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o IS FINITE FOR X -CATEGORICAL T
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JOHN T. BALDWIN(1)

ABSTRACT. Let T be a complete countable X -categorical theory.
Definition. If @ is a model of T and A is a l-ary formulain L(®@) then A
has rank 0 if A(@) is finite. A(Q@) has rank n degree m iff for every set of
m + 1 formulas Bl’ ey, Bm+1 ESI(L(G)) which partition A4 (®) some Bl.((f) has

rank < n — 1. Theorem. If T is K, -categorical then for every ® a model of T

and every A € S (L(®), A(Q) has finite rank. Corollary. a, is finite. The

methods derive from Lemmas9 and 11 in “‘On strongly minimal sets’’ by Baldwin
and Lachlan. o is defined in “Categoricity in power” by Michael Morley.

In [4] Morley assigns an ordinal &, to each complete theory T. He conjec-
tures that if T is R, -categorical o, is finite. In this paper we prove this con-
jecture.

We assume familiarity with [1]and [4] but for convenience we list the princi-
pal results and definitions from those papers which are used here. Our notation
is the same as in [1] with the following exceptions.

We deal with a countable first order language L. We may extend the language
L in several ways. If ( is an L-structure there is a natural extension L ((f) of
L obtained by adjoining to L a constant a for each a € }(fl (the universe of ().
For each sentence A(a ,---, an) e L () we say @ satisfies A (al,- . an) and
write $F A (al,- . an) if in Shoenfield’s notation (T (A (@, an)) =T [7,

p. 191 If @ is an L-structure and X is a subset of |(f| then L (X) is the lan-
guage obtained by adjoining to L a name x for each x € X. ((f, X) is the natural
expansion of @ to an L (X)-structure. A structure B is an inessential expansion
[7, p. 141] of an L-structure @ if B = (¥, X) for some X C |@).

Sn(L) denotes the set of formulas of L with free variables among Vps s
V1 If A is a formula such that Up,ore, Uy, in the natural order are the free
variables in A, then A (®) is the set of n-tuples bl’ cee, bn such that
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Q@ hAul,---,un(bl’ ce, bn). If p is a unary predicate symbol we abbreviate
pvo(@) by p (@).
A consistent set of L-sentences is a theory in L. If T and T'are theories
in L then T'extends T if TCT' If T is a theory in a language L then T’
is an inessential extension of T if there is a model @ of T and a subset X of
|@] such that T' = Th({, X) (i.e., the set of all sentences in L (X) true of
@x). 7' isa principal extension of T if T'is an inessential extension of T
by a finite number of constants and a set of nonlogical axioms for T' can be
obtained by adjoining a finite set of sentences to a set of nonlogical axioms for T.
Let T" be a subset of S,(L). Then I" is a k-type in T if there is some
Loty €|(f| such that ("“:A(al,---,tlk) if
and only if A €. If @ is a model of T and X C || then a k-type T is
realized in X if there exists x,.-.,x, €X such that REA (ep,ene, xk) for
each A €. A k-type I' is a principal k-type in T if there is a formula A €
S, (L ((1)) such that, for each formula B in [, @E Vvg, -+, Yy, (4 — B).

Since T is complete there is one 0-type truth.

model @ of T and elements a

Following Morley [4] we assume that each T = 2" for some X and thus that
each n-ary formula ® is equivalent in T to an n-ary relation A. JU(T) is a set
of all substructures of models of T. The following summarizes with slight
changes in notation the second paragraph of $2in [4). If @ is an L-structure
D(@) is the set of all open sentences in L (@) which are true in (@, |A]). If
@ el(T), T@ =D(@ U T is a complete theory in L(®@). Let Sk((‘f) denote
the Boolean algebra whose elements are the equivalence classes into which
S, (L (@) is partitioned by the relation of equivalence in T (), and whose opera-
tions of intersection, union, and complementation are those induced by conjunc-
tion, disjunction and negation respectively. The Stone space of Sl(a)), the set
of dual prime ideals of Sl((’f), is a topological space denoted S ((f). A dual
prime ideal of Sk(@) is a k-type of T(®). This is a,special case of the defini-
tion of k-type in the preceding paragraph. Note that, if p € S((f) and (' is an
inessential expansion of {, p is naturally a member of s(@n.

