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WEAK COMPACTNESS IN LOCALLY CONVEX SPACES

BY

D. G. TACON

ABSTRACT.   The notion of weak compactness plays a central role in the

theory of locally convex topological vector spaces.    However, in   the state-

ment of many theorems, completeness of the space, or at least quasi-complete-

ness of the space in the Mackey topology is an important assumption.   In this

paper we extend the concept of weak compactness in a general way and obtain

a number of useful particular cases.   If we replace weak compactness by these

generalized notions we can drop the completeness assumption from the state-

ment of many theorems; for example, we generalize the classical theorems of

Eberlein and Krefn.    We then   consider generalizations of semireflexivity and

reflexivity and characterize these properties in terms of our previous ideas

as well as in terms of known concepts.   In most of the proofs we use tech-

niques of nonstandard analysis.

1.   Notation and definitions.   Suppose (E, F) is a separated pairing of vec-

tor spaces (so that we may regard   F C E   ) and let 6.   be a family of subsets of

F.   Corresponding to a map  <p from  F  into the set of finite subsets of a set

S e G    we define a  oiE, F)-neighbourhood of each point x £ E  by

Ux((p, S) a \y: \fiy - x)\ < 1   for all / £ cf>ix)\.

The system of oiE, F)-neighbourhoods \U (<f>, S): x £ F S forms a covering of

E which we call the (</), S)-covering of E. With this notation we introduce the

following concept.

1.1.   Definition.   Let  (E, F) be a pairing and  6,   a family of subsets of  F.

Then a subset A   of F  is  G. -oiE, F)-compact if, for each  S £ A   and each map

<f> described above, the   (</>, S)-covering of  E  contains a finite subcover of  A;

that is, there exists a finite subset \x,,•••, x  S of E such that A C U    id, S)
In x i    '

U •••   Uli,   icp,S).
xn

We shall be mostly interested in  6 -o\E, F)-compactness when  6    generates

a locally convex topology on  E.   If the  G -topology is the Mackey topology

ÁE, F) we find it convenient to introduce another definition.
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1.2.   Definition.   Suppose S    is the family ñ of all circled, convex,  oiF, E)

compact subsets of  F.   If a subset  A   of  F  is  ñ-oiE, F)-compact we say that A

is nearly  oiE, F)-compact (or nearly weakly compact).

Although our proofs need only be altered slightly for the complex case we

restrict our attention to real spaces.   We find it easier too to use the term "polar"

in the sense of "absolute polar".   We denote   F  equipped with the S-topology by

E(Q) and emphasise, for example, that if F is a locally convex topological vec-

tor space (hereafter to be abbreviated to LCTVS) then  F   (6) denotes the bidual

E" equipped with the S-topology whilst  F(6)    denotes the bidual of F(S).   Most

of the standard texts on topological vector spaces are suitable references for

this paper (see, for example, [6], [lO]).   We denote the natural embeddings of x

and A  in the bidual by x and A  respectively.   As in VA] we assume that our

spaces together with the real number system are embedded in some full structure

M  and we develop our nonstandard theory in an enlargement  *M  of  M.   We denote

nonstandard entities in  *M by boldface type and when there is no confusion we

omit the asterisk from standard entities in  *M.   Finally we write  a ~ b  whenever

a, b £ *R and a - b  is infinitesimal and denote the standard part of a finite  a

by °a.

The author thanks Dr. R. W. Cross under whose supervision this work was

done towards a doctoral thesis submitted at the Australian National University

and also acknowledges the referee's instructive comments.   This paper develops

an earlier note of the author [ll].

2.   Gj-íKF, F)-compactness.   Robinson [9, p. 90 and p. 93] introduces the

related concepts of monad and near-standardness for points in the enlargement of

a topological space.   If E   is a LCTVS it is easy to check that a point x £ *E

is weak near-standard (i.e. near-standard in the weak topology) if and only if

there is an x £ E such that f(x) ~ f(x) for all / e E'.   We generalize this prop-

erty of points of  *F  in the following way.

