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MAXIMAL REGULAR RIGHT IDEAL SPACE OF A

PRIMITIVE RING. II
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KWANGIL KOH AND JIANG LUH

ABSTRACT.    If  R is a ring, let  X(R) be the set of maximal regular right

ideals of  R.   For each nonempty subset  E of R,  define the hull oí E  to be

the set  [l £ X(R) | E£ l\ and the support of E   to be the complement of the hull

of  E.    Topologize   X(R)  by taking the supports of right ideals of  fi as a sub-

base.   If fi  is a right primitive ring, then  X(R) is homeomorphic to an open sub-

set of a compact space  X(R") of a right primitive ring   R  ,  and  X(R) is a dis-

crete space if and only if  X(R) is a compact Hausdotff space if and only if

either  fi is a finite ring or a division ring.   Call a closed subset  F of  X(R)  a

line ii  F is the hull of / n /   for some two distinct elements  / and  /  in  X(R).

If  R  is a semisimple ring, then every line contains an infinite number of points

if and only if either  R  is a division ring or  fi  is a dense ring of linear trans-

formations of a vector space of dimension two or more over an infinite division

ring such that every pair of simple (right) fi-modules are isomorphic.

Introduction.   Let R  be a ring.   A right ideal  I C R  is called regular if

there exists an e £ R  such that, for all a £ R, a - ea £ 1.   Let X(P) be the set

of maximal regular right ideals of  P.   If E  is a nonempty subset of  P,  the set

of maximal regular right ideals of  P  which contain  E  is called the hull of E

and the complement of the hull of E with respect to X(P) is called the support

oí E.   We topologize  X(R) by taking the set of supports of right ideals of P  as

a subbase.   Then the topological space  X(R) is called the maximal regular right

ideal space  of R  [3].   If  1  £ R,  X(P)  is a compact space [3, 1.7]; however, in

general, it is not a compact space.   Recall that a topological space  X  is irre-

ducible [4]   if X / 0   and X  is not the union of two proper closed subsets.   X

is reducible if it is not irreducible.   In [3], we have shown that if  P  is a (right)

primitive ring, then  X(P) is reducible if and only if  R  is a dense ring with non-

zero socle of linear transformations of a vector space of dimension two or more

over a finite field, and X(R) is a Hausdorff space if and only if either  R  is a

division ring or X(P) is reducible and  R  modulo its socle is a radical ring.   In

this paper we continue our previous work [3].   Our main results are as follows:
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If R is a ring and S is an ideal of R then X(S) is homeomorphic to an open sub-

set of X(P). If R is a primitive ring then X(P) is embeddable as an open subset

of a compact space X(P ) for some primitive ring R . As a consequence of this

fact, we will be able to show that if R is a primitive ring then X(R) is a compact

Hausdorff space if and only if X(r) is a discrete space if and only if either R is

a division ring or a finite ring. For any subset Y of X(P), define j(y) =

Hi/ eX(R)  |; £Y\.

Let us call a closed subset  E  of X(p) a line if E  is the hull of ji\x \) n ;(SyO

for some distinct points  x, y.   Call a closed subset  F of  X(R)  a hyperplane pro-

vided that  /(E) ¿ ¡(R),  the Jacobson radical, and if F    is a closed subset such

that F ~¿F and F"/ F then j(F') = ¡(R).   If  R   is a primitive ring, then  R  has non-

zero socle if and only if X(R) has a hyperplane, and   R  is simple artinian if and

only if (i)  X(R)  is compact, (ii) XiR)  has no line which contains exactly two

points, and (iii) X(P) has a hyperplane.   For a semisimple ring R,  X(R) contains

at least two points and every line of X(P)  contains an infinite number of points

if and only if  R   is a dense ring of linear transformations of a vector space of di-

mension two or more over an infinite division ring such that every pair of simple

(right) R-modules are isomorphic.   Throughout this paper, by a primitive ring we

always mean a right primitive ring and every module is a right module.

1.   Preliminaries.

1.1. Definition.   If E  is a subset of  R,  we define the support of  E  to be the

set of maximal regular right ideals of  R  which do not contain the set  E.   It will

be denoted by  supp(E).

1.2. Definition.   If R   is a ring, let  X(P)  be the set of maximal regular right

ideals of  R.   We give a topology to X(R)  which is generated by the subbasis con-

sisting of all supports of the right ideals of  P.   We will call XiR) together with

this topology the maximal regular right ideal space of R.   It will simply be de-

noted by X(R).

1.3. Definition.   If E is a subset of P, the hull of Eis the set X(R)\supp(E).

It will be denoted by h(E).   If E = \e\ is a singleton set, we let h(e) = h(E).

1.4. Definition. A nonempty topological space X is irreducible if X is not

the union of two proper closed subsets. X is reducible if it is not irreducible. A

subset  V of a space X is irreducible if  Y is irreducible in the induced topology.

1.5. Definition.   If x is an element of X(P)  for some ring  R,  then x  is also

a right ideal of  R.   To make a distinction, we write  j(x) fot the right ideal x.   If

V  is a subset of X(r), we define j(Y) = D \f(x) \ x £ Y\.   If   y = ly! a singleton

set, we let jiy) = jiY).

1.6. Definition.   Let  R be a ring and let   V  be a right R-module.   For each

v £ V, we define  v   = \r £ R | vr = Oj.   If E is a subset of V,  we define  E    =

r\\vx\v £E\.



