α_{τ} is finite for $*_1$ -categorical τ

ΒY

JOHN T. BALDWIN(1)

ABSTRACT. Let T be a complete countable \aleph_1 -categorical theory. Definition. If \mathfrak{A} is a model of T and A is a 1-ary formula in $L(\mathfrak{A})$ then A has rank 0 if $A(\mathfrak{A})$ is finite. $A(\mathfrak{A})$ has rank n degree m iff for every set of m + 1 formulas $B_1, \dots, B_{m+1} \in S_1(L(\mathfrak{A}))$ which partition $A(\mathfrak{A})$ some $B_i(\mathfrak{A})$ has rank $\leq n - 1$. Theorem. If T is \aleph_1 -categorical then for every \mathfrak{A} a model of T and every $A \in S_1(L(\mathfrak{A}))$, $A(\mathfrak{A})$ has finite rank. Corollary. α_T is finite. The methods derive from Lemmas 9 and 11 in "On strongly minimal sets" by Baldwin and Lachlan. α_T is defined in "Categoricity in power" by Michael Morley.

In [4] Morley assigns an ordinal α_T to each complete theory T. He conjectures that if T is \aleph_1 -categorical α_T is finite. In this paper we prove this conjecture.

We assume familiarity with [1] and [4] but for convenience we list the principal results and definitions from those papers which are used here. Our notation is the same as in [1] with the following exceptions.

We deal with a countable first order language L. We may extend the language L in several ways. If \mathbb{C} is an L-structure there is a natural extension $L(\mathbb{C})$ of L obtained by adjoining to L a constant a for each $a \in |\mathbb{C}|$ (the universe of \mathbb{C}). For each sentence $A(a_1, \dots, a_n) \in L(\mathbb{C})$ we say \mathbb{C} satisfies $A(a_1, \dots, a_n)$ and write $\mathbb{C} \models A(a_1, \dots, a_n)$ if in Shoenfield's notation $\mathbb{C}(A(a_1, \dots, a_n)) = T$ [7, p. 19]. If \mathbb{C} is an L-structure and X is a subset of $|\mathbb{C}|$ then L(X) is the language obtained by adjoining to L a name x for each $x \in X$. (\mathbb{C}, X) is the natural expansion of \mathbb{C} to an L(X)-structure. A structure \mathbb{B} is an *inessential expansion* [7, p. 141] of an L-structure \mathbb{C} if $\mathbb{B} = (\mathbb{C}, X)$ for some $X \subseteq |\mathbb{C}|$.

 $S_n(L)$ denotes the set of formulas of L with free variables among v_0, \dots, v_{n-1} . If A is a formula such that u_1, \dots, u_n in the natural order are the free variables in A, then $A(\mathbb{C})$ is the set of *n*-tuples b_1, \dots, b_n such that

Copyright © 1973, American Mathematical Society

Presented to the Society, August 6, 1970; received by the editors February 24, 1971. AMS (MOS) subject classifications (1970). Primary 02H05.

Key words and phrases. \aleph_1 -categorical, strongly minimal, α_{T^*}

⁽¹⁾ This material was contained in a Ph. D. thesis prepared under the direction of A. H. Lachlan and submitted to Simon Fraser University. The research was supported by a National Research Council Post Graduate Scholarship.

 $(\mathfrak{l} \models A_{u_1, \dots, u_n}(b_1, \dots, b_n))$. If *p* is a unary predicate symbol we abbreviate $pv_0(\mathfrak{l})$ by $p(\mathfrak{l})$.

A consistent set of L-sentences is a *theory* in L. If T and T' are theories in L then T' extends T if $T \subseteq T'$. If T is a theory in a language L then T' is an *inessential extension* of T if there is a model $(\mathfrak{P} \text{ of } T \text{ and a subset } X \text{ of} |(\mathfrak{P}| \text{ such that } T' = Th((\mathfrak{P}, X) \text{ (i.e., the set of all sentences in } L(X) true of$ $<math>((\mathfrak{P}, X))$. T' is a *principal extension* of T if T' is an inessential extension of T by a finite number of constants and a set of nonlogical axioms for T' can be obtained by adjoining a finite set of sentences to a set of nonlogical axioms for T.

Let Γ be a subset of $S_k(L)$. Then Γ is a k-type in T if there is some model \mathfrak{A} of T and elements $a_1, \dots, a_k \in |\mathfrak{A}|$ such that $\mathfrak{A} \models A(a_1, \dots, a_k)$ if and only if $A \in \Gamma$. If \mathfrak{A} is a model of T and $X \subseteq |\mathfrak{A}|$ then a k-type Γ is realized in X if there exists $x_1, \dots, x_k \in X$ such that $\mathfrak{A} \models A(x_1, \dots, x_k)$ for each $A \in \Gamma$. A k-type Γ is a principal k-type in T if there is a formula $A \in$ $S_k(L(\mathfrak{A}))$ such that, for each formula B in Γ , $\mathfrak{A} \models \forall v_0, \dots, \forall v_{k-1}(A \to B)$. Since T is complete there is one 0-type truth.

Following Morley [4] we assume that each $T = \Sigma^*$ for some Σ and thus that each *n*-ary formula Φ is equivalent in T to an *n*-ary relation A. $\Re(T)$ is a set of all substructures of models of T. The following summarizes with slight changes in notation the second paragraph of §2 in [4]. If \mathfrak{A} is an L-structure $\mathfrak{P}(\mathfrak{A})$ is the set of all open sentences in $L(\mathfrak{A})$ which are true in $(\mathfrak{A}, |A|)$. If $\mathfrak{A} \in \mathfrak{N}(T), T(\mathfrak{A}) = \mathfrak{P}(\mathfrak{A}) \cup T$ is a complete theory in $L(\mathfrak{A})$. Let $S_k(\mathfrak{A})$ denote the Boolean algebra whose elements are the equivalence classes into which $S_k(L(\mathfrak{A}))$ is partitioned by the relation of equivalence in $T(\mathfrak{A})$, and whose operations of intersection, union, and complementation are those induced by conjunction, disjunction and negation respectively. The Stone space of $S_1(\mathfrak{A})$, the set of dual prime ideals of $S_1(\mathfrak{A})$, is a topological space denoted $S(\mathfrak{A})$. A dual prime ideal of $S_k(\mathfrak{A})$ is a k-type of $T(\mathfrak{A})$. This is a special case of the definition of k-type in the preceding paragraph. Note that, if $p \in S(\mathfrak{A})$ and \mathfrak{A}' is an inessential expansion of \mathfrak{A} , p is naturally a member of $S(\mathfrak{A}')$.

In [4] Morley makes the following definition. For each ordinal α and each $\mathfrak{A} \models \epsilon \mathfrak{N}(T)$, subspaces $S^{\alpha}(\mathfrak{A})$ and $\operatorname{Tr}^{\alpha}(\mathfrak{A})$ of $S(\mathfrak{A})$ are defined inductively by (1) $S^{\alpha}(\mathfrak{A}) = S(\mathfrak{A}) - \bigcup_{\beta \leq \alpha} \operatorname{Tr}^{\beta}(\mathfrak{A})$,

(2) $p \in \operatorname{Tr}^{\alpha}(\mathfrak{A})$ if (i) $p \in S^{\alpha}(\mathfrak{A})$ and (ii) for every map $(f^*: S(\mathfrak{B}) \to S(\mathfrak{A}))$ where $\mathfrak{B} \in \mathfrak{N}(T)$ and f is a monomorphism from \mathfrak{A} into \mathfrak{B} , $f^{*-1}(p) \cap S^{\alpha}(\mathfrak{B})$ is a

set of isolated points in $S^{\alpha}(\mathcal{B})$. (See [4, p. 519] for the definition of f^* .)

If $i_{\mathfrak{AB}}$ is an elementary embedding of \mathfrak{A} into \mathfrak{B} then $i_{\mathfrak{AB}}^*$ maps $S(\mathfrak{B})$ onto $S(\mathfrak{A})$. Note that $q \in i_{\mathfrak{AB}}^{*-1}(p)$ is equivalent to $q \cap S_1(L(\mathfrak{A})) = p$.

An element p of $S(\mathfrak{A})$ is algebraic if $p \in \mathrm{Tr}^{0}(\mathfrak{A})$; p is transcendental in rank α if $p \in \mathrm{Tr}^{\alpha}(\mathfrak{A})$. If $A \in S_{1}(L(\mathfrak{A}))$, $U_{A} = \{p \mid p \in S(\mathfrak{A}) \land A \in p\}$.

The following definitions are originally due to Marsh [3]. Let \mathfrak{A} be an Lstructure and X a subset of $|\mathfrak{A}|$. The algebraic closure of X, denoted by cl(X), is the union of all finite subsets of $|\mathfrak{A}|$ definable in (\mathfrak{A}, X) . X spans Y if $Y \subseteq$ cl(X). X is independent if for each $x \in X$, $x \notin cl(X - \{x\})$. X is a basis for Y if X is an independent subset of Y which spans Y. If every basis for Y has the same cardinality μ , we define the dimension of Y to be μ and write $\dim(Y) = \mu$.