2.1. Definition.   Let (F, F) be a pairing and let S,   be a family of subsets

of F.   We say that a point x £ *E is  Gj-trvF, F)-near-standard if, for each S £

Sj,  there is an  x £ E  such that  |/(x - x)\ < 1  for all f £ S.   Then we can gener-

alize a result of Robinson [9, p. 93]-

2.2. Theorem.    Let (E, F) be a pairing and let Gj   be a family of subsets of

P.   A subset A   of E  is Qx-oÍE., F)-compact if and only if each point x £ *A   is

Sj-cKF, p)-near-standard.

Proof. Suppose there exists an x e *F which is not Sj-oKE, F)-near-stand-

ard. Then there is an S £ Sj such that given x £ E there is an f £ S such that

|/(x - x)\ > 1.   That is to say, there is a map cp such that x 4 *U (cp, S) fot
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each x £ E.   Now A  is  S,-o(F, F)-compact, and so there is a finite subset

\x,, ■ ■ • , x  S   of   E   such that A C (7    (</>, 5) U   • • • U (/    (96, S).   This equation
17? 7C j Xn

can be formulated in our formal language which interpreted in  *M  yields

*A C *U    ich, S)u ••• U *(7    (ci, S).
* 1 X72

We know that x does not belong to any of the sets of the right-hand side and con-

sequently it does not belong to A.

Now on the other hand suppose A   is not 6j-ct(F, F)-compact.   Then there

exists an  S £ 6.    together with a map  cj) such that the  (c/>, S)-covering  W of  F

has no finite subcover of A.   We define a binary relation  RÍU, y) to hold in M

if and only if  U £ W and y £ A but y 4 U.   By assumption  RÍU, y) is concurrent,

so that by definition of */M,  there is a point x £ *A  such that x 4 *U (</>, 5) for

all x £ F .   This implies that x is not 6, -oiE, F)-near-standard for *!/. ,•••,/  !

2.3. Remark.   It is interesting to note that an analysis of the previous proof

reveals that when defining Q^-oiE, F)-compact sets it suffices to consider only

those   i<f>, S)-coverings of E   for which c/5 maps   E  into singletons of S.

As a consequence of Theorem 2.2 we note the following.

2.4. Corollary.   Suppose  S    equals the family of finite subsets  ^  of F.

Then a subset A  of E  is  f^-oiE, F)-compact if and only if A  is  oiE, F)-pre-

compact.

Proof.   Suppose A   is  %-oi.E, F)-compact.   Then given an  x £ *A  and S £

% there exists an  x £ E  such that   |/(x - x)\ < 1  for all f £ S.   But  *S =

*UX, •••>fj= 17, > ••■> */„! so that   |/(x -x)\ <l  for all / £ *S.   This means

that x  is pre-near-standard in the  o\E, F)-topology and hence (see [8, p. 77]) A

is  oiE, F)-precompact.   The converse is also similarly established.

For the remainder of this section we assume that  S.   is a family of weakly

bounded subsets of  F which cover F and such that the  6.-topology on  E is

compatible with the duality (F, F).   Furthermore, we assume that the polars of

its sets form a basis of O-neighbourhoods for the  S.-topology.   This requires of

course that 6j   satisfies the two conditions:

(I)   If Sx, S2 £ Gx  then there is an  S} £ Sj   such that  $   U  ^CC,

(II)   If À is a real number and  S £ 6    there is an  S    £ S    such that  \S C S

2.5. Definition.    Let  F  be a TVS.   A point x £ *F  is bounded if there is a

bounded set B  of F such that x £ *B.

2.6. Lemma.   Suppose x  is a bounded point in  *F(S ).   Then x  is  S -

o(E, F)-near-standard if and only if x  is weak near-standard in  f'(S, ).
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Proof.   We show the necessity of the condition first.   We define  x    £ F    (the

dual of  F when equipped with the strong topology) by x"(f) = °[/(x)] for all / £ F.