MAXIMAL REGULAR RIGHT IDEAL SPACE 129

1.7. Proposition.   Let  R  be a ring and 1 be a maximal regular right ideal of

P.   If A ,B are right ideals of R such that AB C /, then either A Ç I or  B C I.

Proof.   Suppose that A £_ I and   B <t_ I.   Then A + 1 = R  and  PS = (A + l)B

C /.   Let e  be a left identity modulo /.   Since  eb £ I, for every  b £ B,  EC/.

This is a contradiction.

1.8. Corollary.   Let  R   be a ring and I be a maximal regular right ideal of

R.   If a £ R such that aR Ç /, then a £ I.

Proof.   Let A = \a £ R \ aR Ç l\.   Then A   is a right ideal of R   and  AR C  /.

Hence by 1.7, A C / and a £ I.

1.9. Corollary.   Let R  be a ring and S be an ideal of R.   If m is a maximal

regular right ideal of S then m  is a right ideal of R.

Proof.   Let  fl  be an element of m and let  r be an element of  P.   Then (flr)S

= airS) Ç ttz.   Hence by 1.8, ar £ m.

1.10. Proposition.   Let S be an ideal of a ring  P.   Let  m  be a maximal reg-

ular right ideal of S and let j be a left identity modulo m  in S.   Define  lim, f) =

\r £ R | fr £ m\.   Then /(ttz,/)  z's a maximal regular right ideal of R  such that

lim, f) O S = m.   If e  is another left identity modulo m  in S, then lim, e) =

Hm,f).

Proof.   By 1.9, ttz is a right ideal of R.   Hence  /(ttz,/) is a right ideal of R.

Since fifr — r) - fifr) - fr £ m for every r £ R, f is a left identity modulo  lim ,/).

Clearly  m Ç_ /(ttz, /).   Since fs - s £ m for every s £ S, m = lim , f) O  S.   If  lim, f)

were not maximal, then there would exist a maximal right ideal, say  M  of  R, such

that lim,f) C M but /(ttz,/) ¿ M.   Let a £ M such that a 4 lim, /).   Then fa 4 m

and  fa £ M.   Hence  ttz Ç M fi S  but  ttz / M O S.   Since  M  Ci S  is a right ideal of

S and ttz  is maximal,  M O S = S  and f £ M.   Thus  R = M.   This is a contradiction.

In order to prove that  lim, f) = lim , e), we observe that fs - s £ m and s — es £

m for every s £ S.   This implies that fs — es = if — e)s £ m for every s £ S.

Hence, by 1.8, f - e £ m and fr £ m if and only if er e ttz  for every r £ R.

1.11. Proposition.   Let R  be a ring and S be an ideal of R.   If L, F  are

maximal regular right ideals of R  such that S £_ I.,  i = 1,2,  then S  O /.  is a

maximal regular right ideal of S for each  i, i = 1, 2,  and if S O /    = S O /      then

'l-'2-

Proof.   Let e . be a left identity modulo /.  for each  z  where   z = 1, 2.   Since

S ¿ / .,  S + I. = R  and e . = s . + a . for some s   £ S and a . £ I..   Then s . is a left
l l ill Z Z Z I



130 K. KOH AND J. LUH

identity modulo /. Ci S in S.    Let  m  be a maximal regular right ideal of S such

that  /.fi S Ç ttz.   Clearly,  s .  is a left identity modulo ttz.   Hence by 1.10,  ttz =

lim, s .) D  S and  /. CI S C /(ttz , s .) O  5.   Since  5  is a two-sided ideal of R,  IS
i i — i '    i

Ç /. n 5 C Urn ,s).   Since  5 £ ¡im , s) , ¡. Ç l(m,s) by 1.7 and hence /. =

lim, s).   Thus   /. n S = ttz  and if 5 fi  /j = 5 n  ¡2  then, by 1.10,  iJ = ¡r

1.12. Theorem.   Le¿  R be a ring and S  be an ideal of P.    Then supp (S) z's

homeomorphic to  XiS).

Proof.   Define a function </> from supp(S)  into X(S) by  d'il) = / fi S.   Then

r/> is a bijection by 1.10 and 1.11.   Let  A be a right ideal of S.   Then

tp-1(supp(A)) = {/ £ suppiS) | A £ / r\ S\.   But this set is equal to supp(AP)  in

X(P) which is contained in  supp iS).   Thus   d> is a continuous mapping.   Since

S is a two-sided ideal, if ß  is a right ideal of  R then  supp iS) <~^ supp(B) =

supp(BS)  (refer 1.7) and  (b (supp (BS)) = \l C S \ 1 £ X(P)  and  BS <2 /}.   This is

clearly an open set in X(S)  and cb is an open mapping.

1.13. Proposition.   // P   is a primitive ring, then there is a primitive

ring  R* with  1 such that  R is an ideal of R*  atzzz" X(P)   z's homeomorphic to an

open subset of XiR*).

Proof.   Let  E = Z x P , the usual extension ring of  R,  Let  / be a maximal

right ideal of E such that R °\_ I and   R/(/  fi R)  is a faithful simple R-module.

If E/I were not faithful, let S  be the largest ideal of E which is contained in  /.

Then S C) R = 0 since  R/(/ n R) is faithful.   Let R* = E/S.   Then R*  is a

primitive ring with  1   and R is isomorphic to an ideal of  R*.   Hence by 1.12,

XiR) is homeomorphic to an open subset of XiR*).

1.14. Definition.   A ring  R  is called (von Neumann) regular if and only if

for every element  a in R there is   b in  R  such that  aba = a  (refer [61).