Let \mathcal{C} be an L-structure. A subset X of $|\mathcal{C}|$ is minimal in \mathcal{C} if X is infinite, definable in \mathcal{C} , and for any subset Y of $|\mathcal{C}|$ which is definable in \mathcal{C} either $Y \cap X$ or X - Y is finite.

If $D \in S_1(L(\mathfrak{A}))$ and $X = D(\mathfrak{A})$ then X is strongly minimal in \mathfrak{A} if for any elementary extension \mathfrak{B} of \mathfrak{A} , $D(\mathfrak{B})$ is minimal in \mathfrak{B} . Let \mathfrak{A}_0 and \mathfrak{A}_1 be models of a complete theory T. Since up to isomorphism any two models of T have a common elementary extension, $D(\mathfrak{A}_0)$ is strongly minimal in \mathfrak{A}_0 if and only if $D(\mathfrak{A}_1)$ is strongly minimal in \mathfrak{A}_1 . Thus, without ambiguity we define a formula $D \in S_1(L)$ to be strongly minimal in T if there is a model \mathfrak{A} of T such that $D(\mathfrak{A})$ is strongly minimal in \mathfrak{A} .

We will refer to the following theorem which is Theorem 5 in [1].

Theorem 0. If \mathcal{C} is a model of an \aleph_1 -categorical theory T then \mathcal{C} is homogeneous.

Our first step in the proof of Morley's conjecture is to introduce a concept of the rank of a formula in a model of a theory. We will compare this notion with three other sorts of rank.

If \mathfrak{A} is an L-structure and A is an element of $S_1(L(\mathfrak{A}))$ then we defined A to be minimal in \mathfrak{A} if $A(\mathfrak{A})$ is infinite and, for each formula $B \in S_1(L(\mathfrak{A}))$, $(B \wedge A)(\mathfrak{A})$ or $(\sim B \wedge A)(\mathfrak{A})$ is finite. We will define a notion of rank of a formula in a model such that minimal formulas have rank one.

Well order the class X consisting of $\{-1\}$ and the direct product of the class of all ordinals with the positive integers by placing -1 first in the order and then following the natural lexicographic order. For each L-structure (f define $f_{\mathfrak{A}}: X \to 2^{S_1(L(\mathfrak{A}))}$ by induction

$$f_{\mathcal{Q}}(-1) = \{A \in S_1(L(\mathcal{Q})) \mid A(\mathcal{Q}) = \emptyset\}.$$

 $A \in f_{\mathfrak{C}}(\langle \alpha, k \rangle)$ if and only if $A \notin f(x)$ for any $x < \langle \alpha, k \rangle$ and if for any set of k+1 formulas B_1, \dots, B_{k+1} from $S_1(L(\mathfrak{A}))$ such that the sets $B_i(\mathfrak{A})$ partition $A(\mathfrak{A})$ there exists an $x < \langle \alpha, 1 \rangle$ with one of the $B_i \in f(x)$.

Let T be totally transcendental, \mathfrak{A} a model of T, and $A \in S_1(L(\mathfrak{A}))$. Call a formula A rankless if A is not in the range of $f_{\mathfrak{A}}$. We claim there is no formula $A \in S_1(L(\mathfrak{A}))$ such that A is rankless. For, if so, we can construct for each finite binary sequence σ a formula A_{σ} such that (1) A_{σ} is rankless and (2) if $\sigma' = \sigma \cup \langle \dim \sigma, 0 \rangle$ and $\sigma'' = \sigma \cup \langle \dim \sigma, 1 \rangle$ then $A_{\sigma'} = \sim A_{\sigma''}$. Let X be the set of constants from $|\mathfrak{A}|$ which occur in any A_{σ} . Then X is countable but S(X) is uncountable contrary to the hypothesis that T is totally transcendental.

Thus if (\mathfrak{A}) is a model of a totally transcendental theory we may define for each $A \in S_1(L(\mathfrak{A}))$ the rank of $A(\mathfrak{A})$ (the rank of A in (\mathfrak{A}) which we denote by $R_{\mathfrak{A}}(A)$. $R_{\mathfrak{A}}(A)$ is -1 if $A \in f_{\mathfrak{A}}(-1)$. $R_{\mathfrak{A}}(A)$ is $\langle \alpha, k \rangle$ if $A \in f_{\mathfrak{A}}(\langle \alpha, k \rangle)$.

Notice that if $\mathfrak{A} \leq \mathfrak{B}$ and $A \in S_1(L(\mathfrak{A}))$ then $R_{\mathfrak{A}}(A) \leq R_{\mathfrak{B}}(A)$. If \mathfrak{A} is a saturated model and $\mathfrak{B} \geq \mathfrak{A}$ then $R_{\mathfrak{A}}(A) = R_{\mathfrak{B}}(A)$. If $A(\mathfrak{A}) \subseteq B(\mathfrak{A})$ then $R_{\mathfrak{A}}(A) \leq R_{\mathfrak{A}}(\mathfrak{B})$. Finally if $R_{\mathfrak{A}}(A) = (\alpha, k)$ and $(\beta, m) < (\alpha, k)$ then there is a formula $B \in S_1(L(\mathfrak{A}))$ such that $B(\mathfrak{A}) \subseteq A(\mathfrak{A})$ and $R_{\mathfrak{A}}(\mathfrak{B}) = (\beta, k)$. Let \mathfrak{A} be a structure with one binary relation R such that R is an equivalence relation and for each n there is a unique equivalence class with exactly n elements but there are no infinite equivalence classes in \mathfrak{A} . Then $Tb(\mathfrak{A})$ is totally transcendental and $R_{\mathfrak{A}}(v_0 = v_0) = (1, 1)$. But for each positive integer k there is an elementary extension \mathfrak{B}_k of \mathfrak{A} with $R_{\mathfrak{B}_k}(v_0 = v_0) = (1, k)$ and there is an elementary extension \mathfrak{B} with $R_{\mathfrak{B}_k}(v_0 = v_0) = (2, 1)$. It is an immediate consequence of Theorem 2 that if \mathfrak{A} is a model of an \mathfrak{K}_1 -categorical theory T, $A \in S_1(L(\mathfrak{A}))$, and $\mathfrak{B} \geq \mathfrak{A}$ then $R_{\mathfrak{B}}(A) = R_{\mathfrak{A}}(A)$. In fact this remark appears to be equivalent to Theorem 2.

In [4], Morley introduced for a countable first order theory $T, X \in \mathcal{N}(T)$, and $p \in S(X)$ the concept of the transcendental rank of p. In [2] Lachlan interprets this notion in terms of the rank of a formula A in $S_1(L(\mathbb{P}))$ as follows

$$r_{\mathbf{a}}(A) = \begin{cases} -1 & \text{if } A(\widehat{\alpha}) = \emptyset, \\ \sup\{\alpha \mid (\exists p)p \in U_A \land p \in \operatorname{Tr}^{\alpha}(\widehat{\alpha})\} & \text{otherwise.} \end{cases}$$

We relate $r_{\mathbf{a}}(A)$ to $R_{\mathbf{a}}(A)$ in the following theorem.

Theorem 1. Let \mathcal{P} be a model of a totally transcendental theory T and A $\in S_1(L(\mathcal{P}))$.

(i) $r_{\mathbf{A}}(A) \ge \sup \{\alpha \mid \exists \mathcal{B}, \exists k (\mathcal{B} \succeq \mathcal{A} \land R_{\mathbf{B}}(A) = \langle \alpha, k \rangle) \}.$

(ii) For some \mathcal{B} an elementary extension of \mathcal{A} and some integer k, $R_{\mathfrak{B}}(A) = (r_{\mathfrak{A}}(A), k)$.

(iii) $r_{\mathcal{A}}(A) = \sup \{ \alpha \mid \exists \mathcal{B}, \exists k (\mathcal{B} \succeq \mathcal{A} \land R_{\mathcal{B}}(A) = (\alpha, k)) \}.$

(iv) For some elementary extension \mathcal{B} of \mathcal{A} and some positive integer k, $R_{\mathcal{B}}(A) = \sup \{R_{\mathcal{C}}(A) \mid \mathcal{C} \succeq \mathcal{A}\} = (r_{\mathcal{A}}(A), k).$

(v) If $R_{\hat{\mathbf{G}}}(A) = (\alpha, k)$ there is an elementary extension \mathcal{B} of \mathcal{C} and a formula $B \in S_1(L(\mathcal{B}))$ such that $B(\mathcal{B}) \subseteq A(\mathcal{B})$ and $R_{\hat{\mathbf{G}}}(B) = (\alpha, 1) = \sup \{R_{\mathcal{C}}(B) | \mathcal{C} \geq \mathcal{B}\}.$

To prove this theorem we need the following extension of a lemma in [2].

