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THE STRUCTURE OF DEDEKIND CARDINALS

BY

ERIK ELLENTUCKi1)

ABSTRACT.   Semantic criteria are given for provability in set theory with-

out the axiom of choice of positive sentences about the Dedekind cardinals.

These criteria suggest that Dedekind cardinals (as well as general cardinals)

have an internal structure.

1.  Introduction.   Let  a> = the nonnegative integers, A = the Dedekind

cardinals, and   ZF    = set theory with the axiom of choice replaced by the axiom

of choice for sets of finite sets.   For any class   A  let  X"^  be the «-fold direct

power of A.   We first describe a language   L (CN) suitable for discussing Dede-

kind cardinals.   The basic symbols of   L(CN) consist of individual variables

xQ, x     ••• ; for each  n < co  an  almost  combinatorial   /: X" &> —► <u, a functor

/ ; for each  R Ç X" &>, a predicate   R ; the binary predicate  =; and the usual

first order connectives and quantifiers.    Terms are built up from variables and

functors by composition.   If  rQ, . . . , r _ .   are terms and   R C X" <u, then  rQ = r.

and  R (rQ, ■ ■ . , r     ,) are atomic formulas.   The rest of the definition of formula

is standard.    L (CN) has the obvious interpretation in  co and is interpreted in  A

by letting /', R   denote /», R^ the canonical extensions as defined in DJ.   We

shall use  (=  for the satisfaction relation; thus  A t= 21 will mean that the sentence

21 is true in  A .   A difficulty with this notion is that in some of our applications

A will be a class and a truth definition is not available.   If this is the case we

replace  A N 21 by   2I¿, the relativization of   21 to  A.   In general we shall make

no distinction between satisfaction and relativization because we are dealing

with one formula at a time.

Let  (S, <) be the rationals with their usual ordering and let   P J.S) be the

set of all finite subsets of  S.   We say that a set  R C X <u is cofinite if there is

a finite set  a C co such that   X   ico - a) C R.   Let  E,   be the filter of cofinite
k - k

subsets of   X  <u.    |a|  will denote the cardinality of  fl.   For any function

/: X  a» —> <i>  let f/F,  be that element in the reduced product  cüx w/F.   that
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corresponds to  /.   For each  A £ P JA) let  DA = \(A, //Eui+1)| / is an   \A\ +

1-aty eventually combinatorial function!.   Now suppose   A C B  £ P J/S).   We are

going to define a map  H _ : X'    '     &> —► X'    '     co.   First wtite  A  and   B  in

increasing order as   A = [a     . ..    a       A, an < • . • < a       ,,B = [¿>n, ■ ■ ■ , b        |
£> 0' m—1   '      0 m—1' 0' '     «— 1   '

b. < • ■ ■ < b   _..   Let  zz .   be a function with domain   ttz and, for   i < m,   uAi) is

the  ;'  satisfying  a. = b ..   Now let  x = (xQ,- ■■ ,x ) £ X"    w and define   Eß(x) =

(v0, ■ • -,, ym) where  y0'= ««(0) + S[x.| « < zz^(0)C y; = ^(/) - ^(; - 1) - 1 +

%{x.\ uBAij - 1) < i < ^(;)S for  0 < / < ttz, and  yn = n - u^im - 1) - 1 +

2{x¿| zz/1(ttz - 1) < z < Tzj.   With   HB we associate a mapping   zr^ : DA —> Dß  by

^U, f/Fm+x) = iB, /°f/£/FB + 1).   Thus the family  {DA| A  e PjS)| and

|z7. | A C B  e Pu(5)| is a directed system of algebras.   Finally form the direct

limit  D  of this system.   Now there is a natural way to extend each re-ary almost

combinatorial function  / and   R C X"w  to an  /p: X "^ —> D  and an   RD C X"^-

A complete description, all computations included, can be found in [4] and [6].

Thus we can interpret   L (C/V) in   D.   Our main results concern the relationship

between the theories of  A and   D.   As we shall see below these theories agree for

a fairly comprehensive class of sentences.

Let  21 be a sentence of   L (C/V).   By ZEP    we mean   ZF    enriched by the con-

stants  / , R    for each  / , R   occurring in   21 and having additional axioms diagram-

ing  /, R.   We do not spell out what is added, but whenever the teadet sees the sym-

bol  "ZFR   "  he is to understand that our theory diagrams the constants in any of

the finitely many   21 £ L (CN) under consideration.   Let   L'(ZF ) be the language

of set theory.   A sentence   21 e L (ZF ) is said to be an cú-consequence of ZF     if

21 is true in every aj-model of  ZF  , i.e., models in which the integers are standard.

It is a ß-consequence of  ZF     if it is ttue in every /3-model of  ZF   , i.e., &>-models

which are absolute for well-founded relations   R C X (U-   ^e denote these notions

of consequence by pw and  \- n   (cf. [8] for further information on  co and /3-models).

For the purposes of this paper we will assume that any set  s  can be extended to a

transitive model of ZF.   Not only is this obviously true, but it is also a theorem of

impredicative class-set theory.

Theorem 1.   If A. £ L (CN) is a prenex conjunctive normal form sentence which

is either universal or positive then ZFR    (- o 21^ if and only if D N 21.

Let  o>*= the rational integers (positive, negative, zero) and let  A = the

Dedekind integets (the difference structure over  A).   We describe a language

L (CN) suitable for discussing Dedekind integers.   The basic symbols and formation

rules of   L  (C/V) are the same as those of  L (CN) except for the choice of functors

and predicates.    L (CN) contains, for each  n < co and function  /: X"w*—> &)*, a

functor  / , and, for each   R Ç \na>*, a predicate   R .   Equality is included.
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L  (C/V) has the obvious interpretation in  a>* and is interpreted in   A    by letting

f', R' denote  /    , R   _, the canonical extensions as defined in [4].
a *       A

Let  D    be the full reduced product of unary functions  g : oj —► a>* modulo the

cofinite subsets of  <d.   / and   R have natural extensions to  D    (cf. [4]).   Thus we

can interpret   L  (CN) in   D*.   Say that a prenex conjunctive normal form sentence

is disjunctive if its matrix consists of a single conjunct.

Theorem 2.   //  21 £ L  (CN)  is a prenex conjunctive normal form sentence

which is either universal, positive, or disjunctive then ZFR    \- w J       if and only

if D*V 21.

Actually in one direction no restriction need be placed on   21.   Namely, for

any sentence   21 e L   (C/V) we have the implication ZFR   \-wA       implies   D    P 21.

However the converse is false.   Consider a sentence   8 which says that the

Boolean algebta of idempotents is atomless (this can be formulated in   L   (C/V)).

