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ADDENDUM TO "MODULAR REPRESENTATIONS OF

METABELIAN GROUPS"

BY

B. G. BASMAJI

In this note the principal indecomposable modules of  Í2G are determined

where   G is a finite metabelian group and  fi is an algebraically closed field with

characteristic   p dividing   |G|.  The notations are the same as of  [l].

Let   P be a p-Sylow subgroup of   KÍH). Since   KiH)/Kill)' is abelian, there

exist subgroups   Vj D K(/Y)'and   V2 D KiH)' such that   KiH)/KiH)' S V JKill)' x

V2/KiH)', Vx/KiH)' is a p-group and   p \ \V 2/KiH)'\. Let   Pj   be a p-sylow sub-

group of   V     then  P. C KiH)   and thus   P.   is normal in   V,.  Hence there exists a

subgroup   V of   V    such that   VC = P. o V, the semidirect product, and   p-f |V|.

Clearly   K(H) =   (P, V),  P Pi V = 1, and   |V| = |fC(W)|/|P|.

For each   K(H), A/H cyclic and  p\\A/H\, fix a subgroup   V with the above

properties.  Let  r   be a linear representation of   K(ll) with  ker r   D A = H such

that  7V  is conjugate to  o where   K = K(A). Then  t      is irreducible and   r   ' £

B(o, H). Let  x £ G and define

(.(r')=_Ly   r'U-1«-1*)«

and  e At ) = e(r ). We prove

Theorem 4.  All the principal indecomposable modules of Í2G  are given by

the collection of the ideals  ilGeir') with A £ [J MÍH, KiH)) where the union is

over all subgroups  H  of A  such that A/H is cyclic and p -f |A/z7|.

Proof.  Let   T   be an ordinary representation of   KiH) such that  ker t   =

ker T   7) P and for all   a £ KiH),  T'(a) = r'(a), and   T '   be the restriction of   T'

to  V.  Define   T'(x)(a) = T'(x~lax) where  x £ G.  Since   ker T' D P, it follows

that  T'v / T¿(x) it  x 4 KiH). Define

then   e  (T ) ate minimal indempotents of  QV and   e  (T ) • e  (T ) = 0  if and only
x r *" xy ^

if xKiH) / y KiH). Similarly, if  r, is another linear representation of   K(W) not

conjugate to  r   and ker r.   O A = ff, and if   T     is  similatly  defined  then
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e  (T') • e J/T'A = 0 for any  x and  z in  G.

Now  e(T') = e  (T ) is also an indempotent of QG. We have    QG <g>-     QVe(T ) =

QGe(T ), since from the definitions of tensor products and balanced maps there is

a ÇG-homomorphism of  QG ®-     QVe(T ) onto  QGe(T ), and both modules are of

0-dimension   |G|/| V| = pa\G/K(H)\, pa\ \ \K(H)\, with  \he(T')\ h runs over a set

of coset representatives of   V in   G\ a Q-basis for  QGe(T ). Hence   QGe(T )

affords   (7¿)G.   Thus we have   ex(r') • c  (r') = 0 if and only if  xK(tf) / yKiH),

exiA) ■ eJj'A = 0 if ker r ' n A = H and r^ is not conjugate to r , and  iiGe(r'), a direct

summand of  OG, affording   (r')     of degree  pa\G/KiH)\. lí  y is the chatacter of

T , then from the Frobenius reciprocity theorem,   1 = ixv, ix   )y) - (Xi/t X   L or

J  is a composition factor of  (r')   .  Assume  OGe(r') = U. © ■ • • © U ,   U- somer

indecomposable components of  ÎÎG, then  r      is afforded by a composition factor

of some   (/.or   11. belongs to   Bio, H).  But from Theorem 3 of   [l], U. is of degree

p \G/KiH)\  and hence   U. = ÎÎGe(r') or  OGc(r'), and   (r') ', are indecomposable.

Each  T      £ Bio, H) is associated with   |G/K(W)|   (= degree of  r    ) distinct

indecomposable components of  fiG, namely  ilGe  (r ), x £ G/Kill). Moreover, if

QGe(r. ) belongs to  Bio. , H A, where   Bio. , H A is a block different from Bio, H),

then   e(r ) • e(r, ) = 0.  Now the result follows by applying Theorems 1 and 2,

which completes the proof.

Define

eio, H) =£'        X ex{T,)

xeG/K(H)

where the summation   2   is over all distinct  r      £ Bio, H). We have

Corollary.  All the indecomposable two-sided ideals  iblocks) of ÍIG  are

given by the collection of the ideals ÇlGeio, H) where H  runs over all noncon-

fugate subgroups of A, A/H  cyclic, p-\ç \A/H\, and o runs over the elements of

CiH, KiA)).
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