In [4] Morley makes the following definition. For each ordinal a and each
@F €JU(T), subspaces S*(() and Tr*(®@) of S(Q) are defined inductively by

(1) 54D = S@) - Upe TP,

2) p eTr (@) if (1) p € S*(®) and (i1) for every map (f * S (B) — s @)
where B € JI(T) and [ is a monomorphism from @ into B, [ Up) ns*B) is a
set of isolated points in $®(B). (See [4, p. 519] for the definition of /™*.)

If 744 is an elementary embedding of (@ into B then ifq maps S (B) onto
S(®@). Note that ¢ € ia‘gl(p) is equivalent to ¢ N S (L @) = p.




a,. IS FINITE FOR K -CATEGORICAL T 39

An element p of S(@) is algebraic if p € Tr9(@); p is transcendental in
rank @ if p € Te™(@). If A €S (L(@),yy ={pl peS@ AA €pl.

The following definitions are originally due to Marsh [3]. Let ( be an L-
structure and X a subset of |(@|. The algebraic closure of X, denoted by cl(X),
is the union of all finite subsets of |(f| definable in (@, X). X spans Y if Y C
cl(X). X is independent if for each x € X, x ¢ cl{X — {x}). X is a basis for Y
if X is an independent subset of Y which spans Y. If every basis for Y has
the same cardinality p, we define the dimension of Y to be p and write
dim(Y) = p.

Let ( be an L-structure. A subset X of |@| is minimal in @ if X is
infinite, definable in @, and for any subset Y of ]@| which is definable in
either Y N X or X - Y is finite.

If DeS,(L (@) and X =D (@) then X is strongly minimal in @ if for any
elementary extension B of &, D (B) is minimal in B. Let @0 and (1’1 be models
of a complete theory T. Since up to isomorphism any two models of T have a
common elementary extension, D ((fo) is strongly minimal in @0 if and only if
D((‘fl) is strongly minimal in @1. Thus, without ambiguity we define a formula
D e Sl(L) to be strongly minimal in T if there is a model (@ of T such that
D(®) is strongly minimal in Q.

We will refer to the following theorem which is Theorem 5 in [1].

Theorem 0. If @ is a model of an R -categorical theory T then @ is

homogeneous.

Our first step in the proof of Morley’s conjecture is to introduce a concept of
the rank of a formula in a model of a theory. We will compare this notion with
three other sorts of rank.

If @ is an L-structure and A4 is an element of s, (L (®@)) then we defined A
to be minimal in ( if A (®) is infinite and, for each formula B € SI(L (@),

(BA AX@®) or (~ B AAXQ®) is finite. We will define a notion of rank of a formula
in a model such that minimal formulas have rank one.

Well order the class X consisting of {- 1} and the direct product of the class
of all ordinals with the positive integers by placing — 1 first in the order and then
following the natural lexicographic order. For each L-structure (¥ define fa:

S1(L
x— 21 (@ by induction

[gl=D=1A € s (L@ AQ) = 2.

A €/G(<a’ k)) if and only if A ¢ f(x) for any x < (a, k) and if for any set of
k+1 formulas B ,---, By, from SI(L () such that the sets Bi((f) partition
A(®) there exists an x < (a, 1) with one of the B, €/ (x).
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Let T be totally transcendental, ({ a model of T, and A € s, (L (M). calla
formula A rankless if A is not in the range of f3. We claim there is no formula
Aes (L (@) such that A is rankless. For, if so, we can construct for each
finite binary sequence 0 a formula A _ such that (1) A is rankless and (2) if
o' =0 uU{dm 0,0) and 0" =0 U (dm 0,1) then A_, =~ A_s. Let X be the set
of constants from |(f| which occur in any A_. Then X is countable but §(X) is
uncountable contrary to the hypothesis that T is totally transcendental.

Thus if @ is a model of a totally transcendental theory we may define for each
A €5 (L(®) the rank of A () (the rank of A in () which we denote by Rg(A).
Ry(A) is —1 if A €[g(-1). Rg(A) is (a, k) if A € fa(a, k).