We easily see that  D   P 33, however  33.^  is not a theorem of  ZFR    because if it

were we could add the full axiom of choice to ZFR   , force   A   = <u*  and conclude

that  a>* (= 8 which is   clearly false.    By formalizing this argument we can show

that ZEP    Vœ 21       implies  co* N 21.   A reasonable conjecture might be that  co* 1= 21

and  D   MI implies   ZFR    h^ 21     .   At the moment this question is open.

Theorem 2 suggests that we try to extend Theorem 1 to disjunctive sentences.

Whether this can or cannot be done is also an open problem.

In a forthcoming paper we extend Theorem 1 to the general cardinals.   This

matetial is not included hete because most of the work involves the development

of a manageable theory of almost combinatorial seties, a project which is more

algebraic than set theoretic.   The final results however are in the vein of Theorem 1.

We have used the word "structure" in the title of this paper for the following

reason.   Let   21 e L (CA/) be a positive sentence.   Suppose the prefix of  21 con-

tains   n existential quantifiers and that   21 (/'    ■ ■ ■ , f   _ x) is the result of replac-

ing these quantifiers by the  /.   as Skolem functors.    By Theorem 1 we have

ZFR    ho 2IA iff  D (= 21 iff there exist almost combinatorial functions  f0, ■ - - ,f  _.

suchthat  D t=2I(/¿,...,/^_1)iff ZFR0 h ß (3/0, •••,/„_,   almost combinatorial)

<J(/0' " " " » f„-i'&-   The second and third equivalence will occur in the proof of

Theorem 1.   Thus if  21A is a theorem then we can actually find these Skolem

functions which make   21 (fQ,- •• >/'    i)* provable from some enriched set of

axioms.   This imposes a definite structure on the cardinals which   21 ̂ asserts to

exist.   For example if  8 is  (Vx)(3y)(x(x + 1) = 2y) then ZE° h 8A by a standard

set theoretic proof and hence ZF    h x (x + 1 )/2  is almost combinatorial.   This

certainly puts structure on the value that   y will get in any model of ZF  .
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2.   Strong set theory.    We describe a strong set theory ST.   The language of

ST,   L(ST), consists of the language  L(ZF°)   together with unary functors s A ),

s A ), s A ), K. ., a class symbol  K, and a binary predicate -< .   In stating the

axioms of ST we use the defined notions On =  the class of all ordinals, P   (A) =
' Co

the class of all finite subsets of A.   We use  8f and pf for domain and range of

the function /.   All other notation is standard.   The axioms of ST consist of

(1) The axioms of ZE    where all the symbols of L(ST). may occur in the

axiom of replacement.

(2) ■<   is a linear ordering of the universe such that if  a £ On  then   K    is a

nonempty set and the restriction of   -<  to  K    is a dense unbordered ordering.

(3) For all a, ß £ On  and x, y  if a<ß/\x£Ka/\y   £ K „  then  x  <. y.

(4) K = UaeOn   Ka and if*. ye^Ax^y  then  x n y = 0 .

(5) S0(x) £ PJ\JK),   s xix) £ PjK),   s0ix) = |*| i3y)y £ sQix) f\ y e z £ K\,

and sQ(x) C s Ax).

(6) If x  £y £ K  then  sQ(x) = \x\,   s x(x) = !y|,   sQ(y) = 0,   s {(y) = \y\.   If

a £ On  and / < 2 then s .(a) = s .(Kj = 0.

(7) If y  is finite and / <  2 then s .(y) =  (J \s .(x) \ x £ y J.

(8) If y  is finite then the restriction of   -<   to the class  [x| s Ax) u s Àx) CyS

is a well ordering.

(9) Schema: if cbiy, x , . • < , x      ,)  is a formula with free variables indicated

and / < 2 then the closure of (3! z)0(z, x , . . . , x   _  ) f\ cbiy, x  , • ■ • , x   _ A—>

s iy) CM.    six)  is an axiom.
7 J     —   ^*l<n   j     i

In order to state the rest of our axioms we need

Definition,    aut(zr) iff Z7 is a finite function   A 5zt ij pz7 C K A tt is   -<   order

preserving A   if x £ 8tt D K a then  tt(x) £ Ka.

Definition.   acp(z7,x) iff aut(zT) A s j(x) C 8tt A sQ(x)  is left pointwise fixed by 77.

(10) The action of tt satisfying  aut(zr)  is extended to  x  satisfying acp(zr, x).

(11) If x £ y £ K and aut (77)  then  acp(z7, y) iff y £ 8n and in this case

rriy) has its natural value, acp(rr, x) iff y e 8rr A ZT(y) = y  and in this case

tt(x) = x.   If a £ On  and aut (77) then acp(zr, a)Aacp(rz, Kj A nia) = a A triK^

= K .
a

(12).   If acp(z7, y)   and (V* ey)acp(z7, x)  then  Z7(y) = í?7(x)| x £y\.

(13) If acp(zT, x) A aut(Tr) f\pnC8n A tt   leaves  s Ax) pointwise fixed

then  acpirzV, x) A acp(zr , tt(x)) A (77 77)(x) = 77 (wW).

(14) If acp(77, x)  and s Ax)  is left pointwise fixed by  77 then  77W = x.

(15) Schema: if cbix^, • • • , x  _ ,)  is á formula with free variables indicated

then the closure of  Af«.    acpU, x) f\ (bixQ, ■ ■ ■ , x^_ x) —. cbinix^, • • •, nixn_ j))

is an axiom.
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This concludes our list of axioms.   As the reader may have guessed, we are

dealing with a Cohen extension where we have adjoined sets of ordinals, and sets

of these sets.   This accounts for the functors s     and s.  giving two kinds of sup-

port to elements of our universe.   In the final section of this paper we prove

Theorem 3. // M is a countable transitive model of ZF for which there is a

definable well ordering then M has a transitive extension N which is a model of

ST, having the same ordinals and well-orderable cardinals as  M.

We introduce the following notation.   For each n < at, an  n-tuple  x =

(x , . . ., x   _ .)  is a function with  <5x = n.    For any class A   we let  X"A = the

class of all rz-tuples x with  px C A.    V is the class of all sets and  Q is the

class of all finite sets.   We let  |x|   be the cardinal number of x  and write x -v y

fot x is equipollent with y.   More generally p : x ~ y  will mean that pisa one-

one function mapping x  onto y.   When referring to elements of  X"V  we under-

stand this notation as being used componentwise.   Thus if x, y £ X"^ then

|*| . = |x .|   for  i < n, and * Ç y  if x . C y . for  i < n.   It a £ On  and  a £ Q we let

Kj.a)  be the finite sequence of open intervals with respect to   ^  whose union is

Ka- a and which is determined by  K a H a.   The order of these intervals in  K (a)

agrees with the -< ordering.   If s e P J^On)  then  K id)  is the concatenation of

the  Ka(fl)  for  a £ s where again the order of the intervals in  K id)  agrees with

the -<   ordering.   We leave unexplained all the notation connected with combina-

torial operators and frames as applied to set theory.   The  reader will find a more

than adequate explanation in [5].   Throughout the rest of this section we work in

the theory  ST.