Let x" £ F'(S )'.   The restriction of x"  to F may be assumed to be an element

of F which we denote by g.   If x is Sj-cKE, F)-near-standard then given a set

S £ 6j   there is a point xis) £ E such that   |/(x - xiS))\ < 1  for all f £ S.   This

implies that x " - xis) £ S°, the polar of  S.   Consequently  {xiS)\ may be considered

to be a net convergent to x" in the Sj-topology.   In particular, gixiS)) —> x ig)

and  x'"(x(S)) -, x'"(x") so that x"V) = x"ig).   Therefore,  *'"(*") = x"ig) ~

g(x) = x"Ax) and thus  x is weak near-standard (see the comment at the beginning

of this section).

Now let us suppose  x is weak near-standard.   Then there exists an x    £ F

such that 'x'"ix") ~ x'"(x) for all x" £ F (X A .

It follows (see [9, p. 9l]) that x    belongs to the weak closure of  E  in

F (Sj)  and thus to the closure of  F  in  F (S.).   This noted it is then an easy

consequence that x is  &.-oiE, F)-near-standard.

2.7. Theorem.    Let (E, F) be a pairing and let S    be a family of subsets

of F satisfying the  above conditions-.   Then a subset A  of E  is  5 -oiE, F)-

compact if and only if A   is relatively weakly compact as a subset of F (S ).

Proof.   Suppose that A  is G.-oiE, F)-compact.   As  S   covers  F it follows

that A  is  oiE, F)-bounded and hence bounded.   By Theorem 2.2 each point

x £ *A   is   S -o(F, F)-near-standard and thus, by Lemma 2.6, each x is weak

near-standard in  F (S ).   But TVS's are regular and the necessity of the condition

is then implied by a result of Luxemburg [8, p. 65].   Conversely, suppose  A  has

the stated property.   Again each point x £ :*A  is weak near-standard in  FAG.)

and it follows in turn that x is  ^-oiE, F)-near-standard.   Thus Theorem 2.2

implies the result.

Suppose  G>2  is another family of subsets of F  satisfying the previous con-

ditions on  6j   and which also generates the  6 -topology.    Then we have the fol-

lowing immediate but noteworthy result.

2.8. Corollary.    The subset  A  of E  is Sj-o(E, p)-compact if and only if it

is Q -oiE, F)-compact.

2.9. Lemma. Let A be a bounded subset of E(Q). Then a point x £ *A

is Qx-oiE, F)-near-standard if and only if given a set S £ S. there exists an x

belonging to the convex hull of A  such that   |/(x - x)\ < 1  for all f £ S.

Proof. It is immediate that the condition is sufficient. Therefore we sup-

pose that x is  Sj-cKF, F)-near-standard.   By Lemma 2.6 there exists an
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x" £ Ens )  such that x'"(x) ~ x'"(x ") for all x'" £ F'(Sj)'.   This implies  x" be-

longs to the weak closure of A   in   F'(Sj) and thus to the closure of its convex

hull.   Hence given S £ S,   there is a point x belonging to the convex hull of  A

such that   \fix) - x"(f)\ < 1   for all / £ S.   Therefore   |/(x - x)\ < 1   for all / 6 5.

2.10. Theorem.    Let A  be a subset of E.   If A   is  Gj-o\E, F)-compacl and

the closed convex hull of A   in  E(Q )  is complete, then A   is relatively  oiE, F)-

compact.

Proof.    By Lemma 2.9 given a point x £ *A  and a set  S £ G    there is a

point xiS) belonging to the convex hull of A   such that   \fixiS) - x)| < 1  for all

f £ S.   Thus  \x(S)\   is a Cauchy net in the convex hull of A   (where the sets  \S\

ate ordered by containment).    By the completeness assumption  ¡x(S)i has a limit

x which must be the standard part of x in the  oiE, F)-topology.   By [8, p. 65]  A

is relatively  er(F, F)-compact.