Lemma 1. Let T be a first order theory, \mathfrak{A} a model of T, $A \in S_1(L(\mathfrak{A}))$ and suppose $r_{\mathfrak{A}}(A) = \alpha$ then for each $\beta < \alpha$ there exists an elementary extension \mathfrak{B} of \mathfrak{A} such that $i_{\mathfrak{A}\mathfrak{B}}^{*-1}(U_A) \cap \operatorname{Tr}^{\beta}(\mathfrak{B})$ is infinite.

Proof. If the lemma is false there exists a model of T and a formula $A \in S_1(L(\mathbb{C}))$ with $r_{\mathbb{C}}(A) = \alpha$ and some $\beta < \alpha$ such that, for each $\mathbb{B} \geq \mathbb{C}$, $i_{\mathbb{C}}^{*-1}(U_A) \cap \operatorname{Tr}^{\beta}(\mathbb{B})$ is finite. Suppose $q \in \operatorname{Tr}^{\beta+1}(\mathbb{B})$. Then for each $\mathbb{C} \geq \mathbb{B}$, $i_{\mathbb{B}_{\mathbb{C}}}^{*-1}(q) \cap S^{\beta+1}(\mathbb{C})$ is a set of isolated points in $S^{\beta+1}(\mathbb{C})$. But then if $A \in q$, $i_{\mathbb{B}_{\mathbb{C}}}^{*-1}(q) \cap S^{\beta}(\mathbb{C})$ is a set of isolated points in $S^{\beta}(\mathbb{C})$ since $i_{\mathbb{C}}^{*-1}(U_A) = i_{\mathbb{B}_{\mathbb{C}}}^{*-1}(U_A)$ and $i_{\mathbb{C}_{\mathbb{C}}}^{*-1}(U_A) \cap \operatorname{Tr}^{\beta}(\mathbb{C})$ is finite. Thus $q \in \operatorname{Tr}^{\beta}(\mathbb{B})$ but q was chosen in $\operatorname{Tr}^{\beta+1}(\mathbb{B})$ so this is impossible. Hence $i_{\mathbb{B}_{\mathbb{B}}}^{*-1}(U_A) \cap \operatorname{Tr}^{\beta+1}(\mathbb{B})$ is empty and by induction for each $\gamma \geq \beta + 1$, for each $\mathbb{C} \geq \mathbb{C}$, $\operatorname{Tr}^{\gamma}(\mathbb{C}) \cap i_{\mathbb{C}_{\mathbb{C}}}^{*-1}(U_A)$ is empty. So $r_{\mathbb{C}}(A) \neq \alpha$.

Proof of Theorem 1. (i) The proof proceeds by induction on $r_{\mathfrak{g}}(A)$. If $r_{\mathfrak{g}}(A) = -1$ then $\models_T \sim \exists v_0 A$ and so the theorem holds. Suppose, as the induction hypothesis, the theorem holds for a formula A if $r_{\mathfrak{g}}(A) = \gamma$ is less than α . We first prove that, for each $\mathfrak{B} \succeq \mathfrak{A}$, $R_{\mathfrak{B}}(A) < (\alpha + 1, 1)$. If not, there is some $\mathfrak{B}_1 \succeq \mathfrak{A}$ with $R_{\mathfrak{B}_1}(A) \ge (\alpha + 1, 1)$. Then there exists a sequence of formulas $(A_i)_{i < \omega}$ each $A_i \in S_1(L(\mathfrak{B}_1))$ such that $A_i(\mathfrak{B}_1) \subseteq A(\mathfrak{B}_1)$, $(A_i \land A_j)(\mathfrak{B}_1) = \emptyset$ if $i \neq j$, and $R_{\mathfrak{B}_1}(A_i) = (\alpha, 1)$. Now we show that for each natural number i there is a 1-type $p_i \in U_{A_i} \cap S^{\alpha}(\mathfrak{B}_1)$.

Case 1. α is a successor ordinal, say $\alpha = \lambda + 1$. Since $R_{\mathfrak{B}_1}(A_i) = (\lambda + 1, 1)$ there exists a sequence of formulas $(A_{ij})_{j < \omega}$ each $A_{ij} \in S_1(L(\mathfrak{B}_1))$, such that $A_{ij}(\mathfrak{B}_1) \subseteq A_i(\mathfrak{B}_1)$, $(A_{ij} \wedge A_{ik})(\mathfrak{B}_1) = \emptyset$ if $j \neq k$, and $R_{\mathfrak{B}_1}(A_{ij}) = (\lambda, 1)$. Then by induction, for each j, $r_{\mathfrak{B}_1}(A_{ij}) \ge \lambda$ so there exists $p_{ij} \in U_{A_{ij}} \cap \operatorname{Tr}^{\lambda}(\mathfrak{B}_1)$. Then for each i, since $S(\mathfrak{B}_1)$ is compact and U_{A_i} is closed, there exists p_i , an accumulation point of the p_{ij} , such that $p_i \in U_{A_i} \cap S_i^{\lambda+1}(\mathfrak{B}_1)$.

Case 2. α is a limit ordinal. α has cofinality ω since $\alpha < \omega_1$ [2]. Then there exists a sequence of ordinals $(\alpha_j)_{j < \omega}$ and a sequence of formulas $(A_{ij})_{j < \omega}$, each $A_{ij} \in S_1(L(\mathfrak{B}_1))$, such that $A_{ij}(\mathfrak{B}_1) \subseteq A_i(\mathfrak{B}_1)$, $(A_{ij} \wedge A_{ik})(\mathfrak{B}_1) = \emptyset$ if $j \neq k$, $R_{\mathfrak{B}_1}(A_{ij}) = (\alpha_j, 1)$ for each j, and the α_j increase monotonically to α . Then by induction $r_{\mathfrak{B}_1}(A_{ij}) \ge \alpha_j$ so there exists a type $p_{ij} \in U_{A_{ij}} \cap \operatorname{Tr}^{\alpha_j}(\mathfrak{B}_1)$. Since U_{A_i} is closed and $S(\mathfrak{B}_1)$ is compact there exists p_i an accumulation point of the p_{ij} for each i. But $p_i \notin \operatorname{Tr}^{\gamma}(\mathfrak{B}_1)$ for any $\gamma < \alpha$ so $p_i \in U_{A_i} \cap S^{\alpha}(\mathfrak{B}_1)$.

Since U_A is closed there exists p, an accumulation point of the p_i and

 $p \in U_A \cap S^{\alpha+1}(\mathcal{B}_1)$ since each $p_i \in U_A \cap \operatorname{Tr}^{\alpha}(\mathcal{B}_1)$. Hence $i^*_{\mathfrak{A}\mathfrak{B}_1}(p) \in U_A \cap S^{\alpha+1}(\mathfrak{A})$. But then $r_{\mathfrak{A}}(A) \geq \alpha + 1$ so (i) is proved.

(ii) Now we show that there exists $\mathfrak{B} \succeq \mathfrak{A}$ such that for some k, $R_{\mathfrak{g}}(A) = (\alpha, k)$. By Lemma 1 since $r_{\mathfrak{q}}(A) = \alpha$, for each $\gamma < \alpha$ there exists an elementary extension \mathfrak{A}_{γ} of \mathfrak{A} such that $i_{\mathfrak{A}_{\gamma}}^{*-1}(U_{A}) \cap \operatorname{Tr}^{\gamma}(\mathfrak{A}_{\gamma})$ is infinite. Hence there exists a sequence of formulas $(A_{i}^{\gamma})_{i < \omega}$, each $A_{i}^{\gamma} \in S_{1}(L(\mathfrak{A}_{\gamma}))$, such that $(A_{i}^{\gamma} \land A_{j}^{\gamma})(\mathfrak{A}_{\gamma}) = \emptyset$ if $i \neq j$, $A_{i}^{\gamma}(\mathfrak{A}_{\gamma}) \subseteq A(\mathfrak{A}_{\gamma})$ and $r_{\mathfrak{A}_{\gamma}}(A_{i}^{\gamma}) = \gamma$. So by induction there exists $\mathfrak{A}_{\gamma,i}$ such that for each γ and $iR_{\mathfrak{A}_{\gamma,i}}(A_{i}^{\gamma}) = (\gamma, k)$ for some k. Without loss of generality we may assume $(|\mathfrak{A}_{\gamma,i}| - |\mathfrak{A}|) \cap (|\mathfrak{A}_{\delta,j}| - |\mathfrak{A}|) = \emptyset$ if $(\gamma, i) \neq (\delta, j)$. There exists a model \mathcal{C} such that for each (γ, i) , $\mathcal{C} \succeq \mathfrak{A}_{\gamma,i}$ by the compactness theorem. Then for each $\gamma < \omega$ there is a k such that $R_{\mathfrak{C}}(A_{k}^{\gamma}) \geq (\gamma, k)$ and $(A_{i}^{\gamma} \land A_{j}^{\gamma})(\mathcal{C}) = \emptyset$ if $i \neq j$. So $R_{\mathfrak{C}}(A) \geq (\alpha, 1)$. Since for each $\mathfrak{B} \succeq \mathfrak{A}$, $R_{\mathfrak{G}}(A) < (\alpha + 1, 1)$ by (i), for some k, $R_{\mathfrak{C}}(A) = (\alpha, k)$ and \mathcal{C} is the required model.