1.15. Remark.   If R is (von Neumann) regular, then a £ aR  for every a £ R

even though R may not contain a unit element and flR = eR  for some idempotent

e £ R.   von Neumann proved that if  R   is a tegular ring with  1,  then for any idem-

potent e £ R and an element  b £ R, eR + (l - e)bR = gR  for some idempotent

g £ R (refer [61).   Since  eR + (l — e)bR = eR + bR,  this means that any finitely

generated right ideal of R   is principal.   With a slight modification of von Neu-

mann's proof for the above assertion, one can also conclude that if R   is a reg-

ular ring (not necessarily with   1) then for any idempotent e £ P  and an element

b£ R, eR + bR = eR + \br - ebr \ r £ R \ = gR for some idempotent g  in  P.

1.16. Theorem.   // R   is a regular ring, then X(P)  is compact if and only

if  1  £R.
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Proof.   If  1 £ R  then X(R) is compact for every ring  R by [3, 1.7].   Assume

that  R is a regular ring and XiR) is a compact space.   Let  E be the set of idem-

potents in P.   Then X(R) = U,, €e  supp(eaR).   Since  X(P)  is compact, there

exist ea  , ea   , • • • , ea  , a finite number of idempotents in R,  such that XiR) =

U"_! supp(ea R).   Hence"0 = f\=1 h(eaR) = h(ln^x ea.R).   Let e be an idempotent

such that S"_   eaR = eR.   If eR ^ R, then the right ideal \r - er \ r £ R\ is not zero.   Let

b £ R be such that  b - eb -/ 0.   Then by 1.15, there is an idempotent g £ R such

that gR = eR + (b - eb)R.   Hence ge = e  and  g - e / 0.   Since  P   is a semisimple

ring, there is a simple right R-module  M  such that Mig - e) /= 0.   Let  ttz e Mig - e)

such that  m ¿ 0.   Then TrzeR = 0 and  eR Ç mx, which is maximal regular right

ideal.   This means that hieR) / 0, which is a contradiction.   Thus  eR = R and

ex = x for every x £ P.   Since (x — xe)R = 0 for every x E R,  e = 1.

1.17.   Theorem.   //  R is a primitive ring, then XiR)  is a compact Hausdorff

space if and only if R   is either a division ring or a finite ring.

Proof.   If R is either a division ring or a finite ring, then certainly X(R) is a

compact Hausdorff space.   Suppose that XiR)  is a compact Hausdorff space.   By

[3, 2.5], if S  is the socle of R, then R/S  is a radical ring.   Since  XÍS)  is homeo-

morphic to supp is) and XiR) = supp iS),  XÍS)  is a Hausdorff compact space.   Since

S  is a regular ring, by 1.16,   1 £ S and  R = S.   Thus by [3, 2.7] either  R is a

division ring or a finite ring.

2.   Irreducible closed sets.   If R is a dense ring of linear transformations of

a vector space, then an element a £ R   generates a minimal right ideal if and only

if the rank of   fl is 1   (refer [l, p. 76]).    It is interesting to note that the following

assertion is also true:

2.1.   Proposition.   // P is a dense ring of linear transformations of a left

vector space V over a division ring D and A is a nonzero right ideal of R  such

that every nonzero element of A is of rank 1,  then A is a minimal right ideal.

Proof.   Let a, b be two nonzero elements of A.   Then V = ker a © Dzz =

ker b ffi Dw for some nonzero vectors   u andw   since the ranks of fl and b are one.

If either  ker fl Ç ker b or  ker b Ç. ker fl  then ker fl = ker b.   Hence  ua 4=0,  ub /=

0 and zzflr = ub for some r £ R.   Thus   Viar - b) = 0 and aR = bR  and, therefore,

A   is a minimal right ideal.   So suppose now that there exist  v.  £ (ker a)\(ker b),

v2 £ (ker ¿>)\(ker a).   There is z eR   such that  v 2ar and  v  b are linearly inde-

pendent if the dimension of the space is greater than   1.   Since  a, b ate elements

of A,  ar + b £ A.   However, the rank of ar + b  is greater than or equal to 2 since

v, (ar + b) = v  b and vAar + b) = v^ar.   This is a contradiction.
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2.2. Proposition.   Let  R be a dense ring of linear transformations of a vec-

tor space  V over a division ring D and let A be a nonzero right ideal of R.   Then

hid) = ¿(A) for every nonzero a £ A   if and only if A is a minimal right ideal.

Proof.   Since  hid) = hiaR.) for every a £ R,  if A  is a minimal right ideal,

then certainly hid) = hiA).   Assume now that  hid) = hiA) for every nonzero a £ A.

In order to prove that A is minimal, it suffices to show that the rank of nonzero

a £ A  is   1.   If the rank of a  is not 1,  then there exist vectors  zz     v     in  V such

that vxa, v2a are linearly independent.   Hence there is  r £ R  such that  v ar = 0

and v2ar / 0.   By hypothesis,  hiA) = hia) = hiar).   Since  v1: £ XiR)  and  vx £

hiar) = hia), v.a = 0.   This is a contradiction.

2.3. Definition.   If  R is a ring and A is a right ideal of  R,  the radical of A

is  yß =  fl U | / £ XiR)   and  / A A I

2.4. Proposition,    Let  R be a dense ring of linear transformations of a left

vector space   V over a division ring  D.   If A is a minimal right ideal of R , then

yß = A.

Proof.   Suppose A / \/Ä.   Since  A Ç \JA  always, if A ̂  \fK then there is

b £-jA   such that b 4 A.   Since   R   is semisimple,  X(R) / bib) and  hib) 2 h(\/Â)

= h(A).   Let a be a nonzero element of A.   Then h(A) = h(a)  since A = aR.