We comment that it is a simple consequence of Lemma 2.9 and the proof of

Theorem 2.2 that, when defining G -cKF, F)-compactness we may require that the

finite subset  \x   , • • • , x   S of Definition 1.1, be chosen in the convex hull of A.

Before we leave this section we wish to make some final observations.     Sup-

pose we introduce a locally convex topology on   E  and consider a family  6 of

bounded subsets of  F    which we assume cover  F .   Let  F = E(6)   and let  G.  =

6,  the family of equicontinuous subsets of  F.   In case the  S-topology is compatible

with the duality (F, E ) we have as a consequence of Theorem 2.7 a similar

result where  F (6 ) is replaced by  E"(G).   Indeed, a similar substitution exists

if G is a family of strongly bounded sets (so that the S-topology on  F     is a lin-

ear topology).   We state this result as a theorem but as we do not use this fact

directly later we do not generalize our earlier proof.

2.11. Theorem.    Suppose  E  is a LCTVS and that  S is a family of strongly

bounded subsets of E'.   Then A   is  G-cr(F, Ei<3)')-compact if and only if A   is

relatively weakly compact in  E   (G).

3.   Eberlein s theorem.    The main purpose of this section is to give a non-

standard ptoof of Theorem 3.2.   From this result we derive Eberlein's theorem.

We suppose again that  F  is a LCTVS and, as in the previous section,  S denotes

a family of  oiE , F)-bounded subsets of  E' unless the contrary is stated.   We

use  H to denote  F(S) and if  C is a subset of  F  then   C1 denotes   ¡/ £ FA :

fix) = 0 whenver x £ Ci-

3.1.   Lemma.    Let  E be a LCTVS and suppose that x   is a bounded point in

*E(6).   Then x  is  <5-oiE, E(G)')-near-standard if and only if, for each S £ S,

there is a finite subset   C(S)  of E  such that for each f £ CiS)X O S,  /(x) < 1.
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Proof.   The necessity of the condition is clear.   It therefore only remains to

prove the sufficiency of the condition.   As  x is bounded in  H we can define, as

in Lemma 2.6, x" £ H" by x "(/) = °[/(x)]   for all f £ H'.   We claim that x" £ H,_

the closure of H in H "(6), and establish this claim by contradiction.   If x    4 H

the separation theorem [10, p. 65] implies there is a continuous functional x    c

H"(6)'  and real number c  such that  x"\H) < c - 1 < c < x ix ),  in other words,

such that x'"'\H) = 0 and x'"(x") > 1.   As x'" £ H"iQ)', x" is bounded on a 0-neigh-

bourhood on  H (6)  [10, p. 74] and hence we may assume  x    is bounded by less

than unity on a polar  S° in  H    of a set S £ G.   It follows by Helly's theorem

(see [5, Problem 16H, p. 151]) that there is an / £ S such that x'"(x") = x"(/) and

such that fix) = 0 for every x £ CiS).   But then fix) > l_and / £ C(s)XCi   5.

This is a contradiction and so  x    £ H.   But then  x is  Q-oiE, F(G) )-near-stand-

ard.   For suppose  S £ 6,  then there is an x  belonging to  H  such that   |x  (/) —

/(x)| < 1   for all f £ S.   But then   |/(x - x)| < 1   for all f £ S.

3.2.   Theorem.   Let  E be a LCTVS and let A  be a subset of E.   If A  is

relatively countably weakly compact in H (G) then the  oiE, E(G) )-closure of A

is Q-oiE, FÍO) )-compact.

Proof.   Let A  denote the closure of A  in the  oiE, F(6) )-topology.   Then

A  is bounded in E(6) so that, if x £ *A , x is a bounded point in *F(G).   Let

us suppose A  is not 6-a(F, F(6) )-compact.   Then by Theorem 2.2 and Lemma

3.1 for some x £ *A   there is a set S £ S such that for each finite set C of E

there is an / £ CL Ct S  such that /(x) > 1.