(iii) This follows immediately from (i) and (ii).

(iv) We must find $\mathfrak{B} \succeq \mathfrak{A}$ and a positive integer k, such that $R_{\mathfrak{B}}(A) = (r_{\mathfrak{A}}(A), k) = \sup\{R_{\mathfrak{C}}(A)| \ \mathfrak{C} \succeq \mathfrak{A}\}$. By (ii) choose $\mathfrak{B}_0 \succeq \mathfrak{A}$ such that, for some k, $R_{\mathfrak{B}}(A) = (r_{\mathfrak{A}}(A), k)$. Then applying (i) for each $\mathfrak{C} \succeq \mathfrak{B}_0$ there is an integer k such that $R_{\mathfrak{C}}(A) = (r_{\mathfrak{A}}(A), k)$. It suffices to show that the set of such k is bounded. If not, there exists an increasing sequence of positive natural numbers n_m and a sequence of models \mathfrak{B}_m such that $\mathfrak{B}_m \succeq \mathfrak{B}_0$ and $R_{\mathfrak{B}_m}(A) = (r_{\mathfrak{A}}(A), n_m)$. We may assume that, if $m \neq l$, $(|\mathfrak{B}_m| - |\mathfrak{B}_0|) \cap (|\mathfrak{B}_l| - |\mathfrak{B}_0|) = \emptyset$. By the compactness theorem there exists a model \mathfrak{P} which elementarily extends each \mathfrak{B}_m . But then $R_{\mathfrak{P}}(A) \geq (r_{\mathfrak{A}}(A) + 1, 1)$ contrary to (i). Hence there exists a maximum k and an elementary extension \mathfrak{B} of \mathfrak{B}_0 such that

$$R_{\mathbf{g}}(A) = (r_{\mathbf{a}}(A), k) = \sup \{R_{\mathbf{c}}(A) \mid \mathcal{C} \geq \mathcal{B}\}.$$

(v) We will construct a sequence of models \mathcal{B}_i and formulas $B_i \in S_1(L(\mathcal{B}_{i-1}))$ such that $B_{i+1}(\mathcal{B}_i) \subseteq B_i(\mathcal{B}_i)$, $R_{\mathfrak{B}_i}(B_{i+1}) = (\alpha, 1)$, $R_{\mathfrak{B}_{i+1}}(B_{i+1}) = \sup\{R_{\mathfrak{C}}(B_{i+1})| \ \mathcal{C} \succeq \mathcal{B}_{i+1}\}$ and if $R_{\mathfrak{B}_i}(B_i) > (\alpha, 1)$ then $R_{\mathfrak{B}_{i+1}}(B_{i+1}) < R_{\mathfrak{B}_i}(B_i)$. Since there is no infinite descending sequence in a well ordered set, for some *i*, $R_{\mathfrak{B}_i}(B_i) = (\alpha, 1)$ and letting $\mathcal{B} = \mathcal{B}_i$ and $B = B_i$ proves (v). Let $\mathcal{B}_0 = \mathcal{C}$ and $B_0 = A$. Suppose \mathcal{B}_i and B_i have been chosen for i < n. Let $B_n \in S_1(L(\mathcal{B}_{n-1}))$ such that $B_n(\mathcal{B}_{n-1}) \subseteq B_{n-1}(\mathcal{B}_{n-1})$ and $R_{\mathfrak{B}_{n-1}}(B_{n-1}) = (\alpha, 1)$. Then by (iv) choose $\mathfrak{B}_n \succeq \mathfrak{B}_{n-1}$ such that

$$R_{\mathfrak{B}_n}(B_n) = \sup\{R_{\mathcal{C}}(B_n) \mid \mathcal{C} \succeq \mathcal{B}_n\}.$$

If $R_{\mathfrak{B}_n}(B_n) > (\alpha, 1)$ then both $R_{\mathfrak{B}_n}(B_n \wedge B_{n+1})$ and $R_{\mathfrak{B}_n}(B_n \wedge B_{n+1})$ are greater than or equal to $(\alpha, 1)$. Hence, if $R_{\mathfrak{B}_n+1}(B_{n+1}) \ge R_{\mathfrak{B}_n}(B_n)$, $R_{\mathfrak{B}_n+1}(B_n) > R_{\mathfrak{B}_n}(B_n)$ contrary to the choice of \mathfrak{B}_n .

At the suggestion of the referee we include the following comparison of the rank defined here with that defined by Shelah in his paper on the uniqueness of prime models [6].

Shelah chooses a sufficiently saturated model \mathfrak{M} of T (for T totally transcendental a countable saturated model suffices) and defines for $A \in S_1(L(\mathfrak{M}))$,

- (A) $\rho(A) = -1$ iff $\mathfrak{M} \models \sim \exists v_0 A$.
- (B) $\rho(A) = \alpha$ iff
 - (1) $\mathfrak{M} \models \exists v_0 A$,
 - (2) for no $\beta < \alpha$, $\rho(A) = \beta$,
 - (3) for no $B \in S_1(L(\mathfrak{M}))$ do both $A \wedge B$ and $A \wedge \sim B$ satisfy (1) and (2).

(C) $\rho(A) = \infty$ if $\rho(A)$ is not defined by (A) and (B). ∞ is assumed greater than each ordinal.

Shelah proves that if T is totally transcendental then $\rho(A) < \infty$. The following theorem indicates the relation between $R_{\mathfrak{G}}(A)$ and $\rho(A)$ if $Th(\mathfrak{C})$ is totally transcendental.

Theorem 1'. Let T be a totally transcendental theory and (f a saturated model of T then, for $A \in S_1(L((f)))$, $R_{\mathbf{G}}(A) = (\alpha, k)$ if and only if $\rho(A) = \omega \cdot \alpha + m$ where $2^m \leq k < 2^{m+1}$. $R_{\mathbf{G}}(A) = 1$ if and only if $\rho(A) = -1$.

Proof. Since \mathfrak{A} is a saturated model of T we may take \mathfrak{A} for \mathfrak{M} in the definition of $\rho(A)$. The result is evident if $R_{\mathfrak{A}}(A) = -1$. For the rest we induct on $R_{\mathfrak{A}}(A)$. It is easy to verify that $R_{\mathfrak{A}}(A) = (0, 1)$ if and only if $\rho(A) = 0$.

Now suppose the conclusion holds for each $A \in S_1(L(\widehat{\mathbb{C}}))$ with $R_{\widehat{\mathbb{C}}}(A) < (\alpha, k)$ and choose an $A \in S_1(L(\widehat{\mathbb{C}}))$ with $R_{\widehat{\mathbb{C}}}(A) = (\alpha, k)$.

Case 1. Let k = 1. To show $\rho(A) \ge \omega \cdot \alpha$ it suffices by [6, Theorem 1.1 A, B], as T is totally transcendental, to show there is an increasing sequence of ordinals $\langle \gamma_i \rangle_{i < \omega}$ tending to $\omega \cdot \alpha$ and a collection of formulas $B_i \in S_1(L(\widehat{\mathbb{T}}))$ such $\rho(A \land B_i) \ge \gamma_i$ and $\rho(A \land \sim B_i) \ge \gamma_i$. Let $\langle \delta_i, k_i \rangle$ be an increasing sequence tending to $(\alpha, 1)$. For each *i*, choose $B_i, B'_i \in S_1(L(\widehat{\mathbb{T}}))$ such that $B_i(\widehat{\mathbb{T}}) \subseteq A(\widehat{\mathbb{T}}), B'_i(\widehat{\mathbb{T}}) \subseteq A(\widehat{\mathbb{T}}), B_i(\widehat{\mathbb{T}}) \cap B'_i(\widehat{\mathbb{T}}) = \emptyset$ and $R_{\widehat{\mathbf{G}}}(B_i) = R_{\widehat{\mathbf{G}}}(B'_i) = (\delta_i, k_i)$. Then by induction $\rho(A_i \land B_i) = \omega \cdot \delta_i + m_i$ and $\rho(A \land \sim B_i) \ge \omega \cdot \delta_i + m_i$ where $2^{m_i} \le k_i < 2^{m_i+1}$. Let $\gamma_i = \omega \cdot \delta_i + m_i$; we have an appropriate sequence.