Hence  h(b) A h(a).   Let  ker a = \v £ V \ va = 0\ and   ker b = \v £ V \ vb = 0i.

Then ker a C_ ker b since   h(b) _D h(a).   Since the rank of  fl is 1,   V = ker a © Dw

for some nonzero vector  w  in  V.   Since  ker fl Ç ker b and   b / 0,  wb / 0.   Let

r £ R  such that z^flr = wb.   Then  V(flr - b) = 0 and  ar = b.   Hence  b £ A and

this is a contradiction.

2.5. Definition.   Let  R be a ring.   A closed subset E  of X(P)  is said to be

a hyperplane of X(P) provided that /(F) / /(R),  the Jacobson radical, and if  F

is a closed subset of X(P) such that  F'  D F and  F' ¿ F then /(F ) = ](R).

2.6. Theorem.    Let  R  be a primitive ring.   If A   is a minimal right ideal of

R, then h(A)  is a hyperplane.   If F is a hyperplance of X(P) then /(F)  is a min-

imal right ideal of  P.

Proof.   Let A be a minimal right ideal of  R and let  F = hiA).   Let F    be a

closed subset of X(R) such that F' 2 F  and  jÍF')¿ 0.   Let  B = jiF').   Then 0 ^

B = jiF') C jiF) = VÂ = A.   By minimality of  A,  B = A,  so  F' Ç hiA) = F  and

F = F .   Conversely, assume that  F  is a hyperplane.   Let A = /(E).   If «  is a

nonzero element of A,  then  jibia)) / 0 and hia)  7¿hiA)  ~J F.   It follows that  hia)

= hiA) = F.   Hence by 2.2,  A is a minimal right ideal of R.

2.7. Corollary.   Let R be a primitive ring.   Let 2    be the set of minimal

right ideals of R.   Let A = \F \ F  is a closed subset of X(P) such that  jiF) ¿ Q\.
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Let S     be the set of maximal elements of A.   Then there is a bijection from ¿

onto  2  .

Proof.   The mapping A —> hiA) for A £ S    is a bijection from 2,   onto 2  .

2.8. Theorem. // R z's a primitive ring such that X(r) z's irreducible and A

is a minimal right ideal of R, then either hiA) = 0 or ¿(A) z's a maximal proper

irreducible closed subset of X(P).

Proof.   If A   is a minimal right ideal of a primitive ring  R   then there is an

idempotent e  e P   such that A = eR,  and if hiA) / 0   then e' = \r £ R \ re = 0\  is

a nonzero left ideal of P.   Hence  VQ = e    O A ■/ 0  and   V'    is a subspace of the

vector space  eR over the division ring eRe.   Since R   is a dense ring of linear

transformations of the space  eR   and  X(P)  is irreducible, by [3, 2.4]  eRe   is an

infinite field.   Since  A is minimal, by 2.2  hid) = hiA) if a  is a nonzero element

of A.   Let  ker a = \x £ A \ xa = 0\.   Then  V„ = ker a.   Since the rank of  fl  is   1,

there is a vector  u such that  eR = V_ © eRezz.   Hence   Vq  O u   = 0 and  V0   is

a minimal right ideal of  R  since   zz     is a maximal right ideal of  R.   Since VQ A

aR  and  VQ  is a minimal right ideal,  VQ = aR.   Now suppose that hiA) is reduc-

ible.   Then by [3, l.ll] there exist right ideals  A     A 2, . . . , A     such that hiA)

£ hiA) for every  z  and  ¿U) = U"=1 hiA).   Let  HT = {v £eR\ vA     = 0|  for every

z.   Then  W .  is a subspace of  VQ   and   V0 = U"-i  ^ ..   If  Vn = W .  for some i,

then Vn = WX= aR, and  hiA) = ¿(aR) = h(W±).   Since A .  C W1,  h(A ) D ¿(W^) =
U z ' z z    —      z' z    — z

ä(A).   This is a contradiction.

2.9. Lemma.   Let  R  be a simple ring with nonzero socle.   If X(P)  is a dis-

crete space then either R   is a division ring or R is a finite ring.

Proof.   Suppose that R   is neither a division ring nor a finite ring.   By [3,

2.6], R   is isomorphic to a dense ring of linear transformations of finite rank of

a vector space  V over a finite field D   and hence   1  4 R.   Let p be the charac-

teristic of D  then pr = 0 for every  r £ R.   Let  Z/(p)  be the field of integers

modulo p.   Then  P  is an algebra over  Z/ip).   Let  R* = Z/(p) x R  be the usual

extension ring of R with  1   in which  P   is an ideal.   Let  ttz  be a maximal regular

right ideal of P and let e be a left identity modulo ttz in P.   Then Am ,e)  is a max-

imal right ideal of R* by 1.10.   Let  S  be an ideal of R*  such that S Ç_ lim,e).

If S were a nonzero ideal then S fi  R = 0 since m contains no nonzero ideal of

R.   Hence  SR= 0.   Let  (/, sQ) be a nonzero element of S  for some  / £ 2,/ip) and

s0 £ P.   Then / / 0 and  (/, sQ)(0, r) = (0, 0) for every r £ R.   Hence  - (/" lsQ)r

= r for every r £ R.   Since  P   is a simple ring, - if~  sA - 1  and  P  must be a

finite ring.   Therefore,  5 = 0  and  R*//(ttz, e)  is a faithful simple R*-module.