Lemma 1.   // a £ On  then  Ka is an infinite Dedekind set.

Proof.    By (2), Ka is infinite.   Assume that /: a> —» Ka.   It x £ pf then x =

fin)  for some n < cú.   Then  \x\ = s Xx) C s xif) U s ¡in) = s xif) £ P J<K)  by (6),

(9) and (5).   Hence pf C s x(f)  is finite.   But this implies that Ka is Dedekind.

Q.E.D.

Lemma 2.   Let  F C Xm+"Q  be a frame, y £ XmV.   s £ P JOn), and a £ Q

such that  K id) £ X"V.    If (y.  K (fl))   is attainable from  F iin symbols

iy, R la)) £ QiF))  then there exists a b £ X"Q.   b Ç K ia), such that for all

d £ X"Q,   bÇd C Ksia)  implies that (y, d) £ QiF).

Proof.    Let z=Ksia)  and assume that iy, z) £ QiF).   Let  b = ibQ, • ■ •, bn_x)

where  b. = z. n (s j(F) us Ay)).   For any d £ X "Q with  b C d C z let  e be the

last n components of C Jy, d).   Consider any  j < n  and x £ e ..   Now e C z  and
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hence   \x\ = s x(x) Ç s x(e .) C s x(e) C s X(F) u sx(y) \j s x(d) by (6), (7) and (9).   Now

x £ z . and hence  x e b. or  x e s x(d).   But  s^tí") = (J¿      sjW¿) by (7) so x e fl\.

Thus  fl1 = e and we conclude that   Cp(y, d) = (y, d) £ u (F).    Q.E.D.

Corollary 1.    Let  R Ç Xm+"w, y £ XmA,  s £ PjjOn), and a £ Q such that

Ksia) £ X"V-   If iy. \«sia)\) e «A then 'z e X"^| (y, z) e R^S ¿s a cofinite set.

Corollary 2.   Leí  P   C Xm+"w /or i < k and y £ XmA.   // (Vz e X"A)

V,-<¿(y» z) e ^¿¿> r^ew '¿ere z's fl   ; < & szzc¿ ¿¿fl/   [z  €X"wKy» z) .e R  A   is a

cofinite set.

Corollary 3.   Let  R. Ç X™*""* for  i < k and y £ XmA*.   // (V* e X*A*)

\Ji<k(y, z) e P,A*. '¿era ¿¿ere z's a j < k such that  (Vz e X"w*)(y< z) e P ,  „ .

Corollary 4.    The Boolean algebra of idempotent elements in  A    is atomless

(cf. [7]).

Proof.   Define a function   / on   X2«* by  /(*, 2y) = x and  f(x, 2y + 1) = 0.

The following formulas about / are valid in  co*.   (i)  x    = x —> ¡(x, y)   = f(x, y),

(ii) x2 = * — /(x, y) . x =/(x, y),(iii) /(x, 2y) = 0 — x = 0, and (iv) / (*, 2y +1)

= x —» x = 0.   These ate Horn sentences and hence by Theorem 2 of [4] are valid

in A .   Now let   zz £ A     be an idempotent which differs from  0.   For any  y £ A , (i)

implies that /¿* (u, y)  is an idempotent and (ii) implies that     0 < /A*(zz, y) < zz in the

Boolean algebra ordering.   Now suppose that  (Vy e A )f^Au, y) = 0 V /^*("»y) = "•

Corollary 3 then implies that eithet   (Vy £ (u*)/A*(#, y) = 0 or  (Vy £ a>*)f^*iu, y) =zz.

But (iii) and (iv) in both cases give   zz = 0, a contradiction.   Thus there is a  yeA

such that 0 < f&*(u, y) < u.    Q.E.D.

Corollary 5.   For any sentence   21 £ L  (C/V),  21  *   if and only if D   1= 21.

Proof.   In [10] it is shown that the first order theory of arithmetic isolic

integers is the same as that of  D .   The only tools used in the proof are the isolic

versions of Corollary 4 above and Theorem 2 of [4].   Thus that result immediately

transfers to  A .    Q.E.D.

Lemma 3.   Assume that y £ X"V.   P Ç X"Q   is a frame, y eíf(E),  s  (y)  u

sxiF) Ç Uaes Ka where  s £ PwiOn), and  \y\ £ X"A.    Then there exist  b £ Q,

m < co with  K  ib) eX"1!/,  y   Cy and m-ary combinatorial operators d). for i < m

such that y   £ (î(E) and each y', has a representation of the form y'. ~ cb.(/C (¿)).

Proof.   Let  a = s Q(y) u sQ(F), b = s Ay) U sAF), and  y'. = {* £y\ s x(x) C
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(Ja£s Ka Asjx) Ca\.   First we show that  y' £ Q(F).   Let d £ X"Q.  d Ç y' a"d

Cp(d) = e.   Consider any   i < n,   j<2  and  x £ e ..   Then  s (x) C s .(e .) C s (e) C

s.(d) u s.(F) by (7) and (9).   But  s .(d) = (JlVn LMs'yM * erf,-l bY <7) so

sQ(x) C fl  and   S,(x)C Uaes^a-   Thus   x £ y'. and hence   Cp(d)Cy'.   But this

means that y' £ Q(F).   Let  H = \n\ aut (77) Aè C <5z7 C Uaes^a A b is left point-

wise fixed by  77Í.   Now  sn(yz') C Sj(y;') C Sj(y) u Sj(a) C Sj(y)uSj(F) = ¿ by (5),

(7) and (9).   Hence if  77 £ E then  acp (77, y ') and   77 (y '.) = y '. by (14).   If x e y .,

tt £ H and  s t(x) C §77, then  acp (77, x) because  s0(x) C fl, i.e., sQ(x) C b.   Then

77(x) e 77(y ') by (15).   For any  x, x   £ y . let x ^ x' if there is a  n £~H with

acp (77, x) such that  7r(x) = x .   Using (13) and (14) we easily show that %  is an

equivalence relation.   Let   [x] be the equivalence  class   of   x   and   let

A = |[x]| x £ y'.\.   A  is a partition of y ..   If  u £ A  and  x, x   £ u then  x   = 77(x)

for some   tt £ H with  sx(x) C S77.   But  Sj(77(x)) = 77(sj(x)) = \tt(z)\ z e Sj(x)l by

(15) and (7).   Hence if  s x(x) = s x(x') then   77 is the identity on  s x(x) so x = x

by (14).   Let   Ksib) £XmV-   For  x £ u define  /(*) = z e XmQ by  z . = s ,(x) O

K (e)..   If  x, x   e zz and  /(x) = /(x') then  s j(x) - z? = s  (x ) - b so x = x .   Thus

/ is one-one on   u.   Also note that for  x, x   £ u we have   |/(x)| = \f (x )|  com-

ponentwise.   For any set  S and   k < co let   (S/k) = the set of all  k element sub-

sets of S.   If S £ XmV and  k £ Xm<u let  (S/k) = (SQ/k0) x ■■■ x iSm_ l/kjn_ ,).