But for each formula $B \in S_1(L(\mathbb{C}))$ either $R_{\mathbb{C}}(A \wedge B) < (\alpha, 1)$ or $R_{\mathbb{C}}(A \wedge \infty B) < (\alpha, 1)$. $< (\alpha, 1)$. Say $R_{\mathbb{C}}(A \wedge B) = (\beta, k) < (\alpha, 1)$. Then by induction $\rho(A \wedge B) = \omega \cdot \beta + m < \omega \cdot \alpha$ where $2^m \le k < 2^{m+1}$. Hence $\rho(A) \le \omega \cdot \alpha$ so $\rho(A) = \omega \cdot \alpha$.

Case 2. Suppose k > 1, and $2^m \le k < 2^{m+1}$. Let $B \in S_1(L(\mathfrak{A}))$, then either $R_{\mathfrak{A}}(A \land B) < (\alpha, 2^m)$ or $R_{\mathfrak{A}}(A \land -B) < (\alpha, 2^m)$ since $R_{\mathfrak{A}}(A \land B) \ge (\alpha, 2^m)$ and $R_{\mathfrak{A}}(A \land -B) \ge (\alpha, 2^m)$ implies $R_{\mathfrak{A}}(A) \ge (\alpha, 2^{m+1}) > (\alpha, k)$. Hence by induction $\rho(A \land B) < \omega \cdot \alpha + m$ or $\rho(A \land -B) < \omega \cdot \alpha + m$. Thus $\rho(A) \le \omega \cdot \alpha + m$.

There exist formulas $B_1, \dots, B_k \in S_1(L(\mathbb{Q}))$ such that the $B_i(\mathbb{Q})$ partition $A(\mathbb{Q})$ and each $R_{\widehat{\mathbf{G}}}(B_i) = (\alpha, 1)$. Let $B = \bigvee_{i=1}^{2m-1} B_i$. Then by induction $\rho(A \wedge B) = \omega \cdot \alpha + (m-1)$ and $\rho(A \wedge \infty B) \ge \omega \cdot \alpha + (m-1)$ so by [6, Theorem 1.1B] $\rho(A) \ge \omega \cdot \alpha + m$. Thus $\rho(A) = \omega \cdot \alpha + m$.

Corollary to Main Theorem. If T is \aleph_1 -categorical, $\mathfrak{A} \models T$ and $A \in S_1(L(\mathfrak{A}))$, $\rho(A) < \omega \cdot \omega$.

Proof. This is immediate from Theorem 1' and Theorem 3.

We now restrict our attention to \aleph_1 -categorical theories. In particular, we will deal with an \aleph_1 -categorical theory T with a specified strongly minimal formula D such that, for each model \mathscr{B} of T, $D(\mathscr{B}) \cap cl(\mathscr{O})$ is infinite.

We want to assign to each formula $B \in S_1(L(\mathbb{C}))$ a formula B^* which "witnesses" the rank of B. In order to do this we consider formulas $A \in S_{l+1}(L)$ for each l. To each A and for each n we assign a class $\Gamma_A^{(n)}$ of possible witnesses. Each $\Gamma_A^{(n)}$ is a set of *l*-ary formulas such that there is a positive integer k with $R_{\mathbb{C}}(A(a_1, \dots, a_l)) = (n, k)$ if and only if, for some $A^* \in \Gamma_B^{(n)}$, $\mathbb{C} \models A^*(a_1, \dots, a_l)$. The simplest cases are as follows. If $A(\mathbb{C})$ is finite, A^* tells how many elements are in $A(\mathbb{C})$. If A is strongly minimal A^* expresses A as a "uniform union of finite sets" over the fixed strongly minimal set D. In the following definition A^* will be in $\Phi_A^{(n)}$ just when $R_{\mathbb{C}}(A) = (n, 1)$. The definition of $\Theta_A^{(n)}$ arises from the intuition that $R_{\mathbb{C}}(A) = (n, k)$ when $A(\mathbb{C})$ is a union of finitely many definable sets with rank (n, 1).

For each natural number l, for each $A \in S_{l+1}(L)$ and to -1 and each natural number n assign a set of formulas as follows

$$\begin{split} \Gamma_A^{(-1)} &= \{ \sim \exists v_0 A \}, \\ \Phi_A^{(0)} &= \{ \exists v_0 A \land \exists^{\leq k} v_0 A \mid 0 < k < \omega \}, \\ \Phi_A^{(n)} &= \{ \exists v_{l+1}, \cdots, \exists v_k (\forall v_0 (A \leftrightarrow \exists v_{k+1} (C \land D(v_{k+1}) \land C^*)) \land (\forall v_0 (A \rightarrow \exists^{\leq p} v_{k+1} (C \land D(v_{k+1})))) \land (\exists^{\leq p} v_{k+1} \exists v_0 (D(v_{k+1}) \land C \land (\sim A \lor \sim C^*))))) | \\ &\wedge (\exists^{\leq p} v_{k+1} \exists v_0 (D(v_{k+1}) \land C \land (\sim A \lor \sim C^*)))) | \\ &\quad 0 < p < \omega, l \leq k < \omega, C \in S_{k+2}(L), \text{ and } C^* \in \Gamma_C^{(n-1)} \}, \\ \Theta_A^{(n)} &= \{ \exists v_{l+1}, \cdots, \exists v_k (\forall v_0 (A \leftrightarrow (A_1 \lor \cdots \lor A_s)) \land A_1^* \land \cdots \land A_s^*) \} \end{split}$$

$$l \leq k < \omega, A_i \in S_{k+1}(L), s < \omega \text{ each } A_i^* \in \bigcup_{r < n} \Gamma_{A_i}^{(r)} \cup \Phi_{A_i}^{(n)}$$

and some $A_i^* \in \Phi_{A_i}^{(n)}$,

 $\Gamma_A^{(n)} = \Phi_A^{(n)} \cup \Theta_A^{(n)}.$

Note that if $A \in S_{l+1}(L)$ and $A^* \in \Gamma_A^{(n)}$ for some *n*, then A^* has free variables v_1, \dots, v_l . Thus when we write $A^*(a_1, \dots, a_l)$ we mean the result of substituting a_i for v_i for $i = 1, 2, \dots, l$. We abbreviate $A_{v_1, \dots, v_l}(a_1, \dots, a_l)$ by $A(a_1, \dots, a_l)$. Thus $A(a_1, \dots, a_l) \in S_1(L(\{a_1, \dots, a_l\}))$.

Theorem 2. Let T be an \aleph_1 -categorical theory and D a strongly minimal formula in T such that, in each model B of T, $D(B) \cap cl(\emptyset)$ is infinite. Let \mathfrak{A} be a model of T, $m \in \{-1\} \cup \omega$, $A \in S_{l+1}(L)$, and $a_1, \dots, a_l \in |\mathfrak{A}|$. The following two propositions are equivalent.

(i) There exists a formula $A^* \in \Gamma_A^{(n)}$ such that $(\mathfrak{l} \models A^*(a_1, \dots, a_l))$.

(ii) For some $k R_{\mathbf{a}}(A(v_0, a_1, \dots, a_l)) = (m, k)$ if $m \ge 0$. If m = -1, $R_{\mathbf{a}}(A(v_0, a_1, \dots, a_l)) = -1$.

Notice that there is no loss of generality in this theorem because of our assumption that T has a strongly minimal formula D and that, for each model \mathscr{B} of T, $D(\mathscr{B}) \cap cl(\mathscr{O})$ is infinite. For, let T be an arbitrary \aleph_1 -categorical theory in a first order language L. Then there is a principal extension T' of T with a strongly minimal formula D'. Let $(\mathfrak{A} \text{ be a prime model of } T'$. Let X be an infinite subset of $D'((\mathfrak{A}')$. Then $Tb((\mathfrak{A}', X) = T''$ is a theory of the specified kind. Suppose \mathscr{B} is a model of T'', $A \in S_{l+1}(L)$, $A^* \in \Gamma_A^{(m)}$ for some m, and $a_1, \dots, a_l \in |\mathfrak{B}|$. Then $\mathscr{B} \models A^*(a_1, \dots, a_l)$ if and only if $\mathscr{B} \mid L \models A^*(a_1, \dots, a_l)$. Moreover, $R_{\mathfrak{B} \mid L}(A(v_0, a_1, \dots, a_l)) = R_{\mathfrak{B}}(A(v_0, a_1, \dots, a_l))$. Thus it suffices to prove the theorem for T''.

Proof of theorem. The proof proceeds by induction on m. If m = -1, $(f \models A^*(a_1, \dots, a_l))$ for some $A^* \in \Gamma_A^{(-1)}$ if and only if $A(v_0, a_1, \dots, a_l)((f)) = \emptyset$ which is equivalent to $R_{\mathcal{C}}(A(v_0, a_1, \dots, a_l)) = -1$. We assume the theorem is true for $m \le n$ and prove (i) implies (ii) for m = n. Then we prove a lemma. Finally we assume the theorem holds for $m \le n$ and prove (ii) implies (i) for m = n.