Notice that if 1 < B and A €5 (L (@) then Rg(4) < Rg(A). 1f { isa
saturated model and B > ( then Rg(A) = Rg(A). If A (@ ¢ B(A) then Rg(4) <
Rg(B). Finally if Rg(A) = (a, k) and (B, m) <(a, k) then there is a formula B €
S, (L (@) such that B(@®) CA(®) and Rg(B) = (B, k). Let P be a structure with
one binary relation R such that R is an equivalence relation and for each n there
is a unique equivalence class with exactly » elements but there are no infinite
equivalence classes in (!. Then Th () is totally transcendental and Rg{v, = v)
=(1, 1). But for each positive integer k there is an elementary extension “(Bk of
@ with ng(uo = vy) = (1, &) and there is an elementary extension B with
Rglv, = vy) = (2, 1). It is an immediate consequence of Theorem 2 that if (T is a
model of an K, -categorical theory T, A €5 (L (), and B > then R‘B(A)z
Rg(A). In fact this remark appears to be equivalent to Theorem 2.

In [4], Morley introduced for a countable first order theory T, X € JU(T), and
p € S(X) the concept of the transcendental rank of p. In [2] Lachlan interprets

this notion in terms of the rank of a formula A in SI(L (@) as follows

-1 if A@ =g,
supta| (3p)p e Uy, Ap € Tr* (@)} otherwise.

We relate ra(A) to RG(A) in the following theorem.

Theorem 1. Let  be a model of a totally transcendental theory T and A €
s, (L (D).
(i) 7g(A) > suptal 3B, Ik (BZ A A Rg(4) = (a, KDL
(ii) For some B an elementary extension of (¥ and some integer k, Rg(A) =
(rg‘A), k).
(iii) rq(A) = supfa] 3B, 3k (B = @ A Rg(A) =(a, KN}
(iv) For some elementary extension B of ® and some positive integer k,

Rg(A) = supiRe(4)] € = @} = (r5(4), ).
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(v) If Rg(A) = (o, k) there is an elementary extension B of @ and a formula
B €S(L(R) such that B(B) C A (B) and Rg(B) = (a,1) = sup{R,(B)| C = Bi.

To prove this theorem we need the following extension of a lemma in [2].

Lemma 1. Let T be a first order theory, (@ a model of T, A € SI(L (@) and
suppose rq(A) = o then for each B < o there exists an elementary extension B of
@ such that itz (U,) N TP B) is infinite.

Proof. If the lemma is false there exists a model of T and a formula A€
s, (L (@) with 74(A) = @ and some B < a such that, for each B>, : (U )
N Trﬁ(%) is finite. Suppose ¢ € TeP 1(B). Then for each C =B, i* 'l(q) N
SBHLEP) is a set of isolated points in SATUC). But then if A €q, iX 'l(q) N
SA(C) is a set of isolated points in SP(C) since e W, = z%él(U )and
*"I(U ) N TeA(C) is finite. Thus q € TrA®B) but g was chosen in Te AT H(B)
so thlS is impossible. Hence ’G 1(U ) N TP HUB) s empty and by induction for
each y> B+ 1, for each C >, Try(@) N z*"l(U ) is empty. So 74(4) £ a.

Proof of Theorem 1. (i) The proof ptoceeds by induction on 7g(A). If 75(A)
=-1 then Fy ~ 3v A and so the theorem holds. Suppose, as the induction hypoth-
esis, the theorem holds for a formula A if ’G(A) =y is less than a. We first
prove that, for each B >Q, Rg(A) <(a + 1, 1). If not, there is some 931 >«
with Rg (A) > (a +1, 1). Then there exists a sequence of formulas (Ai)i<a) each
A; €S (LB)) such that AB)CAB), (A, ANA)B) =g if i #] and
Rg (Ai) =(a,1). Now we show that for each natural number 7 there is a l-type
p; €Uy, 0 SUB ).

Case 1. a is a successor ordinal, say a = A + 1. Since Rg; (4)=QZ+1,1)
there exists a sequence of formulas (4, )]«o each A €S (L(33 )) such that
A B)cAB), 4, ANADB) =0 it 4k and Rg, (A )_()\ 1). Then by
nductxon for each j, r% (A )>)\ so there exists p,; €Uy, N Tr’\((B ) Then
for each i, since 5(33 ) is compact and Uy, is closed theré exists ;s
accumulation point of the b, > such that p, ¢ Uy.N S)‘“(fB ).

Case 2. «a is a limit ordinal. & has cofmahty ® since a <w, [2]. Then

there exists a sequence of ordinals (CL ). i<w and a sequence of formulas (A”)]<w,

eachA ES(L({B ), such that A, (3)CA(53) (A AA, )(SPJ)— if £k
Rg (A )— (OL 1) for each j, and the a; increase monotomcally to a. Then by
mductxon %, (A )> a. so there exists a type p,. € UA N Tr (93 ). Since U,

is closed and 5(33 ) is compact there exists p; an accumulanon point of the p”
for each i. But p; ¢ Tr'y(%l) forany y<a so p; € UAiﬁ Sa(gl).