Thus if x Cu and   |/(x)| = k then  i/(x)| x £ u\ Ç iKsib)/k).   We claim that the

map is onto.   Let  z £ ÍK  ib)/k) and  x £ u.   Then there is a    tt £ H such that

77(s.(x)) = z.   But   77 (x) e zz, moreover  s Arrix)) = rris Ax)) = z.   For each  u£A

construct a map /    as above.   For each   k £ Xm<y we claim that there are at most

finitely many  u £ A  such that  zz  is mapped onto  (K  ib)/k).   For otherwise we

could find an infinite set  v Cy . and a   k £ XW(y such that distinct elements of

v belong to distinct equivalence classes, but each gets mapped to the same ele-

ment of  (K  ib)/k).   But then by (8) the resttiction of  -<  to  v is a well ordering

which contradicts the fact that y . is Dedekind.   Let  c ik) = \u £ A\f : u ~

iKsib)/k)\. Since   c ik) is finite  -<   gives it a standard well ordering and we may

construct a map /. : \Acik) ~ \c ik)\ x iK ib)/k).   If we take the   |c(zé)|  as

Stirling coefficients of an Trz-aty combinatorial function and we let   4>. be the

associated normal combinatorial operator then we can piece the various  f,

together and get  y   ~ (b (K (b)).   Q.E.D.

Consider any sentence   21 £ L (CN) which has the form  (V*0) • • • ( V*  _ 1)8

where   8 is quantifier free and is written in conjuctive normal form.   With   21 we

associate a sentence  cond (21) £ L (CN) which means when interpreted in  cu that

21 holds and whenever we specify definite integer values to replace some, but not

all, of the vatiables  x    in   8 then   8 has a Horn reduct  8   such that, subject to
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the replacement made above, the set of integers that satisfy 8 is a cofinite set.

The reader can find a precise definition of cond in [3]. For readers familiar with

the theory of isols, cond is simply the Nerode condition for the truth of universal

sentences in the isols (cf. [9]).

Lemma 4.    Let  P.CXn<y   for i<t  and let  Q. be a quantifier for i < n.   Let

21 be the sentence (Q-x.) • • < (Q      ,x  _ j)8 where  8  z's  P'n(xn, • » • , x  _ x) \f • • -

V R     i(*o> * * * » *   -A-   ^et  ^ be the result of omitting the existential quanti-

fiers from the prefix of 21 and replacing existentially quantified variables of 8

by suitably placed Skolem functors f ..   Then 21 ¿ implies that there exist almost

combinatorial functions {. such that a> |= cond (21)  where we w der stand that j.

denotes  f..' i

Proof.    Let  u= \i <n\Q. is universal!  and  e = \i < n\ Q. is existential}.

Let o Cu  and  q: a —, a>.   We construct a sequence of sets y £ X"^  as follows.

First we require that  |y| £ X"A and that  |(y0, • « ■ - y )\   satisfies the partial

formulas  (Q .. ,x ..,) • • • (0      ,x      ,)8 in A  for each  / < n.   If j £ o then  y . is
*-; + l   7 + 1 *-n-l   n—l ' ' JT

a finite set of  qij)  integers, and if j £ u - o then y. = Ka  where  a is the least

ordinal greater than each element of i<f| (3z   < /)(3x £ y )s Ax) n K, 4- 0i-   The

axiom of replacement gives us such an  a.   \y\   satisfies some disjunct of  8, say

|y|  e ^¿y   Hence   y £ Q(F)  for some P-frame F.   Let s e P J,On) be the least

set such that s xiy) \j s j(E) C (Jaes Ka  and if some y   = Ka then  a £ s.   Apply

Lemma 3 to get y' C y,  y' £ QiF),  b £ Q, K ib) £ XmK and zrz-ary combinatorial

operators  c/>. such that y . ~ c/j.(K ib)) for i < n.   It follows from the definition of

y . that (i) if i £ o then y . = y . and we may take  c/S.(x)  to have the constant value

y., (ii)if i eu-a, ytm Ka then y\= KtL^\J.Km(b)j UÍKanb).   If hii), kii)

are the indices of the first, last component of Kaib) in  K ib) then we may take

cb{x) = *¿/¿) + • • • + *£(;) + \Ka n b\, and (iii) if i £ e and / is the least element

such that  i < j £ u - o then cf> .(x)  depends only on its first h(j)  arguments.   Let

fi be the combinatorial function induced by  cb. and let fA.x) = if0¿Ax), • • •,

/(„.niW).   This gives fAi\Ksib)\) eP¿.   Define S = \x £ Xm«| fix) £ R\.   Then

by  [5],    1/^(6)1   £ S¿ so by Corollary 1 (without parameters) there is an fl =

(fl, ..., fl) e Xm« such that if fl < x e Xm<¿ then x £ S and hence /(x) £ P.

Let E = jx| x: zz - cr —► wj.   For each x £ E let pix) = z £ X"^ be defined as

follows.   If / £ u - o then  z¿(.   = x . + fl,   z . = fl in all other cases.   Let g ix) =

f.ipix)) for x £ E  and 7 < 72.   Then the g. are combinatorial functions and (i) if

j £ o then gix)  has the constant value  |y.|, (ii) if j £u-o then  g ix) = x.+■ a

constant integer, and (iii) if j £ e then gix) depends only on the restriction of

x  to  [i £ u - cr| i < j\.    We also see that gix) £ R  for all x £ E where
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gix) - ig Ax), ■ • ■ , g      Ax)).   Thus from g we can construct eventually combina-

torial Skolem functions  h . for  j £ e such that, if  R results from  R (xQ, • • ■ , x^_ j)

by replacing the variables  x . f or  ;'£« by  h. where the arguments of  h. are the

x 's  with   i£u-oAi<j, then  K  is true in  a> when sufficiently large values

are assigned to the  x.,  j £u — o, and   qij) is assigned to x.,  j £ a.   Now recall

that this whole construction was done for a specific   q.   As we vary   q the  y £

X"^ may satisfy a different disjunct of  8.   In any event we can piece together

almost combinatorial Skolem functions   h . for  i £ e such that if  8 is the result

of replacing  x.,   i' £ e, by  h . then   8 has the following property.   For every  o C u

and  o: o—> co there is a disjunct  K  of  B which holds in  co when latge enough

values ate assigned to the   *.,   j £ u - o, and   qij) is assigned to x .,   / e o.   But

this is a paraphrase of cond (21).     Q.E.D.