We construct three sequences  ¡x S C A, ¡y   S C A  and \f  \ C S in the follow-
n * n ' n

ing manner.   We choose xQ = y Q arbitrarily in A,  then fQ £ S such that I Ay A =

0 and /0(x) > 1.   Now the statement

3xix £Ä A f0ix) > 1)

holds in  *M  (for x  satisfies both conditions), and so it is true in  M.   Hence

there is an xx £ A such that f'Q(x x) > 1.   As xx £ A  there exists yx £ A  such

that  |/0(*j — y j )| < M-   Suppose now that we have chosen y k, x,   for k = 0, 1,

• • • , tz - 1, and /   for /' = 0, 1, • • -, 72 - 2  satisfying

/;.(y.) = 0 and /.(x)> 1,  z' = 0, 1, ••.,;,

/;(yA)> 1, 0</<*<«-l,

|/.(y.-*.)| <& /=o, 1, ...,z-l.

Then we choose f £ S  such that /     . (y.) = 0 and /     ,(x) > 1,  i = 0, 1, • • • ,
TZ — 1 '72— 1        Z ' 77 — 1 7 '        '

« — 1.   The abbreviated statement

3x((x £ Ä) A (/.U) > 1,   z = 0, 1, . . . , n - 1))
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is true in   *M  (for again x satisfies these conditions) and so it is true in  M.

This means we can choose  x    £ A   such that f Ax  ) > 1,   0 < i < n,  and in turn

y    £ A  such that   |/, (x    - y  )| < A,   0 < j < n.   Therefore we can choose sequences

¡y   S in  A,  ¡/   ! in  S satisfying / (y.) = 0 if tz > z, / (y .) > A if " < i-   As  A   is
j n ?    i n j     o   / n j 2 —     — n     i

relatively countably weakly compact in  H  (S),  ¡y   ! has a weak limit point x

in   H"(S).   Subsequently,  f Ay A - *"(/.) > M,   0 < z < k.   Now, because  S° is a

O-neighbourhood in  H  (S),  the Banach-Alaoglu theorem implies  S° is

oiH '(S) , W")-compact.   Consequently  ¡/, S has a limit point x" in the

a(F  (S) , zV")-topology.   But then  x"'(y.) - x'"(x ) > A,  >' = 1, 2, • • • ,  contradicting

the assumption that  x    is a weak limit point of  ¡y   S  in  H (S).

If S is a family of strongly bounded subsets of  E    we may replace  H  (S)

by F (S) (cf. Theorems 2.7 and 2.11).   As the proof is a straightforward develop-

ment of the above proof we omit it.

3.3. Theorem.    Suppose  S is a family of strongly bounded subsets of E .

If A  is relatively countably weakly compact in  E  (S),  then the  oiE, £(S) )-clo-

sure of A  is S-<t(E, Fis) )-compact.

3.4. Corollary (Eberlein's theorem).    Let  E be a LCTVS and let  A   be a

subset of E.   If A   is relatively countably weakly compact then A   is nearly

weakly compact.   Furthermore, if the closed convex hull of A   is complete in the

Mackey topology, then A  is relatively weakly compact.

Proof.   By Theorem 3.2  A  is nearly weakly compact.   The end remark is a

consequence of Theorem 2.10.

3-5.   Remarks.    Eberlein's theorem in its general context was first estab-

lished by Grothendieck [3].   We comment, too, that Theorem 2.7 ensures that the

converse of Theorem 3.2 holds.   It would be interesting to obtain the natural

generalization of Krelh's theorem by nonstandard methods.  We give the result

here as a corollary to Krefn's theorem and Theorem 2.7,

3.6.   Corollary.    Let  E  be a LCTVS and A  be a subset of E.   If A   is S-

oiE, F(S) )-compact then its convex hull is also  S-ct(F, Ei&>')-compact.