Tc prove (i) implies (ii) consider a formula $A \in S_{l+1}(L)$ and a formula $A^* \in \Gamma_A^{(n)}$ such that $(f \models A^*(a_1, \dots, a_l)$ with $a_1, \dots, a_l \in |G|$. Notice first that it suffices to prove the case in which $A^* \in \Phi_A^{(n)}$. For, suppose that (i) implies (ii) has been shown for each integer l, each $A \in S_l(L)$ and each $A^* \in \Phi_A^{(n)}$ and that $A^* \in \Theta_A^{(n)}$. Then since $(f \models A^*(a_1, \dots, a_l), A(v_0, a_1, \dots, a_l))(G) = \bigcup_{i=1}^s (A_i(v_0, a_1, \dots, a_k))(G))$ for some a_{l+1}, \dots, a_k in |G| and some A_1, \dots, A_s . Moreover, for each i, (f satisfies $A_i^*(a_1, \dots, a_k)$) and each $A_i^* \in \bigcup_{i=1}^{n-1} \Gamma_{A_i}^{(n-1)} \cup \Phi_{A_i}^{(n)}$ and some $A_i \in \Phi_{A_i}^{(n)}$. So for each i there exists $n_i \leq n$ and a k_i such that $R_{G}(A_i(v_0, a_1, \dots, a_l)) = (n_i, k_i)$ and for some i there exists k such that $R_{G}(A_i(a_1, \dots, a_l)) = (n, k)$, by induction and the assumption that the theorem holds for each $B^* \in \Phi_B^{(n)}$. But then $R_{G}(A(a_1, \dots, a_l)) = (n, m)$ for some integer m.

Thus to prove (i) implies (ii) when m = n, let $A \in S_{l+1}(L)$ and suppose $(\mathfrak{f} \models A^*(a_1, \dots, a_l))$ where $A^* \in \Phi_A^{(n)}$. Letting $A' = A(v_0, a_1, \dots, a_l)$ we wish to prove that, for some q, $R_{\mathfrak{f}}(A') = (n, q)$. From the definition of $\Phi_A^{(n)}$ we see A^* has the form

$$\begin{aligned} \exists v_{l+1}, \cdots, \exists v_k (\forall v_0 (A \leftrightarrow \exists v_{k+1} (C \land D(v_{k+1}) \land C^*)) \\ \land (\forall v_0 (A \rightarrow \exists^{\leq p} v_{k+1} (C \land D(v_{k+1})))) \\ \land \exists^{\leq p} v_{k+1} \exists v_0 (D(v_{k+1}) \land C \land (\sim A \lor \sim C^*))) \end{aligned}$$

where p is a positive integer, $l \leq k < \omega$, C is in $S_{k+2}(L)$ and C* is in $\Gamma_C^{(n-1)}$. Since $\mathfrak{A} \models A^*(a_1, \dots, a_l)$ there exist $a_{l+1}, \dots, a_k \in |\mathfrak{A}|$ such that, for all but p elements b of $D(\mathfrak{A})$, $\mathfrak{A} \models C^*(a_1, \dots, a_k, b)$. Thus, for any $\mathfrak{A}_1 \succeq \mathfrak{A}$ and $d \in D(\mathfrak{A}_1) - D(\mathfrak{A})$, $\mathfrak{A}_1 \models C^*(a_1, \dots, a_k, d)$.

By induction, for some s, $R_{\mathfrak{G}_1}(C'_{\nu_k+1}(d)) = (n-1, s)$ where $C' = C(v_0, a_1, \dots, a_k, \nu_{k+1})$. Then $R_{\mathfrak{G}}(A')$ is $\leq (n, s)$. For, if not there exist L-formulas B_1, \dots, B_{s+1} where each B_i has free variables v_0, v_{k+2}, \dots, v_m with the following properties. There exist constants $a_{k+2}^i, \dots, a_m^i \in |\mathfrak{C}|$ such that if $B'_i = B_i(v_0, a_{k+2}^i, \dots, a_m^i)$, $B'_i(\mathfrak{C}) \subseteq A'(\mathfrak{C})$, $B'_i(\mathfrak{C}) \cap B'_j(\mathfrak{C}) = \emptyset$ if $i \neq j$, and $R_{\mathfrak{G}}(B'_i) \geq (n, 1)$. We will show that this condition implies for each elementary extension \mathfrak{C}_1 of \mathfrak{C}_1 , each $d \in D(\mathfrak{C}_1) - D(\mathfrak{C})$, and each i that $R_{\mathfrak{G}_1}(B'_i \wedge C'_{\nu_k+1}(d)) \geq (n-1, 1)$. This in turn implies $R_{\mathfrak{G}_1}(C'_{\nu_k+1}(d)) > (n-1, s)$ which is a contradiction allowing us to conclude that $R_{\mathfrak{C}}(A') \leq (n, s)$.

Suppose $R_{\hat{\mathbf{d}}}(B'_i) \geq (n, 1)$ and for some $\hat{\mathbf{d}}_1 \geq \hat{\mathbf{d}}$ and some $d \in D(\hat{\mathbf{d}}_1) - D(\hat{\mathbf{d}})$, $R_{\hat{\mathbf{d}}_1}(B'_i \wedge C'_{\upsilon_{k+1}}(d)) < (n-1, 1)$. By induction there exists a formula $(B_i \wedge C)^* \in \Gamma_{B_i \wedge C}^{(r)}$ for some r < n-1 such that $\hat{\mathbf{d}}_1 \models (B_i \wedge C)^*(a_1, \dots, a_k, d, a_{k+2}^i, \dots, a_m^i)$. Since D is strongly minimal, there exists $p_1 \in \omega$ which may be assumed larger than p such that, for all but p_1 members of $D(\hat{\mathbf{d}})$, $\hat{\mathbf{d}}_1 \models (B_i \wedge C)^*(a_1, \dots, a_k, b, a_{k+2}^i, \dots, a_m^i)$. Consider the formulas

$$\begin{split} F &= \exists v_{k+1}(D(v_{k+1}) \wedge (B_i \wedge C) \wedge (B_i \wedge C)^*), \\ G &= (\forall v_0(F \leftrightarrow F)) \wedge (\forall v_0(F \rightarrow \exists^{\leq p_1} v_{k+1}(D(v_{k+1}) \wedge (B_i \wedge C)))) \\ &\wedge (\exists^{\leq p_1} v_{k+1} \exists v_0(D(v_{k+1}) \wedge (B_i \wedge C) \wedge (\sim F \vee \sim (B_i \wedge C)^*))), \\ H &= \exists v_0 F. \end{split}$$

If r = -1 let $F^* = H$; otherwise let $F^* = G$. Then $F^* \in \Gamma_F^r \cup \Gamma_F^{r+1}$ and $(\widehat{T} \models F^*(a_1, \dots, a_k, a_{k+2}^i, \dots, a_m^i)$ so if F' is the formula $F(v_0, a_1, \dots, a_k, a_{k+2}^i, \dots, a_m^i)$ by induction there is an integer q such that $R_{\widehat{G}}(F') = (r+1, q) < (n, 1)$. For each element $c \in B'_i(\widehat{T})$ there exists an element b in $D(\widehat{T})$ such that $\widehat{T} \models B'_i(c)$ $\wedge C'(b, c) \wedge C^*(a_1, \dots, a_k, b)$ since $B'_i(\widehat{T}) \subseteq A'(\widehat{T})$ and $\widehat{T} \models A^*(a_1, \dots, a_k)$. Let b_1, \dots, b_a be an enumeration of the elements $b \in D(\mathfrak{C})$ such that

$$\mathfrak{A} \models C^*(a_1, \cdots, a_k, b) \land \sim (B_i \land C^*)(a_1, \cdots, a_k, b, a_{k+2}^i, \cdots, a_m^i).$$

We know there are only finitely many such b from above. Then $R_{\mathfrak{g}}(B'_i \wedge C'_{\nu_{k+1}}(b)) \leq R_{\mathfrak{g}}(C'_{\nu_{k+1}}(b)) = (n-1, u)$ for some $u < \omega$ by induction. But

$$\mathfrak{A} \models \forall \nu_0 \Big(B'_i \leftrightarrow F' \lor \bigvee_{j=1}^q (B_i \land C_{\nu_{k+1}}(b_j)) \Big).$$

So $B'_{i}(\mathbb{C})$ is the union of a finite number of definable sets each with rank less than (n, 1) and thus $R_{\mathbf{C}}(B'_{i}) < (n, 1)$ contrary to assumption. Thus we conclude as outlined above $R_{\mathbf{C}}(A') \le (n, s)$. Since $(\mathbb{C} \models \forall v_0]^{\le p_1} v_{k+1}(C'), R_{\mathbf{C}}(A') \ge (n, 1)$. Therefore there exists an $l, 1 \le l \le s$, such that $R_{\mathbf{C}}(A') = (n, l)$. We have shown (i) implies (ii) when m = n.