Proof of Theorem 1.   Let  21 £ L (C/V) be a sentence such that  D t= 21.   It is

an easy matter to check that if   21 is universal then  u> (= cond (21).   Now the latter

is a first order arithmetical condition and hence by the   «-rule  ZFR    hù)cond(2I)ùJ.

But then by Theorem 7 of [3], ZFR    (-a 21^.   Note that (i) this implication is

slightly stronger than the claim of Theotem 1, i.e., the <D-rule and not the jS-rule

is required, and (ii) the definition of  cond  used in this paper is slightly sttonger

than that of [3].   If   21 is positive, then by Lemma 4 of [6] there exist almost com-

binatorial Skolem functions such that  &) p cond (21).   Now this is a  2.   second

order arithmetical condition and hence by [8] is absolute fot /3-models.   Then
n ^

ZFR     \-n there exist almost combinatotial Skolem functions such that cond (21),,,.

ji aiiu preuicate  lugic, z.ri<

>0

By Theotem 7 of [3] and predicate logic, ZFR    f- n 2I¿.  Conversely suppose   21 e

LÍCN) and  ZFR    \-g$-&.   Start with a countable ttansitive model M  of ZF°  which

contains the functions  / and relations   P denoted by constants occurring in  21.

By looking at the submodel of sets in  M  constructible from / and   P  we may also

assume that  M meets the hypothesis of Theorem 3 so  N t= 21A.   If   21 is universal

then by Theorem 7 of [3]  we have   N f= cond (2i)w. Since   N is an cj-model and

hence absolute for first order arithmetic we get  co P cond (21).    By an easy argu-

ment this gives  D p 21.   If   21 is positive then by Lemma 4, N p there exist almost

combinatorial Skolem functions such that  cond (21)^.   By absoluteness we have

co p cond (21) and then  D p 21 and finally  D 1= 21.    Q.E.D.

Proof of Theorem 2.   Let   21 e L  (C/V) be a sentence which is either universal,

positive or disjunctive.   Then  D   p 21 iff there is a Horn reduct   21' of   21 such that

co* 1= 21' by Corollary 3 of [3].   Corollary 5 then implies that   D*F- 21 iff w* p 21'

iff ZFpOp^r * iff ZFR0 \-Jl'^ iff ZFR°h-w\*.    Q.E.D.

3.   The consistency of ST.   Let  M  be a countable transitive model of ZF

including the axiom of choice.   Assume that the following classes are definable
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in  M.   A well ordering  W of  M, functors  6. .  and  K, .  where for each  ae Ott

(superscript denotes relativization), 6    is the ath  regular cardinal and  Ka is a

set of cardinality  6 , and the   K's are pairwise disjoint, the class  K =

(J \Ka\ a £ 0/z      !, and a linear ordering -< of K  such that the restriction of -<

to  K     i.e.,  -< | K    is dense unbordered for each  a £ 0tz(     , and if*eKaAy£

K„ A a < ß then *-<y.

We define a ramified language  L (PA)  in  M.   The symbols of L ÍRA)  are

individual variables x„, x., • • • , binary predicates  e, =, connectives A, ~,

quantifiers   Va for each  a e,Onw\ and set builders  Qa for each  a € 0»(M\   We

also assume that  L (PA)  contains the following categories of individual constants

(which can be uniquely read in M):    an m for each m £ M, for each a e On     '

constants K\ cC, -< | a", K~, -<~, for each k £ Ka a.constant hA, and for each

ß <da a constant ik, ßY.   We simultaneously recursively define the terms  and

formulas of L(PA)  as well as two functions  A and  occ.   Each individual

variable  x  is a term, A(x) = 0, and occ(x) =0.   m   is a term for each m £ M,

X(m)  is the set theoretic rank of ttz, and occ (m) = 0.   If k £ Ka and ß < $    then

ik, ßY is a term, Xik, ß)   = 6a, and occ ik, ß)   = \ik, ß)\.   k" is also a term,

\(kA = 6a + I, and occ(F) = \k\.   If a £ 0n(M) then  K~ is a term, A(/Q =

r?a + 2, and occ(/C~) = 0.   -<~ is also a term, A(-<~) = da + 4, and occ(-<^) = 0.

Finally if a e 0tz(M) then  K\a/ is a term, M/ClaT) = sup[ö„+ 4| /3 < a), and

occ(K|a') =0.   -< | a" is also a term, Af —< j a") = supir?^ + 6\ ß < a\, and

occk | a") = 0.   If u, v  are terms and cb is  u e v or u = v then  ^ is a formula,

K(d}) = 1 + maxiA(zz), X(v)\, and  occ(c/>) = occ (zz) u occ(f).   If </j, if/  are formulas

then so is r/i A i/f, A(0 A z/r) = max{A(fA), A(i/>)S, and   occ(0 A ^) = occ (0)  U

occiif/) . r^ cb is also a formula, A(~ çS) = Xicb), and occU cA) = occ(<^>).   If </i is

a formula, x  is a variable, and  a £ On*    ', then (Vax)c/j is a formula, A(Va*)<£ =

max(a, A(t/j)i, and occ(Va*)ç!>= occiqA.   Finally if cb is a formula, x is a

variable,  a £ 0n{   ', and Xicb) < a then (8ax)<?J> is a term, A(8ax)cA = a, and

occ(9a*)0 = occ(c/j).   This completes our definition of  L(PA).   A constant term

is one in which no variable appears freely, and a sentence is a formula in which

no variable appears freely.   Let  T(PA)  be the class of constant terms and

S (PA)  the class of sentences.

A condition p is a set (in  M) of 5-tuples (a, k, ß, y, i)  such that (i)

a £ On{   ',  k £ Ka,   j/3, y] C da, and i < 2,  (ii) p is consistent in the sense that

(a, k, ß, y, O)  and (a, k, ß, y,  l)  cannot both belong to p, and (iii) if pa is the

set of all 5-tuples in p  that begin  with   a then   |(J{p^| ß < a\\{M) < 0a.   Let

C be the class of all conditions.   We partially order C  by inclusion and under-

stand p C a to mean that  q contains more information than p.   When we speak
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of a class of M we mean a subset of M  (not necessarily in  M), which can be

defined in  M with the aid of individuals of M as parameters.   Since   K. . and  d,

ate functors over M  it is clear that   T(PA), S (PA) and   C are classes of  M.   A

class   D C C is dense open if (i)  p £ C implies that there is a   q £ D with  p C q,

and (ii) p £ D and   p C q £ C implies that   q £ D.   A subset  G C C is called C-

generic over  M  if (i) p £ C and  p C q £ G implies that  p £ G, (ii) \p, q\ C G

implies that there is an   r £ G such that  p u g C r, and (iii)  G Ci D / 0  for every

dense open class   D  of  AL   We remark that  G will not be a class of  M.   In the

following let  G be a fixed collection which is C-generic over  M.