Prool.   Suppose  ß   is the convex hull of A.   Since every Cauchy net from

B in  H (S) has a limit point the closure of  ß  is complete.   As   A   is   S-

oiE, F(S) )-compact  A   is relatively weakly compact by Theorem 2.7.   Therefore

Kreïn's theorem ensures that  B  is relatively weakly compact in   W"(S) and con-

sequently  B   is  Q-oiE, F(S) )-compact using Theorem 2.7 once more.

Finally we note the following result which is contained in the proof of The-

orem 3.2 (cf. Condition 9 [4]).
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3.7. Theorem. Let E be a LCTVS and let A be a subset of E. Then A is

not G-oiE, Ei®')-compact if and only if there exists a sequence \y \ in A and a

sequence ¡/ S in a set S £ S such that f (y.) = 0 if n > i, f iy.) > r if n < i, for

some positive   r.

4.   Generalizations of semireflexive spaces.   We intend now to consider a

class of generalizations of semireflexive spaces.   We find again that nonstandard

techniques are helpful in the investigation of these properties.   Before we con-

sider these generalizations though we prove a nonstandard variant of Helly's the-

orem [12, p. IO3].

4.1. Lemma.   Let (E, F) be a pairing, let  </> £ F, and let  B be a circled,

convex, oiE, F)-bounded subset of E such that  </>  is bounded by   1   on B°.   Then

there exists a positive infinitesimal 8 and x £ (l + 8)*B  such that  (/>(/) = fix)

for all f £ F.

Proof.    By Helly's theorem [5, Problem 16H, p. 151] for each finite dimen-

sional subspace  S of  F   and each real r > 0 the set  GiS, r) = ¡x e E: x e(l + r)S

and q>if) = fix)   for all / £ S\   is  nonempty.     Further the family   G   of all

such sets has the finite intersection property.   Let  x belong to the monad of  G.

Then  cpif) = fix) fot all / £ F.   Further  \0 < 8 £ *R: x £ il + z5)*ßS is internal

and contains the positive real numbers.   Thus  x £ (l + <5)*B  for some positive

infinitesimal  8.

Having established Lemma 4.1 we now assume that  S denotes a covering of

F    by strongly bounded subsets which satisfy the conditions (I) and (II) stated

in §2:   thus the polars of S° of the sets  S £ S form a basis of  0-neighbourhoods

in E  .   Initially we do not assume that the S-topology on F  is consistent with

the duality  (F, F ').

4.2. Definition.   Let  F be a LCTVS.   We say F is  S-semireflexive if F is

dense in  E (S).

4.3. Theorem.   Let E  be a LCTVS.   Then E  is  Q-semireflexive if and

only if each bounded set of E  is  Ç>oiE, E )-compact.

Proof.   Suppose first that  F  is  S-semireflexive and let  ß  be a bounded set

of E.   For an arbitrary x £ *B  it is sufficient, by Theorem 2.2, to show that  x

is Q-oiE, F')-near-standard.   We define  x" £ E" by

x"(f) = °[/(x)]        for all / £ E'.

Now let  S £ S.   By assumption there exists an  x e E  such that   |/(x) - x"(/)| < 1

for   all   f   £   S.   But this implies that  |/(x) - f(x)\ < 1  for all / £ S, and conse-

quently that x is   (AoiE, E )-near-standard.
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Conversely, let us suppose each bounded set of  F  is  S-ez(F, F )-compact.

Accordingly, each bounded point  x £ *E  is  <B-oiE, E )-near-standard.   Consider

an arbitrary element  x" of  E ".   By Lemma 4.1 there exists a bounded point x £

*F, such that fix) = x"if) for all / e E'.   Let S £ S.   As x is A-oiE, E')-near-

standatd there exists an x £ E  such that   )/(x) - /(x)| < 1   for all f £ S.   This

implies that  |/(x) - x  (/)| < 1  for all f £S .   Therefore, as   S was chosen arbitrarily,

and the family of polars  \S°: S £ Si forms a basis of O-neighbourhoods of  F  (S),

E  is dense in  F  (S).