Thus  R*  is a primitive ring with   1.   Observe  h(R) = \R\  in X(R*)  and
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X(R*) = supp(R)  U \R\.   Since  X(P) is homeomorphic to supp(P) in X(P*)  by

1.12 and  X(p)  is a discrete space, every point of supp(R) is open in X(R*).

Since the point  R   in  X(R*)  can be separated from any point of  supp(R)  by open

sets, this means that X(P*)  is a Hausdorff space.   Since   R*  is a primitive ring

with  1,  by L3, 2.7]   R*  must be a finite ring and therefore  R   must be also a finite

ring.   This is a contradiction.

2.10. Theorem.   Let  R  be a primitive ring.   Then X(R)  z's a discrete space

if and only if either R   is a division ring or a finite ring.

Proof.   Since  X(P) is a T  -space, if R   is a finite ring, then certainly  X(p)

is a discrete space.   Suppose X(R) is a discrete space such that R  is not a div-

ision ring.   Then X(R)  is a Hausdorff space and, by [3, 2.5],  R   is a dense ring

with nonzero socle of linear transformations of a vector space of dimension two

or more over a finite field and if S is the socle of R  then R/S  is a radical ring.

If S  is a finite ring, then R  must be also a finite ring since  X(P) = supp (S) U

hiS) = supp (S)  and since a primitive ring which is not a division ring with a fi-

nite number of maximal regular right ideals is a finite ring.   Now observe that  5

satisfies the hypothesis of 2.9.   Hence if  X(R) is a discrete space, then so is

X(S)  and, by 2.9,  S  is a finite ring.

2.11. Example.    Let  Z  be the ring of integers and let  R   be the ring of all

row-finite infinite matrices over  Z/(2)  of the following form:

where A     is an n x n matrix for some positive integer  n.   Then  R is a primitive

ring with nonzero socle and if 5  is the socle of  R  then  R/S  is a radical ring.

Hence  X(P) is a Hausdorff space by [3, 2.5] and it is not a discrete space by

2.10.

3.   Rings in which every proper right ideal is incompressible.   Let  /, /   be

two distinct maximal regular right ideals of a ring R.   If  K, M  are distinct max-

imal regular right ideals of  R   such that  \K,M\C hil  Ft ]),  then  (K O M)/(/ O /)

is a submodule of the right R-module   R/(/ ^ ]) which is isomorphic to a direct

sum of two simple modules  //(/ (^ ]) and  //(/ n /).   Hence if (K C M)/H D ])

is not the zero submodule then either ÍK n M)/(/ (^ j) = R/U C< J)  or

(K n M)/il n /)  is isomorphic to  //(/ ^ ])  or to //(/ n ]).   In any case, this
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means that either R/iK n M) is simple or  R/ÍK fi zM) = 0.   This, of course, is

absurd.   Thus   K n M = I  O /  and  h(K n  M) = hil (~) j).

3.1. Definition.   If x, y are two distinct points in  X(R),  a line containing

x  and  y  is  /(x , y) = hijix)  C\ jiy))-

3.2. Proposition. Given two distinct points in XiR), there is one and only

one line containing these two points-

Proof. Let x, y be two distinct points in X(P). If z, w are distinct points

in XiR) such that \z, w\ C /(%, y), then /(z, w) = lix , y) since jiz) CÏ jiw) = jix)

^ jiy).

3.3. Proposition. // x, y are two distinct points in X(r) such that R/jix)

= R/jiy) as R-modules, then for every w £ lix, y), R/jiw) Si R/jix).

Proof.   If w £ lix, y), then j(w)/ijix) n jiy)) is a nonzero submodule of

R/ijix) n jiy)).   Hence  jiw)/ijix) O -jiy)) is either isomorphic to   R/jix)  or to

R/jiy).

3.4. Lemma.   Lez1  R  be a ring and M  be a simple R-module.   Let D =

HomR (M, M).   If m., m    are nonzero elements of M such that  m. /= m2  then

hijimr) n   7(772-))  contains at least three elements.

Proof.   Since  M  is a left vector space over a division ring D,  if m  is a non-

zero element of Dttt. © Dttz    then  ttz    £ hijimA CÏ jimA), and if ttz = ttz    + ttz

then  m    /m    and  m ^ m2.

3.5. Theorem.   Let  R   be a ring.   Then there is exactly one isomorphic class

of simple R-modules if and only if X(R)  has no line which contains exactly two

points.

Proof.   Assume that R has a unique isomorphic class of simple modules.   If

there is a two-point line, say  lix, y),  for some two distinct points  x  and  y  in

XiR), then hijix) t~\ jiy)) = [x, y\.   Let  M = R/jix).   Then x = mf and  y = mx for

some mm     in M and  M    = /(R)  since all simple R-modules are isomorphic.

By 3.4,  lix, y) contains at least 3 points.   This is a contradiction.    Conversely,

suppose that   R/l x SUj^Mj S R/¡2  are simple modules where /p ¡2 £ XiR).

If there exists maximal regular right ideal K  such that K D I    O  /    and  I. -/ K

for j =1,2,  then by the remark at the beginning of §3,  RA   = (R + /jV/j  =

K/(IX n K)  =R/(/2fi R)=^(R + /2)//2 = R//2,  a contradiction.   Thus the line con-

taining /.   and  ¡2  contains exactly two points.

3.6. Proposition.   // R is a ring with 1 and if there is exactly one isomorphic

class of simple R-modules then R/JÍR)  is a simple ring.   There is a primitive
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ring with nonzero socle in which every pair of simple modules are isomorphic, but

the ring is not simple.