We inductively define a function den,-( ) whose arguments are elements of

S (PA) U T(PA).   The subscript will be omitted when it is cleat from the context.

den (m) = m for each   ttz  e M.   If  k £ Ka and  ß < da then den ik, ß)~ = \iy, i)\

Up £ G)ia, k, ß, y, z) e p].   If  k £ Ka then den (k") = ¡den ik, ßT\ß < d J.

den (/Q = [den (kA\ k £ Kj and  den i<~J -Kden kT, den í)\ \k, l\ Ç Ka A k < l\.

den (K | cf) = \iß, den K~)| /3 < ai and den « | a/) = \iß, den^)| ß < a\.   If

{zz, v\ C T(PA) then den (a £ t>) = 1   if den (zz) £ den (f), and  = 0 otherwise;

den (zz = v) = 1   if den (z/) = den (tz), and  = 0 othetwise.   If  \d), ifi\ Ç S (PA) then

den(- cb) = 1 -denicb) and den (0 A ifj) = minjden (<p), den (tff)\.   If  (Va*)0 eS(RA)

then den (Va*)<p = 1   if den <p (x/a) = 1   for every   zzeT(PA) with   A(zz)<a,and

= 0 otherwise.   Finally if (8 ax)cb £ T (PA) then den (8 a*) <p = iden iu)\ u £TiRA)

A A(zz) < a A den 0 (x/h) = 1 ¡.   Here we have used   cb ix/u) for the result of

replacing every free occurrence of  x in  cb by   u.   The structure   M [G] which we

shall henceforth call  N  is the set  |den(zz)| u £ T(RA)j.   As we vary the generic

G we get various sttuctures   M [G ].   Note that this definition of den  has not been

carried out in eithet  M or  N.

Next we define our forcing language   L (EC).   The symbols of   L (EC) are

individual variables  x     x,, • ■ • , the constants in   T(PA), binary predicates  £, =,

connectives A, ~, the quantifier V, a unary functor  K7 ., class symbols   M , K ,

and a binary predicate -<".   The formation rules of   L (EC) are those of the predi-

cate calculus.   It will be convenient to take   L (EC) as a class of  M.   Let   S iFC)

be the class of sentences of  L (EC).   For each   q> £ S iFC) we define the notion of

satisfaction in  N  (in symbols  N  p qA as follows.   If  \u, v\ C T (PA) then  N p

zz £• zz if den (zz) £ den iv), N P zz = v if den iu) = den (u), NNaEM'if  NM = m

for some   m £ M,  N p zz = K" if den (zz) = den (K^) for some   a £ OnW) with  N p a

= v,  N p * f K" if  N p zz e K~a for some   a £ On(M), and  /V p u -<" v if  N p u = k"

and  N ^ v = A for some   |z«,  i|CK with   k -< /.   Satisfaction is -then extended to

S (FC) as in ordinary model theoty.   Note that although   K, .  is being used as both

an element of  T (RA) and as a functot of   L (EC), thete will be no inconsistency

because of our definition of satisfaction.

■
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If p is a condition and  cb £ S (FC) we say that p forces cb (in symbols

p |h cb) if M[G'] p<p for every C-generic  G' over M with p £ G .   The omitted

proofs of Lemmas 1—4 below can essentially be found in [2].

Lemma 1.   // <b(xQ, • • ■ , *„_,)  is a formula of L (EC)  then \ip, uQ, • • • ,

u     ,)| p £ C A eflci u{ £ T(PA) Ap I h (b(uQ, ■ ■ • , "„_,)! ^ ö c^5 definable in M.

Lemma 2.   // <p is a sentence of L iFC), \p, q\ Ç C,  p C q, and p \Y cb then

q\r-<i>.

Lemma 3.   // <p is a sentence of L iFC) then N P <p if and only if p \\- cb for

some p £ G.

Lemma 4.   // we formulate the axioms of ZF without the axiom of choice in

LiFC), i.e., we allow the extra constants, functors and predicates of L iFC) to

appear in the axiom of replacement, then N  is a model of ZF  having the same

ordinals and well- order able cardinals as M.

Next we extend the function   occ ( ) to formulas of  L iFC).   To be precise

this should be done inductively, but it comes to the same things if we say that

occ(<p) is the union of the  occ (zz) where   zz £ T iRA) and   zz occurs in  (b.   For any

fl £ T iRA) u L iFC) let an(fl) = occ («) n (K x OnW)), aQ(ft)={k £ K\ (3/3 £ On(M))\ ik, ß) £

ff0(fl)!, and  CTj(fl) = <70(fl) u (occ (a) Q K).   Here we assume that  K is disjoint from

K xOn(   '.   Define the predicate aut (77) if  77 is a finite function A 8tt u prr Ç

K A tt is  -< order preserving  A * e 8n n Ka implies  77 (x) £ Ka.   For each  a £

T(RA) u L (FC) define  acp (77, a) if aut (77) A o-j(«) C 8tt A o0(a) is left pointwise

fixed by  77.   We extend the action of  77 satisfying aut (77) first to  u £ T(PA) satis-

fying  ox(u) C S77 and then to  cb £ L (FC) satisfying  ffj(tp) C ¿77 in the following

way.   If x is an individual variable then  77(x) = x and if   ttz e M then   77(111) = m.

n(k, ßY=(n(k),ßY, v(kA = n(kY, Tr(K"a) = K~a,  n«^) = <"a, n(K \ a ) = K \ cTand

tt(< I a") = -< I a".   „(u e v) = tt(u) S n(v), tt(u s v) = tt(u) s tt(v), n(cb A if/) =

n(<b) A 77(1», 77(- (b) = - 7r(<p), Tr(Vax)(b = (Vax)Tr((b), and   Tr(8ax)(b = (8a*)77(<b).

Thus  77 is defined on   L (RA ).   tt (u e AT) = 77 (zz) £ AT, 77 (u e KA = tt (u) e K",

n(u -<"f) = 77(u) -<Att(v), and ?7(zz = KA) = tt(u) = K^,,.   Connectives are handled

as above and  ni^fx)q> = (V*)77(cA).   Thus  77 is defined on  L (EC).   There is still one

more kind of automorphism that we need for technical reasons.   Let  Ha £ M be the

set of all permutations of 6a which lie in M.   If 77 e Ha,  k £ Ka and a £ TiRA) U

LiFC) we define  rrkia) in the following way.   77*U, ßY = ik, rriß)Y, nkih ßY =

(/, ßY if  k 4 I £ K, and 77 (f) = T for all  I £ K.    The rest of this definition is the

same as in the  aut (77) case.