Suppose now that the S-topology on  £ is consistent with duality (E, E ).

Corollary 2.8 then implies that S-ct(E, E )-compact sets are S-a(£, E )-compact.

It is, therefore, an easy consequence of Lemma 2.9 that if  E is S-semireflexive

and x    £ F    we can choose a bounded set ¡x(S)S in   F convergent to x    in the

Stopology.   It follows that if  E  is   Ssemireflexive and quasi-complete in the  6-

topology then  F  is semireflexive.   Indeed it is true that if the quasi-completion

of E(S) is semireflexive then  F  is  S-semireflexive.   The converse is true if £

is distinguished.

4.4. Theorem.   Suppose the LCTVS E  is distinguished.   Then E  is  Q-semi-

reflexive if and only if the quasi-completion of F(S)  is semireflexive.

Proof.    Let  E denote the quasi-completion of  F(S) and assume   E  is semi-

reflexive.   Then since  E    C F     it follows that  F is semireflexive.   We next

prove the necessity of the condition.   Note first that as  F  is distinguished  F

is the quasi-completion of  F   [6, p. 306J.   Therefore, since   E  is   S-semireflexive,

F    is the quasi-completion of  E(S).   Furthermore the strong topologies   /HF', F)

and  /3(F , F   ) are identical on  F    for  F    is barrelled [6, p. 306].   Thus   F" is

semireflexive establishing that the quasi-completion of E(S)  is semireflexive.

Let  S be a subset of F    and   F be a subspace of F .   Suppose the set of

restrictions of functionals in  S to  F  is denoted by  S   .   Then the  S-topology on

F  induces a topology on  F which is the  S,,-topology, where  Sp = ¡5„:  S £ Si.

If  F  is  SF-semireflexive we agree to say that  F  is   S-semireflexive.   With this

notation we prove the following generalization of a result of Fleming [2, Theorem

4.1].

4.5. Theorem.    Let  E be a LCTVS.   Then E   is Q-semireflexive if and only

if every separable subspace is Grsemireflexive.

Proof.   We prove the necessity of the condition first.   Suppose that   F  is any

subspace of  E.   Let  ß  be a bounded set in   F and let x £ *B.   As F   is  S-

semireflexive  x  is  A-oiE , E')-near-standard and so, by Lemma 2.9, for each S eS

there  is  a point   x   belonging  to  the  convex  hull  of   B   such  that   |/(x - x)| < 1
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for all j £ S.   This implies that x is  Qp-oiF, F')-near-standard so that  B  is  Sp-

oiF, F')-compact.   That  F is  S-semireflexive therefore follows by Theorem 4.3.

Next we prove the sufficiency of the condition.   Suppose in fact that  F  is

not S-semireflexive.   Then there is a bounded subset  ß  of  F which is not  S-

oiE, F')-compact.   Thus Theorem 3.2 implies there is a sequence  ¡x^S in  B  such

that ¡x   S has no weak limit point in E"(S).   Let  F be the linear span of ¡x^S.

Then  F  is a separable space and  \x  S is a bounded sequence in  F.   Suppose

that ¡x   ! has a weak limit point y    in  F  (S).   We define an element x    £ E     by

x"if) a y"if/F)        for all  / £ E'.

It follows that x" is a weak limit point of ¡x   ¡  in  F  (S), which is a contradic-

tion.

If S generates the Mackey topology the notion of S-semireflexivity is of

special interest.

4.6. Definition. Let S be the family of circled, convex, oiE , F)-compact

subsets of E .   If F is  S-semireflexive we sáy E  is nearly semireflexive.

As a consequence of Theorem 4.5 we have the following.

4.7. Corollary. Let E be a LCTVS and suppose that E is quasi-complete

in the Mackey topology. Then E is semireflexive if and only if each separable

subspace is nearly semireflexive.