Proof.   If R/jiR) is not a simple ring, then there is an ideal S  in  R   such

that S A ](R) but S / /(R) and  R/S.   Let  /  be a maximal right ideal of R   such

that IDS.   Then  R/I is a simple R-module and  (R/7)   D S.   Since every pair of

simple R-modules are isomorphic, if  M is a simple R-module, then M    D.S.   Hence

/(R) A S.   This is a contradiction.   Now, let  R  be the primitive ring in Example

2.11.   If  S  is the socle of R then  R/S  is a radical ring.   Hence if x e X(R) ,

R/j(x) is isomorphic to a minimal right ideal of  R.   Thus every pair of simple R-

modules are isomorphic.   However,  R   is not a simple ring.

3.7. Theorem.   Let  R  be a primitive ring.   Then  R  is simple artinian if and

only if (i)   X(R)   is compact, (ii)   X(P) has no two-point line and (iii)   X(R)  has

a hyperplane.

Proof.   Assume (i), (ii) and (iii).   Then  R  has nonzero socle by 2.6.   Let  S

be the socle of  R.   Since  X(R)  has no two-point line, by 3.5 all simple R-modules

are isomorphic.   Hence every simple module is isomorphic to a minimal right

ideal.   Therefore, R/S  is a radical ring.   Thus by 1.12, X(S) is compact and by

1.16, 1 £ S.   Since the unity of the ring S is also the unity of R,  R = S  and  R   is

a simple artinian ring.   Conversely, if R  is a simple artinian ring then 1  eR.

Hence XiR) is compact by [3, 1.7].   Since every pair of R-modules in a simple

artinian ring are isomorphic, by 3-5, (ii) is true.   Finally (iii) is true by 2.6.

3.8. Theorem.   Let  R  be a semisimple ring.  Then the following two state-

ments are equivalent:

(i)   There exist at least two points in XiR) and every line contains an infi-

nite number of points.

(ii) R is a dense ring of linear transformations of a vector space of dimen-

sion two or more over an infinite division ring such that every pair of simple R-

modules are isomorphic.

Proof.   Assume (i).   Then by 3.5 there is exactly one isomorphic class of

simple R-modules.   Hence if M   , M2   ate two simple R-modules then Mx = M   .

Thus  M    = /(R) = 0.   Therefore, every simple R-module is faithful and, in partic-

ular,  R is a primitive ring.   Let M be a simple R-module and let D be the endo-

morphism ring of R-module  M.   Since  X(R) contains at least two points, the di-

mension of the vector space  M over D is at least two.   Let  ttz., ttz    be two lin-

early independent vectors in M.   Then 7T2    / m2   and the line /(ttz,, ttz )  contains

an infinite number of points by hypothesis.   If x £ /(ttz. , m A  then x = m    for

some m £ M  since  M = P/(/(x)) and hence m £ Dm.  ©  Dttz2   by [l, Lemma, p. 27].



MAXIMAL REGULAR RIGHT IDEAL SPACE 137

Conversely, if ttz is a nonzero element of Dmx © Dm2, then  ttz    £ /(ttz, , 77z2).   Thus

D  must be an infinite division ring.   Assume, now, (ii).   Let  R   be a dense ring

of linear transformations of a vector space  M  over an infinite division ring D  of

dimension two or more, then X(r)  contains at least two points.   Let x and y  be

two distinct points in X(p).   Then x = ttz,   and y = ttz2   for some  mx, m    in M

since  M = R/jix) St R/jiy).    Hence the line   lix ,y) = h(m\ O ttz^.   Let  W  be the

two-dimensional subspace of M,  which is spanned by m    and  ttz2.   Observe that

z £ l(x, y)  if and only if z = if    for some 0 / w £ W.   Since  D  is infinite and

(ttz, + aw  )    / (ttz,  + ßmA    for a ^ ß in D,  W contains infinitely many vectors.

Thus  /(x,y)  contains an infinite number of points.

3.9. Theorem. Let R be an arbitrary ring. Then every line in X(R) cotz-

tains exactly two points if and only if every maximal regular right ideal is also

a left ideal.

Proof.   Assume that every line in X(R)  contains exactly two points.   Let  /

be a maximal regular right ideal of P.   Let  N(l) = \r £ R \ rl C l\.   Then by  [l,

Theorem 1, p. 25],  N(l)/I = HomR (R/I, R/I)  and  R/I is a left vector space over

the division ring  N(l)/I.   If the dimension of the vector space R/I over  N(l)/I

is greater than one, then by 3.4 there will be a line which contains more than two

points.   Hence R/l  is one dimensional.   Let  e be a left identity modulo  /.   Then

for every  a £ R there ¡see N(l)  such that  be - a £ 1.   Since   be £ N(l) , a £ N(l).

Thus  / is a left ideal.   Conversely, if every maximal regular right ideal of  R  is

also a left ideal, then // Ç. / n /  for every pair of maximal regular right ideals

/ and /.   Hence if  K £ h(l n /) then  Í/CK and either / = K or / = K by 1.7.

Thus h(l n /) = \IJ\.

3.10. Proposition.    Let   R be an arbitrary ring.   Assume that every proper

right ideal of R  is an intersection of maximal regular right ideals.   Then for

every right ideal A, AR = A.

Proof.   If R    / R, then by hypothesis,  R     must be an intersection of maxi-

mal regular right ideals.   This is of course impossible in view of 1.7.   Therefore,

R2 = R.   If A   is a proper right ideal of R   then AR = \fÂR  and A = \JA.   If there

is a maximal regular right ideal  /,such that AR C /, then by 1.7, A C_ / so VAR

= VX   Hence AR = A.