If p £ C is a condition let o"0(p) = \(k, ß) | (3a, y, i)   (a, k, ß, y, i) £ p] and

let ä0(p) = \k\ (3ß)(k, ß) £ a0(p)\.   If aut (77) and 5n(p) Ç S77 let  nip) = {(a, „(k),
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ß, y, i) | (a, k, ß, y, i) £ p\.   If  77 £ Ha, k £ Ka, and ß < 9a let pk =

{(a, k, ß, y, i) I (a, k, ß, y, i) £ p\ and   p(k-ß) = \(a, k, ß, y, i) | (a, k, ß, y, i)

e pi.   Then let  nk(p) = (p - pk) U {(a, k, rr(ß), y, i) \ (a, k, ß, y, i) £ pk\.

Finally, if  a C K x On(M ' let  p\a = \J \p{k- ß) \ ik, ß) £ a\.   Proofs of Lemmas

5—7 can be found in [l].

Lemma 5.   // (b  is a sentence of L iFC), tt £ Ha,  k £ Ka,   p £ C and p \\- cb,

then  nkip) |P TTk(cb).

Lemma 6.   // cf> is a sentence of L iFC), p £ C and p \\- q>, then  p | oAcb) |p dj.

Lemma 7.   // d)  is a sentence of L iFC), aut (77),  p £ C,  ôQ(p) U oAqS) C S77

and p |p cb, then nip) \\- tt(cb).

For each ordinal   a £ On-   ' let  Fa £ M be the set of all functions  f £ M

such that  8f C 6a /\ pf C [0, 1J A \f \ < 0a.   The heart of our proof of Theorem 3

consists of the following two perturbation lemmas.

Lemma 8.   Let   a(0), ■ ■ • , a(n - 1)  be a finite sequence of ordinals in On

and let cb (x_, • • • , x     A be a formula of L iFC) with free variables indicated.

For each  i < n  let  u¿ = (k., ß{Y where  k. £ Ka(¿), ß{ < 0^,  (*,-, ß,) 4 oAcb)

and the  u. are distinct.   If N 1= d> (u„, ■ ■ ■ , u      ,) then there exist f. e F „... such
l ' '     '        U7 '     rz — Í Jz a(z)

that f.Cdeniu) and  N MV*0,- •• ,*„_,)(*„ Ç xQ pjfeg A- •• A  i„_j Ç*„_! e

Proof,   (a) Suppose that  a(z') = a(j) but  Uf, ß{) ¿ (A., /3y).   Since   Ip^^l <

00/,-) for every  p £ C, there is no  p e G which could force  (/é¿, ß{Y = (A-, ß.) .

Thus   ik, ß Y = ik, ß.)   is false in  N and hence we may find a   p £ G such that

if we let fi = !(y, ;)| (a(z'), k{, ß{, y, j) £ p\ for  i < n then f{ and /. will be

incompatible.

(b) Suppose that   N p  d>(uQ, ■ ■ • , u  _A   Then by Lemma 3 there is a  p £ G

such that p |p   <p("0, • • • , "„_i).   Let  b = \(k{, ß.)\ i < n\.   By Lemma 6 and the

definition of C-generic we may assume that  oQ(p) C b U o-0(c^).   Let  /. be defined

from  p as in (a).   Then by the remark of (a) we can choose   p so that  /. is incom-

patible with  /. for i / /> and if  (/, y) e cn(c/>) and  / is defined from  (/, y) and  p

as in (a), then  / is incompatible with each  f{ (since   (&¿, ß;) 4 oQi(b)).   Clearly

fi Ç den iu).

(c) Now consider any elements  vQ,- ■ ■ , vn_x  in  T (RA) such that   N 1= L

C v. £ k~..   By the definition of satisfaction in  N there exist  <5n, ■ • • , &n_x  in

0n(A1 ) such that w. = (k., 8 Y is in  T(PA) and  N 1= v. = w . for  i < n.   Our lemma
Z I '       I z z

will follow if we can show that  N P cb(wQ,. . • , w  _A.   Take   q £ G extending   p

such that   q \\-YC w. for  z < 72.   We note the assumptions of (b) imply that
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(k., 8.) 4 <70(jp) for each   z < tz  (because  f. and the  / of (b) are incompatible func-

tions).   Let  d=\(k.,S)\ i < n\.   For each   i < n choose   A. < 0„,., suchthatii i a(¡)

(k., X¿) 4 b U d ij oQ(cf>) and where the   X. ate distinct ordinal numbers.   Let

77z' eWa(¿) be the transposition   (ß(, A¿), and let  r. £ Ea(¿) be the transposition

(X., 8¿).   Let   77 be the composition of the   tt.1, and let  r be the composition of the

T.1.   Now   q |p f. C (k., 8zY and therefore if  (a(z), k., ß., y, /') £ p then   (a(z),

k-i,8i,y,j)£q.   Hence   r o n(p) Ç q because   r ° 7r(p(/' r)) = p(,'r) for any  (Z, y)

e o"0(<A).   By inspection  r o 77 (M¿) - w. so by Lemma 5 used  272 times we have

r ° T7(p) [p cb (u/Q, ■ ■ ■ , w  _,) since we have insured that  t ° n(l, yY = (I, yY for

each  (/, y) e 0"n(<A).   By Lemma 2, fl |p <A (wQ, ■ ■ • , w  _ .).   But   fl £ G and hence

by Lemma 3 we get  /V |(- <A (t^0, ■••,«*  _ . ).     Q.E.D.

Lemma 9.   // <A  z's a sentence of LiFC), acp (77, (A) and N prA,  üzbe« N Nrr(0).

Proof.   Suppose that  N t c¿.   Then by Lemma 3 there is a   p £ G such that

¿> IP (A.   By Lemma 6 we may assume that  oQip) C aQ(<A).   Now  acp (77, cA) and

hence   o-¡(<A) C S77 and  <5q(<A) is left pointwise fixed by   77.   By Lemma 7, nip) \\-

TT((b).   But   nip) = p so that   p IP 77(<p).   Since   p e G hence   N |(- 77(<p).     Q.E.D.

A proof of the following lemma can be found in [1].

Lemma 10.    Let  <b(x)  be a formula of L(FC) with free variables indicated.

If N p (3!x)fA(x), then there is a u £ T'(PA) with occ (zz) Ç occ (<p) such that

N P<A(zz).

Lemma 11.   // \u, v\ C T(RA) and N P zz s v, then there is a w £ T(RA)  with

o (w) C o.(u) f~l o.(f) for  i < 2 such that N P zz = w.

