theorem VII.2 that

the next remark can be made.

Remark.   If  W   is taken for the class of admissible functions then the associated

boundary value problem takes the form

(2.10) (2.2),  with the variational adjoint boundary conditions   Vim, —, ttz -1,

x £ dG(0, T) replaced by (d/dn)'u(x) = (d/dn)'w(x),   0 < j < m/2 - 1, x £ dG(0, T].

If  IV    is taken for the class of admissible functions then the associated

boundary value problem takes the form

(2.11) (2.2), with the condition v(x) = dF/du  v, x £ dG(0), replaced by u(x) =

w(x), x £ dG(0).

(3) The associated boundary value problem for the heat equation. In this sec-

tion the associated boundary value problem will be formulated for the case where

L is given by

v-X

(3-D L = D   - A    ,,    with A    . =   V  D2.
V V — 1' V — \ t—l l

¿=1

So m = 2; I = 1 and na na A = - 1, for x e oG(0, T).   Using the corollary with

Theorem V.l, the variational adjoint boundary value problem (2.1) takes the form

u v- Av_jzz(x) = f(x),       x £ G,

VfV + Av_xvix) = -[F\<u,       x£G,

(3.2) vix)= 0,       x £ dGÍO, T),

vix) = dF/du<v,       x £ dGÍO) u dGÍT),

id/dn)vix) = n     dF/du     ,       x £ dGÍO, T).
al <aj

If the conditions (Io), —, (6°) of Theorem VII.2 are satisfied, if  u £ IV, and if  J(u)

has an extremum within VI for this zz then (3.2) admits a unique solution for v.

Furthermore, v £ C (G).
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