3.11. Definition.   Let  R   be an arbitrary ring.   An R-module  M is called

infective if and only if for every pair A, B  of R-modules with A Ç_ B, each homo-

morphism of A   into M  can be extended to one of  B  into M.   If  R  is a ring with

1 and if M is a unital R-module, then it is well known that M has a minimal in-

jective extension which is also a maximal essential extension of M. Such mini-

mal injective extension is unique up to an isomorphism.   It has been shown by
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R. E. Johnson [2, 7.1] that these results are also true for any ring  R  and any R-

module  M.   For each R-module  M, we denote by M the minimal injective exten-

sion of M.

3.12. Proposition.   Let  R  be a ring.   If every simple R-module is injective,

then for any simple module  M  the R-homorphism  cb:  M —» Hom„ (P , M) where

(b(m)ir) = mr for every  m £ M  and r £ R   is an isomorphism.

Proof.   Clearly,  cb is a monomorphism.   Let / £ Hom„(R, M).   Let  R     be an

extension ring of  R  with  1.   Then there is  /   £ HomR (R   , M)  such that /  j R = /

since  Al is injective.   Let / (1) = mQ.   Then fir) = zrz-r for every r £ R.   There-

fore, / = çS(t7z0)  and  c/>  is an isomorphism.

3.13. Proposition.   Let  R   be a ring such that  R    = R.   If every simple R-

module is injective then every maximal right ideal of R   is regular-

Proof.   Let  / be a maximal right ideal of  R.   Since   R    = R,   R/I  is a simple

R-module.   Hence, by hypothesis,   R/I  is injective and, by 3.12,  </>(R/7) =

HomR (R, R/I) where  (bir + Dir') = rr    + I for  r, r   £ R.   Define  g:   R —> R/I

such that gir) = r + I for each  r £ R.   Then g £ HomR (R, R/l) and g = </>(a + /)

for some  a £ R.   Thus  gir) = ar + I for every r £ R  and hence  ar - r £ I for

every r £ R.

3.14. Proposition.   Let  R   be a ring such that every maximal right ideal of

R  is regular.   If M  is a simple R-module such that  MR = M,  then M = M.

Proof.   Consider cb:  M —* HomR (R, AIR)  as in 3.12.   If the  ker cb were not

zero then  çS(Al) = 0 and  AIR = 0 since  M  is an essential extension of the simple

module Al.   (b is a monomorphism.   Let / £ HomR(R, MR).   Since  AIR C M,  there

is /   e HomR (R   , M)  such that / (r) = fir)  for every r £ R, where   R     is an ex-

tension ring of R  with  1.   Let / (l) = ttz where  ttz e Al.   Then / = cbim) and  </>(Al)

= HomR (r, MR).   On the other hand, if / / 0 then R/ker f SX MR = M.   Hence

ker / is a maximal right ideal of  R   and therefore, by hypothesis, it is regular.

Let e  be a left identity modulo  ker /.   Then fier) = fir) = fie)r for every  r £ R

and / = (bifie)).   Hence   <p(Al) = HomR (R, Mr).   Thus  cbiM) = (biM)  and  Al = M.

3.15. Remark.   Villamayor [5] proved that if R  is a ring with  1   then every

simple R-module is injective if and only if every proper right ideal of  P   is the

intersection of maximal right ideals.

3.16. Theorem.   Let  R be an arbitrary ring.   Then the following statements

are equivalent:

(i)   Every proper right ideal of R   is an intersection of maximal regular right

ideals.
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(ii)   // A   is a right ideal of R  then AR = A  and every simple R-module is

injective.

Proof.   Assume (i).   Then by 3.10,  AR = A   for every right ideal A   of P.   Let

AI  be a simple R-module and let  0 / m £ M.   Then  (Al)    / R.    For if (ttz)    = R   then

the submodule  N = \m £ M \ ttzR = 0i  must contain Al  since  Al  is an essential ex-

tension of Al  and  Al   is simple.   Hence  AIR = 0.   This is, of course, impossible.

Thus  (ztz)    4= R   and  (ttz)    = flggA {/a | ¡a is a maximal regular right ideal! for

some index set A.   Let Ma = R/Ia.   Let pa be the  ath projection of T\ße\M n—►

Ala and let p:   ttzR —> lIaeAAla be a map such that pa ° uimr) = r + ¡a for every

r£ R.   Then p  is a monomorphism.   If there exists  a e A  such that pa ° p  is a

monomorphism then mR   is simple and  ttzR = M since  Al  is the only simple sub-

module of Al.   Now, if, for each  a £ A, pa ° p  is not a monomorphism, then

pa ° p(.Al) = 0 for every a £ A and  p(Al) = 0.   Since  p  is a monomorphism, this

means that Al = 0.   This is impossible.   Thus  MR = M and, by 3.14,  Al = Al and

(ii) holds.   Now assume (ii).   Let A be a right ideal of R   such that  A / R.    Let

i/a| a £ A|  be the family of all maximal right ideals of R  which contain A. Sup-

pose there exists  b £ 1^^^ such that  b 4 A.   Let AQ   be a right ideal of R

maximal with respect to the property thatA Ç A.   but  b 4 AQ.   Then the submodule

of  R/AQ   generated by  b + AQ  is equal to  ]/AQ  for some right ideal /  which

contains  AQ  properly.   Since  JR = /,  }/AQ   must be a simple R-module.   Hence

it is injective by hypothesis.   Let  cb be a homomorphism from  R/AQ   onto j/AQ

such that  d'il/A    = 1 i IA   '  tne identity map on ]/AQ.   Such  cb exists since  }/AQ

is injective.   Then R/AQ = J/AQ © ker cb.   If ker cb / 0 then <b(b + AQ) = 0.   This

is impossible.   Thus  R/AQ = J/AQ  and AQ   is a maximal right ideal of R.   Hence

b £ AQ.   This is a contradiction.   Thus,  A   is an intersection of maximal right

ideals.   Since every maximal right ideal of  R   is regular by 3.13,  A   is an inter-

section of maximal regular right ideals.