Proof.   The necessity of the condition is obvious.   The sufficiency is an im-

mediate consequence of Theorem 4.5 and the comment preceding Theorem 4.4.

Our next result provides examples of nearly semireflexive spaces.   Before

stating it we need recall that a Banach space  X is said to be almost reflexive

[7] if every bounded sequence contains a weak Cauchy subsequence.   Also here

KiX) is used to denote the weak* sequential closure of  X  in  X"   (K(X) is some-

times termed the Baire subspace of class one).

4.8. Proposition.    Let  X  be an almost reflexive Banach space.   Then  KiX)

equipped with the  X -topology is nearly semireflexive.

Proof.    Let F denote («(X),  oÍKÍX), X')).   It suffices by Theorem 4.3 to

show that each bounded set in  F  is nearly weakly compact.   If B  is such a set

it is bounded in the norm topology on   KiX) by the uniform boundedness principle.

Consequently there exists a bounded set A   in  X  such that B  is contained in

the closure of A  considered as a subset of E.   Now  A  is weakly conditionally

sequentially compact, so that A  is a weakly sequentially compact subset in F.

Corollary 3.4 implies that B  is nearly weakly compact which establishes the

result.
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4.9. Example.   We refer the reader to Day [l, p. 28] for the basic properties

of the following spaces.   Let  T be an arbitrary set and let

zzz(r) be the space of all bounded real functions on T with norm defined by

||x"|| = sup!|x"(y)|: y e F\,

m AT) be the subspace of all those  x" in rrz(r) which vanish except on a

countable set, and

/,(D be the space of real functions / on  y for which  ||/|| = 2y \fiy)\ < °°.

If E  denotes  m AD with the   / (D-topology  E  is nearly semireflexive by

Proposition 4.8 since  c0(T) is almost reflexive.   However, if T is uncountable,

E  is not semireflexive since  E „ = I AT) so that  F    = 7zz(r).   On the other hand

if G is a separable subspace of E the set \y £ T: x  (y) 4- 0 for some x    £ Gl

is countable.    From this observation it is an easy consequence that a closed

separable subspace of  F  is quasi-complete and hence semireflexive.   This ex-

ample, together with our previous results, clarifies the comment made by Fleming

after the proof of his Theorem 4..1 [2, p.77].

The following is a useful characterization of nearly semireflexive spaces.

4.10. Theorem.    Let  E  be a LCTVS.   Then  E  is nearly semireflexive if

and only if the topology  riE  , E) coincides on  E with the topology  riE, E ).

Proof.    Let us suppose firstly that  E  is nearly semireflexive.   Then every

circled, convex,  oiE , £)-compact set S   is  oiE , E  )-compact and the topologies

are therefore equivalent.   Conversely, we know that  E     is obtained ftom  F  by

taking the   oiE   , E )-closure points of the bounded sets in  F.   Since these can

be taken to be circled and convex it is sufficient to consider the  oiE  , E )-clo-

sure points.   But by assumption this implies that   F  is nearly semireflexive.

So far we have only considered generalizations of semireflexivity.   There

is a natural generalization of reflexivity too.

4.11. Definition. Let £ be a LCTVS. We say F is nearly reflexive if F

is nearly semireflexive and F induces the topology on £; i.e., if £ is nearly

semireflexive and  £ is infrabarrelled (see [10, p. 144]).

It is possible to extend a number of results using this definition. We prove

one here.

4.12. Theorem.    Suppose the strong dual of a LCTVS  £  is semireflexive.

Then  E    is nearly reflexive.

Proof.    Let  ß  be a strongly bounded set in  E'.   It follows from the semire-

flexivity of  Efl  that  ß  is compact.   This implies   £   is infrabarrelled.   We com-

plete the proof once we show £   is nearly semireflexive.   Suppose  S is a circled,

convex  oiE , E)-compact set in  £',  then, as   S  is strongly bounded,   S is

oiE , E  )-compact.   Therefore,   F  is nearly semireflexive by Theorem 4.10.
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