Proof.   Let   (k, ß) £ oQ(u) - oQ(v) where   k £ Ka and let   u (y) be the result

of replacing   ik, ßY   in   zz by the variable  y.   Now  (Vx)(x £ uiy) iff  x £ v) can

be thought of as a formula of   L (EC) which is satisfied in  N by  den ik, ß) .   By

Lemma 8 there is an  / £ F a such that  N p (Vy)(f Ç y e k" —> (Vx)(x e zz (y) iff

*  £v)).   Then by Lemma 10 there is a  w £ T iRA) such that  N (= zz =w and

occ (iy) C occ (zz) - \(k, ß)\ U U!.   Next let us suppose that   k £ ox(u) - ox(v),

k 4 5Q(zz) U o0iv) where   k £ Ka.   Choose a  tt such that aut (77), 8n = oxiu) U

oAv) where   k is the only element of  077 which is moved by   tt.   If we apply

Lemma 9 to  N p zz = v, we get  N t= 77 (zz) = v and hence  N P niu) = u.   Let   kQ

ik.) be the greatest (least) element in  o Au) <~\ Ka which is below (above)  k in

the  -<  ordering, and let   zz (y) be the result of replacing   k~  in  u by the variable

y.   By another application of Lemma 9 we can show that  N \= n iu) = u whete  77

is fixed on  oxiu) - \k] and moves   k into any element of   \x £ Ka\ kQ -< x -< kx\.

Thus  N t= (Vy)(^o <" y <^   k\ ~* (V*)(* G uiy) iff * e^))-   Then by Lemma 10
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there is a  w £ T (PA) such that   N p u = w and  occ (w) C occ (u) - \k\.   Our lemma

follows by repeated use of the two preceding elimination methods.    Q.E.D.

Next we define another ramified language   L  (PA).   This time the definition

will occur in  N using the language   L (EC) without individual constants.   In

general the formation rules of  L   (PA) are the same as those of  L (PA).   The only

difference is in the introduction of individual constants.   These constants consist
/ tut \ Ji ^C i Je J¿

of an  m for each  ttz £ M, tor each   a £ 0nK   ' constants   Ka, -< a, K \ a , -< | a  ,

for each   k £ den (K a) a constant  k , and for each  s £ k a constant  s .   In the

above process the mapping  * *-» x    is definable in  N.   We define a function occ

by  occ   ik ) = \k\, occ   (s   ) = \s\, the remaining clauses of this definition are

obvious.   We similatly define  A .   The more interesting case is when we come to

den*.   den*(K* ) = den iKa), den*(-<* ) = den (-<~), den*(K | a* ) = den (K \ a),

den*(-< | a  ) = den (-< | a"), den   (k  ) = k, and den   (s   ) = s.   The rest of this defini-

tion is the same as that of den.   Continuing in this vein we can also define a

language   L  (EC), occ* ( ) applied to members of  L  (EC), and for fl £ T iRA) U

L  (EC) the notions   oQ ( ), ffn ( ), and   ox ( ).   aut   ( ) and  acp  ( ) then have their

obvious definitions.   It should be clear that the starred notions can all be defined

in  N using formulas of   L (EC) without individual constants.

Lemma 12.    There is a one-one mapping u *-* u , <A «-» <A   for u £ T(RA), u

£ T*(RA), <f> £S(FC), (A* £ S*(FC) such that den (zz) = den*(zz*) and N \= cb iff

N P <A  ; consequently we have starred versions of Lemmas 8 through 11.

Lemma 13.    The following sentences can be formulated in  L (FC) without

individual constants and are true in N.

(i)   (V*)(3y)(y £ T*(PA) A x = den*(y)).

(ii)   (Vx)(3y)(x = den*(y) A (Vz)(x = den*(z) -, a* iy) Ç a* (z) A o\ (y) C o\ (z))).

Proof of Theorem 3.   For any  x £ N and   z < 2  we let  s (x) = C\\o.(u) \ u £

T*(RA) A x = den*(u)\.   s0(x) is then defined as in (5).   The   Sf( ) are definable in

N by Lemma 13.   Next define an ordering  P Ç X2/V as follows.   If x, y  e N put

(x, y) £ R if in the lexicographic ordering determined by  den ("<   ) and first differ-

ences on   Pia), either (i) sQ(x) precedes  sn(y), or (ii) sQ(x) = sQ(y) and  Sj(x)

precedes  sx(y), or (iii)  sQ(x) = sQ(y) and  s¡W = Sj(y) and there is a   zz £ T  (RA)

such that  x = den   (zz), s .(x) = a. (u) for   i < 2  and for any  v £ T   (RA) if  y =

den   (v) and  o Au) = o.(v), then  u precedes   v in some canonical well ordering of

\v £T*(RA)\ s .(x) = o*Av) i°r  i<2\.   It   is   clear   from   this   definition   that

den (-<") C P.   aut ( ) will be interpreted in  N as the predicate  aut   ( ).   If  autW

and  x £ N  let  acp (77, x) if  sx(x) C 8n and  sQ(x) is left pointwise fixed by   77.   If

u £T  (PA), x = den   (zz), and s (x) = o Au) fot  z < 2 we put  77 (x) = den  (nu).   By
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Lemma 9 the latter is well defined.   Most of the axioms (1)—(15) will follow

immediately from these definitions and Lemmas (1)—(13).   We will only discuss

those where some computation is necessary.

Re (6).   Let  k £ Ka and  ß < 6a.   If there were a u £ T(RA) such that  N p

(k, ß)    = u and  oQ(u) = 0  then by Lemma 8 thete would be an  / £ F a  such that

N P (Vx)(f C x £ k" —» x = u).   Let  / Ç g £ Fa  where  g is incompatible with

den (k, ßY.   But then  N 1= (3%)(g C x £ k") since no  p e C could possibly force

its negation.   Thus there is a  y < 9a with  ß / y such that  N P (ze, ß)~ = ik, yY,

a contradiction because this could not possibly be forced.   By Lemma 12 this

implies that if  * = den ik, ßY then  sQ(x) = jx|.   A similar result holds for  kA

using Lemma 9 instead of Lemma 8.

Re (7).   That  s iy) C lj[s.(x)| x £ y\ easily follows from (9), the latter an

immediate consequence of Lemma 12.   For the converse inclusion note that if y

is finite then the restriction of  R  to  y is a well ordering and hence any  x £ y

is definable from y, R, and some integer n £ co.

Re (12).   Assuming the hypotheses of (12) it is clear from (15) that  x £ y

implies   77 (x) £ 77 iy).   Suppose that  s xiy) = a.   Then   u = (9a*) \Jk ea * = k

belongs to   T  iRA), den   (zz) = fl, and by the methods of (6) we can show that

s.(fl) = o.iu).   Thus if  acp (77, y) then  acp (77, a ) and it easily follows from the

form of   u that  77(a) = {77(x)| x £ a\.   Now  (V*)(x £ y —, sxix) C a) and hence by

Lemma 9  (Vx)(x £ niy) —» s Ax) C 77(0)).   In this way we can show that  acp (?7_   ,x)

for all  x £ niy) U \niy)\.   Now let  ze7r(y).   Then  77" 1(z) £ n~ l(n(y)) = y by (13),

(14) and  77(77"   (z)) = (t777~   )(z) = z.   So every member of  niy) is of the form  77 (x)

for some   x £ y, i.e., niy) C\nix)\ x £ y\.    Q.E.D.
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