3.17. Definition.   A right ideal  C oí a ring  R   is said to be incompressible

provided that if S A     A   , • • • , A   ¡  is a finite set of right ideals such that A . ¿

C  for every  z, then there is a maximal regular right ideal  /  such that  CÇ / and

A . </]_ 1 for every  i.

3.18. Remark.   If  R  is a commutative ring, then every prime ideal P  such

that  R/P  is semisimple is incompressible.   For if  \A     A      ■ • • , A   i  is a finite

set of ideals such that À . ¿ P   for every  i,  then A, A    ■ ■ ■ A    ¿P.   Hence there

is a maximal ideal  /  such that PCI  but  A ,A„ • • • A    4.1.   Obviously in any- 1        2 72 J J

ring every maximal regular right ideal is incompressible.

3.19. Proposition.   // C  z's azz incompressible right ideal of a ring  R,  then

Vc = C.
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Proof.   If \[C / C,  then there exists a maximal regular right ideal / such

that C C / but \JC <£__ I.   This is a contradiction.

3.20. Proposition.   Let  R  be a ring.   Then a right ideal C  is incompressible

if and only if C = \[C and h(C)  is an irreducible closed subset of X(R).

Proof. Assume that C is incompressible. Then C = \JC by 3.19. If h(C)

were reducible, then there exist right ideals A A 2, • • • , A suchthat hiA ) 4

hiC) and  hiC) = U" ,  h(A .).   Since  h(A ) C h(C)  and  h(A ) ¿ h(C), A   £ C for
Z=i l I I I

every  z.   Hence there is  / £ X(R)  such that  C Ç /  and A . ¿_ I fot every  i.   This

means that h(C) </_ U"_,  h(A .),  which is a contradiction.   Conversely, assume

that C = \JC and hiC)  is irreducible.   Let  \A     A2, ■ ■ ■ , A   S be a finite set of

right ideals such that A .<£__ C  for every  i.   If there is no maximal regular right

ideal /  such that  C C  / and  A . <¡L I for every  i,  then hiC) C  U" ,  hiA .).   Since
— i *=■ '      ' — z = l I

hiC)  is itreducible,  hiC) C hiA ) for some   i.   Hence   C 7> A A .   /> A ..   This is
î — l —    v        l     — z

impossible.

3.21. Corollary. Let R be a ring such that R is not a radical ring. Then

XiR)  is irreducible if and only if ]iR), the Jacobson radical, is incompressible.

3-22.   Example.    Let  R   be a primitive ring with a minimal right ideal A.   If

A = eR  for some idempotent e / 1   in  P  such that  eRe   is an infinite division

ring then eR  is incompressible.   Because, in this case,   X(R)  is irreducible by

[3, 2.4] and  h(eR)  is irreducible by 2.8.

3.23.   Theorem.    Let  R   be a ring.   Then every proper right ideal of R   is

incompressible if and only if (i)   A = AR  for every right ideal A   of R,  and

(ii) either R   is a division ring or R   is a dense ring of linear transformations of

a left vector space  V  of dimension two or more over an infinite division ring  D

such that  V  is injective as an R-module and every simple R-module is isomorphic

to  V.

Proof.   Assume that every proper right ideal of R   is incompressible.   Then

for every right ideal A   of R,  A = AR  by 3.19 and 3.10.   Suppose that  R   is not

a division ring.   Let x  and y  be two distinct points in  X(r).   Since  jix) f~l jiy)

is incompressible,  hijix) D jiy))  is irreducible by 3.20.   Hence   lix, y)  must

contain an infinite number of points.   Thus by 3.5, every pair of simple R-mod-

ules are isomorphic.   Since zero ideal is incompressible,  R   is semisimple and,

since every pair of simple R-modules are isomorphic, every simple R-module is

faithful.   Hence   R  must be a primitive ring and  X(R)  is irreducible.   Thus by

[3, 2.4], R  must be a dense ring of linear transformations of a vector space of

dimension two or more over an infinite division ring.   If every proper right ideal
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of  R  is incompressible, then every proper right ideal of  R   is an intersection of

maximal regular right ideals by 3.19.   Thus by 3.16, every simple P-module is

injective.   Conversely, assume (i) and (ii).   Then by 3.16, if A   is a right ideal

such that A 4 R  then y/A = A.   Since every simple R-module is isomorphic to  V,

ii x £ XiR) then x - vL for some   0 4 v £ V.   Hence there is subspace  If of  I7

such that A = W   .   If hiA) were not irreducible then there exist right ideals

A,, A., ..., A     such that h(A) = U" , h(A .) and h(A) / h(A ) for every  i.   Let
1 '      2' '      n i=l i i '

W . = \w £ VI I wA . = OS  for each  i.   Then  W .  is a subspace of W  and W = \J" , VI..
z ' z z r z=l     z

Note that W . is a proper subspace of W since h(A ) 4 h(A). Hence by [3, 2.1]

the division ring D must be a finite field. This is impossible. Thus A is in-

compressible by 3.20.
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