Lemma 2. Let $\mathfrak{A} \models T, A \in S_{l+1}(L), a_1, \dots, a_l \in |\mathfrak{A}|, A' = A(v_0, a_1, \dots, a_l)$ and $\alpha \leq \omega$. Suppose the theorem holds for each $m < \alpha$ and that for each $\mathfrak{B} \geq \mathfrak{A}$ there is some k such that $R_{\mathfrak{B}}(A') = (\alpha, k)$, then there exists $r < \alpha$ and $A^* \in \Gamma_A^{(r+1)}$ such that $\mathfrak{A} \models A^*(a_1, \dots, a_l)$.

Proof. Adjoin a new unary predicate symbol q to L to form L' and a new constant symbol f to L' to form L''. Let Δ be the set of L' sentences which are true in an L' structure \mathcal{C}' just if there is an elementary substructure \mathcal{C}^* of the reduct of \mathcal{C}' to L such that $|\mathcal{C}^*| = q(\mathcal{C}')$. Let D^n be the L' sentence $\exists^{\geq n} v_0(D \wedge \sim q)$. Let Γ_1 be the set of sentences

 $\{\text{elementary diagram of } \widehat{\mathbb{C}}\} \cup \Delta \cup \{D^n | n < \omega\} \cup \{q(a) | a \in |\widehat{\mathbb{C}}|\}.$

If $k < \omega$ and $F \in S_{k+2}(L)$ consider the following formulas. Let m = l + k. Let $F_1 \in S_{m+2}(L)$ be the formula

$$F(v_0, v_{l+1}, \dots, v_m, v_{m+1}) \wedge A.$$

Let F_1^* be in $S_{m+1}(L)$. Let $G(F, F_1^*) = \exists v_{m+1}(D(v_{m+1}) \land F_1 \land F_1^*)$. Let $G^*(F, F_1^*, p)$ be

$$(\forall v_0(G(F, F_1^*) \leftrightarrow G(F, F_1^*))) \land (\forall v_0(G(F, F_1^*) \rightarrow \exists^{\leq p} v_{m+1}(D(v_{m+1}) \land F_1))$$

$$\land \exists^{\leq p} v_{m+1} \exists v_0(D(v_{m+1}) \land (\sim G(F, F_1^*) \lor \sim F_1^*))).$$

Then if F_1^* is in $\Gamma_{F_1}^{(s)}$, $G^*(F, F_1^*, p)$ is in $\Gamma_{G(F, F_1^*)}^{(s+1)}$. Let Γ_2 be the set of sentences

$$\begin{split} \Gamma_1 \cup \{A'(f) \land \sim q(f)\} \cup & \Big\{ \sim (G(F, F_1^*)(f, a_1, \cdots, a_l, b_{l+1}, \cdots, b_m) \\ & \wedge G^*(F, F_1^*, p)(a_1, \cdots, a_l, b_{l+1}, \cdots, b_m)) | \\ & \text{for } k \in \omega \text{ let } F \in S_{k+2}(L), \\ & F_1^* \in \bigcup_{u < \alpha} \Gamma_{F_1}^{(u)} b_{l+1}, \cdots, b_m, \epsilon \mid \mathbb{C} | \Big\}. \end{split}$$

Now we show that Γ_2 is inconsistent by finding for each L'' structure C'' such that $C'' \models \Gamma_1$, for each element $f \in (A' \land \sim q)(C')$ formulas F and F_1^* , an integer p, and constants c_{j+1}, \dots, c_m such that

$$\mathcal{C}'' \models G(F, F_1^*)(f, q_1, \dots, a_l, c_{l+1}, \dots, c_m)$$

$$\wedge G^*(F, F_1^*, p)(a_1, \dots, a_l, c_{l+1}, \dots, c_m).$$

Let $\mathcal{C}'' \models \Gamma_1^*$ and $|\mathcal{B}| = q(\mathcal{C}'')$. Let $\mathcal{C} = \mathcal{C}'' \mid L$. \mathcal{B} is an L-structure. Let \mathcal{C}_1 be an L-structure prime over $|\mathcal{C}| \cup \{f\}$. Then $D(\mathcal{C}_1) - D(\mathcal{B}) \neq \emptyset$. For, suppose $D(\mathcal{C}_1) \subseteq D(\mathcal{B})$ and let \mathcal{B}_1 be prime over $D(\mathcal{C}_1)$. $(\mathcal{B}_1, \mathcal{C}_1 \text{ exist by 4.3 of}$ [7].) Then $C_1 = \mathcal{B}_1$ for if not $\mathcal{B}_1 \subsetneq \mathcal{C}_1$ while $D(\mathcal{B}_1) = D(\mathcal{C}_1)$. But then \mathcal{B}_1 and \mathcal{C}_1 are models of T which satisfy the hypothesis of the two cardinal theorem so T is not \aleph_1 -categorical. For, by the two cardinal theorem [5] there is a model \mathcal{A} of T with $\kappa(\mathcal{A}) = \kappa_1$ and $\kappa(D(\mathcal{A})) = \kappa_0$. But there is certainly a model \mathcal{B} of T with $\kappa(\mathcal{B}) = \aleph_1$ and $\kappa(D(\mathcal{B})) = \aleph_1$. Thus there exists $d \in D(\mathcal{C}_1) \land \sim D(\mathcal{B})$. Let $C \in S_{k+2}(L)$ and $c_1, \dots, c_k \in |\mathcal{C}|$ such that $C(f, c_1, \dots, c_k, v_{k+1})$ generates the principal 1-type in $Tb(C, |\mathcal{C}| \cup \{f\})$ realized by d. Then $C(f, c_1, \dots, c_k, v_{k+1})(\mathcal{C})$ is finite. For if not, since D is strongly minimal and contains infinitely many algebraic points there exists an algebraic point $b \in |\mathfrak{C}|$ such that $\mathcal{C} \models C(f, c_1, \dots, c_k, b)$. Since b is algebraic there exists a formula $B \in S_1(L)$ and an integer t such that $\mathcal{C} \models B(b) \land \exists^{\leq t} v_0 B$. But since $\mathcal{C} \models$ $C(f, c_1, \dots, c_k, b), C(f, c_1, \dots, c_k, v_{k+1})$ generates a principal type and $C(f, c_1, \dots, c_k, v_{k+1})(\mathcal{C})$ is infinite, $B(\mathcal{C})$ is infinite. So for some $q < \omega$,

$$\mathcal{C} \models C(f, c_1, \cdots, c_k, d) \land \exists^{\leq q} v_{k+1} C(f, c_1, \cdots, c_k, v_{k+1}).$$

Let C_1 be the following member of $S_{m+2}(L)$.

$$C_{v_1,\dots,v_{k+1}}(v_{l+1},\dots,v_{m+1}) \wedge A \wedge \mathbf{J}^{\leq q}v_{m+1}C_{v_1,\dots,v_{k+1}}(v_{l+1},\dots,v_{m+1}).$$

Let C'_1 be obtained from C_1 by substituting a_1, \dots, a_l for v_1, \dots, v_l and c_1, \dots, c_k for v_{l+1}, \dots, v_m . For any $b \in D(\mathcal{C}) - D(\mathcal{B})$, $R_{\mathcal{C}}(C'_{1v_m+1}(b)) = R_{\mathcal{C}}(C'_{1v_m+1}(d))$ since any such b realizes the same 1-type in

48

Th $(\mathcal{C}, \{a_1, \dots, a_p, c_1, \dots, c_k\})$ as d and \mathcal{C} is homogeneous by Theorem 0. Since $D(\mathcal{C}) - D(\mathcal{B})$ is infinite and $\mathfrak{A}_1 \models \forall v_0 \exists \leq^q v_{m+1} C'$, if $R_{\mathcal{C}}(C_{1v_{m+1}}^1(d)) \geq (\alpha, 1)$ then $R_{\mathcal{C}}(A') \geq (\alpha + 1)$ contrary to hypothesis. So for some $u < \alpha$ and some k, $R_{\mathcal{C}}(C'_{1v_{m+1}}(d)) = (u, k)$. Thus by hypothesis, there exists a formula $C_1^* \in \Gamma_{C_1}^{(u)}$ such that $\mathcal{C} \models C_1^*(a_1, \dots, a_p, c_1, \dots, c_p, d)$. Let p be the maximum of q and the cardinality of $\sim C_1^*(a_1, \dots, a_p, c_1, \dots, c_k)(\mathcal{C}'')$ which is a finite subset of $D(\mathcal{C}'')$. Then

$$C'' \models A'(f) \land \sim q(f) \land G(C, C_1^*)(f, a_1, \dots, a_l, c_1, \dots, c_k)$$

$$\land G^*(C, C_1^*, p)(a_1, \dots, a_l, c_1, \dots, c_k)$$

so \mathcal{C}'' does not model Γ_2 but \mathcal{C}'' was an arbitrary model of Γ_1 so Γ_2 is inconsistent. By the compactness theorem, there exists $k \in \omega$, F^1, \dots, F^s in $S_{k+2}(L)$ and $F_1^{i^*} \in \Gamma_{F_1^i}^{(t_i)}$ for some $t_i < \alpha$ such that

$$\Gamma_1 \vdash \left(\forall v_0 \left(A'(v_0) \land \sim q(v_0) \rightarrow \bigvee_{1}^{s} G(F^i, F_1^{i^*})(a_1, a_l, c_1, \dots, c_k) \right) \right).$$
$$\land \left(\bigwedge_{1}^{s} G^*(F^i, F_1^{i^*}, p_i)(a_1, \dots, a_l, c_1, \dots, c_k) \right).$$

 c_1, \cdots, c_k list the constants occurring in some F^i and are assumed to occur in each F_i for notational convenience.

Let $B' = \bigvee_{1}^{s} G(F^{i}, F_{1}^{i^{*}})(v_{0}, a_{1}, \dots, a_{p}, c_{1}, \dots, c_{k})$. If $(A' \wedge \sim B')(\mathbb{C})$ is infinite then there are models of T of arbitrarily large cardinality with $(A' \wedge \sim B')(\mathbb{B}) - (A' \wedge \sim B')(\mathbb{C}) \neq \emptyset$. Thus there is a model \mathbb{C} of Γ_{1} with $(A' \wedge \sim B')(\mathbb{C}) - q(\mathbb{C}) \neq \emptyset$. But this is impossible. Let H be

$$\forall \nu_0 \left(A' \leftrightarrow \left(\bigvee_{i=1}^s (G(F^i, F_1^{i^*})(a_1, \cdots, a_l, c_1, \cdots, c_k)) \lor (A' \land \sim B) \right) \right)$$
$$\wedge \left(\bigwedge_{i=1}^s (G^*(F^i, F_1^{i^*}, p_i)) \right) \land \left(\exists^{\leq j} \nu_0 \left(A \land \sim \left(\bigvee_{i=1}^s G(F_i, F_1^i) \right) \right) \right)$$

Then (ℓ ⊨ H so

$$(\mathbf{\hat{f}} \models \exists v_l, \cdots, \exists v_{l+k} H_{c_1}, \cdots, c_k (v_l, \cdots, v_{l+k}))$$

and

$$\exists v_1 \cdots \exists v_{l+k} H_{c_1, \cdots, c_k}(v_l, \cdots, v_{l+k}) \in \Gamma_A^{(u+1)}$$

where $u = \max(u_i) < \alpha$.

We return to the proof of Theorem 2. The induction hypothesis asserts that (i) is equivalent to (ii) if m < n. We have already proved (i) implies (ii) if m = n

and now we wish to show (ii) implies (i) if m = n. Suppose $A \in S_{l+1}(L), a_1, \dots, a_l \in |\mathcal{C}|, A' = A(a_1, \dots, a_l)$ and, for some k, $R_{\mathcal{C}}(A') = (n, k)$. The definition of $\mathfrak{S}_A^{(n)}$ allows us to assume that k = 1. We will find a formula $A^* \in \Gamma_A^{(n)}$ such that $\mathcal{C} \models A^*(a_1, \dots, a_l)$.

By Theorem 1 (v) there is an elementary extension of \mathcal{B} of \mathcal{C} and a formula $B' \in S_1(L(\mathcal{B}))$ such that $B'(\mathcal{B}) \subseteq A'(\mathcal{B})$ and $R_{\mathfrak{g}}(B') = (n, 1) = \sup\{R_{\mathcal{C}}(B') \mid \mathcal{C} \geq \mathcal{B}\}$. Now B' and \mathcal{B} satisfy the hypothesis of Lemma 2 so there exists $B^* \in \Gamma_B^{(k+1)}$ for some k < n such that $\mathcal{B} \models B^*(b_1, \dots, b_s)$. If k < n-1 by the induction hypothesis $R_{\mathfrak{g}}(B') < (n, 1)$ so k = n-1. $\mathcal{B} \models B^*(b_1, \dots, b_s) \land \forall v_0(B(b_1, \dots, b_s) \rightarrow A')$ and \mathcal{B} is an elementary extension of \mathcal{C} so for some $c_1, \dots, c_s \in |\mathcal{C}|$, $\mathcal{C} \models B^*(c_1, \dots, c_s) \land \forall v_0(B(c_1, \dots, c_s) \rightarrow A')$. Since $B^* \in \Gamma_B^{(n)}$, and we have proved (i) implies (ii) for m = n, for some l, $R_{\mathfrak{C}}(B(c_1, \dots, c_s)) = (n, l)$. l must equal 1 since $B(c_1, \dots, c_s)(\mathcal{C}) \subseteq A'(\mathcal{C})$ and $R_{\mathfrak{C}}(A') = (n, 1)$. If $C' = C(v_0, a_1, \dots, a_l, c_1, \dots, c_s) = A' \land \sim B(v_0, c_1, \dots, c_s)$ then $R_{\mathfrak{C}}(C') < (n, 1)$. So by induction there exists $C^* \in \bigcup_{j=1}^{n-1} \Gamma_{\mathcal{C}}^{(j)}$ such that $\mathcal{C} \models$

$$C^*(a_1, \dots, a_l, c_1, \dots, c_s). \text{ Hence letting}$$

$$A^* = \exists v_{l+1}, \dots, \exists v_{l+s} ((\forall v_0 (A \leftrightarrow B(v_0, v_{l+1}, \dots, v_{l+s}) \lor C)) \land B^* \land C^*).$$

 A^* is in $\Gamma_A^{(n)}$ and $\mathfrak{A} \models A^*(a_1, \dots, a_l)$ proving the theorem.

Recall that α_T is defined to be the least ordinal such that, for all $(\mathfrak{A} \in \mathfrak{N}(T))$ and $\beta > \alpha_T, S^{\alpha_T}((\mathfrak{A}) = S^{\beta}(\mathfrak{A})$. In [4] Morley proved α_T exists and is less than $(2^{\aleph_0})^+$ for every complete theory. In [2] Lachlan shows that $\alpha_T \leq \omega_1$ for each complete theory. We apply Theorem 2 to prove the following conjecture of Morley.

Theorem 3. If T is \aleph_1 -categorical then α_T is finite.

Proof. If for some \mathcal{C} and some $\beta \geq \omega$ there exists $p \in S^{\beta}(\mathcal{C})$, then since T is totally transcendental for some $\gamma \geq \beta$, $p \in \operatorname{Tr}^{\gamma}(\mathcal{C})$ and by Lemma 1 there exists $\mathfrak{B} \geq \mathcal{C}$, $q \in \operatorname{Tr}^{\omega}(\mathfrak{B}) \cap i_{\mathfrak{C}\mathfrak{B}}^{*-1}(p)$ so there is a formula $A' = A(v_0, a_1, \cdots, a_l)$ in $S_1(L(\mathfrak{B}))$ with $r_{\mathfrak{B}}(A') = \omega$. By Theorem 1, there exists $\mathcal{C} \geq \mathfrak{B}$ and an integer k such that, for every elementary extension \mathcal{C}_1 of \mathcal{C} , $R_{\mathcal{C}_1}(A) = (\omega, k)$. Now by Lemma 2 with $\alpha = \omega$, there exists an $n < \omega$ and a formula $A^* \in \Gamma_A^{(n+1)}$ such that $\mathcal{C} \models A^*(a_1, \cdots, a_l)$. By Theorem 2, for some k, $R_{\mathcal{C}}(A') = (n+1, k)$. This is a contradiction so there is no \mathfrak{C} and no $\beta \geq \omega$ and no p with $p \in S^{\beta}(\mathfrak{C})$. Hence $\alpha_T < \omega$.

This proof relied on Theorem 0 which is shown in [1] to be equivalent to Vaught's conjecture that \aleph_1 -categorical theory has either 1 or \aleph_0 -countable models. According to Morley this conjecture had already been verified under the assumption that α_T was finite. In fact, it is easy to deduce Lemma 13 of [1] which is crucial to the proof of Vaught's conjecture from our Theorem 3.

REFERENCES

1. J. T. Baldwin and A. H. Lachlan, On strongly minimal sets, J. Symbolic Logic 36 (1971), 79-96.

2. A. H. Lachlan, The transcendental rank of a theory, Pacific J. Math. 37 (1971), 119-122.

3. W. E. Marsh, On \aleph_1 -categorical but not \aleph_0 -categorical theories, Doctoral Dissertation, Dartmouth College, Hanover, N. H., 1966.

4. M. Morley, Categoricity in power, Trans, Amer. Math. Soc. 114 (1965), 514-538. MR 31 #58.

5. M. Morley and R. L. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57. MR 27 #37.

6. S. Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first order theories, J. Symbolic Logic 37 (1972), 107-114.

7. J. R. Shoenfield, Mathematical logic, Addison-Wesley, Reading, Mass., 1967.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

Current address: Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680