Since U, is closed there exists p, an accumulation pdint of the p; and
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peULN Saﬂ(fBl) since each p, €U, N Tra(%l). Hence i’(';fBl(p) elU,nN
SHQA). But then rglA) > a + 1 so (i) is proved.

(ii) Now we show that there exists B > (f such that for some &, R (A) =
(a, k). By Lemma I since rg(A) = a, for each y < a there exists an elementary
extension (f of (T such that z""'1 (U ) N Tr (@ ) is infinite. Hence there
exists a sequence of formulas (Az. )i<w, each Al.y € SI(L (@y )), such that
AYNAYNR) =g if i 4], A7 @) CAQ,) and a, (AY) = y. So by induction
there exists (‘f%l. such that for each y and zR@ (A’Y) = (y, k) for some k.
Without loss of generality we may assume (|(‘f ] - |@|)ﬂ (!@8 |- |A) =g if
(y, i) # (8, j). There exists a model C such that for each (y, z) C > @y ; by the
compactness theorem. Then for each y < @ there is a k& such that Re(A])) > (y, k)
and (AYNAVNO) =g if i £j. So Re(4) > (a,1). Since for each B =,
Rg(4) < (a +1, 1) by (i), for some &, Rp(A) = (a, k) and C is the required model.

(iii) This follows immediately from (i) and (ii).

(iv) We must find R>Q@ and a positive integer R, such that RQ(A) =
(rg(4), &) = sup{Rp(4)| € > @}. By (ii) choose B, = ( such that, for some &,
Rg(A) = (ra(A), k). Then applying (i) for each Cx> 930 there is an integer k such
that Rp(A) = (rg(A), k). It suffices to show that the set of such & is bounded. If
not, there exists an increasing sequence of positive natural numbers »_ and a
sequence of models %m such that 58 = 93 and R% (A) = (gA), n ) We may
assume that, if m £, (|8 |~ 1B, N (B, | - |B,1) =&. By the compactness
theorem there exists a model 9 which elementarily extends each gm But then
an(A) > (rg(A) + 1, 1) contrary to (i). Hence there exists a maximum & and an ele-

mentary extension B of 330 such that
Rg(A) = (4 (4), k) = sup iR, (4)] C> B

(v) We will construct a sequénce of models 531. and formulas Bi €
Sy(L(B,_1)) such that B,4;(B) CB(B), Ry (B, 1) = (a, 1), Ry (B,y)) =
sup{Re(B, )| € Z B} and if Rg (B)>(a,1) then Rg (B, ))< Rg (B,).
Since there is no infinite descending sequence in a well ordered set, for some 7,
R‘B (B;) = (a,1) and letting B - 93 and B = B, proves (v). Let B, = { and
B, A Suppose "B and B, have been chosen for i <n. Let B €S,(L B _))
such that Bn(‘(gn-—l) C Bn—-l(%n-—l) and Rﬁn—l(B"- ) = (a,1). Then by (1v) choose
%n z 33"_1 such that

Ran(Bn) = supiR o(B,)| Cx=B 1

If R.‘Bn(Bn) > (a, 1) then both R‘Bn(Bn A Bn+1) and Ran(Bn A~ B, ,,) are greater
than or equal to (a,1). Hence, if Rﬁnﬂ(Bn"'l) > Rﬁ},,(Bn)’ R$n+1(Bn) > Ran(Bn)

contrary to the choice of 33".
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At the suggestion of the referee we include the following comparison of the
rank defined here with that defined by Shelah in his paper on the uniqueness of
prime models [6].

Shelah chooses a sufficiently saturated model M of T (for T totally
transcendental a countable saturated model suffices) and defines for A € SI(L oy,

(&) pA)=-1 iff ME~ v A

(B) p(A) = a iff

(1) ME 3 A,
(2) forno B<a, p(4d)=4,
(3) forno B € SI(L Oﬂ)) doboth AAB and AA~ B satisfy (1) and (2).

(C) p(A) = = if p(A) is not defined by (A) and (B). ~ is assumed greater
than each ordinal.

Shelah proves that if T is totally transcendental then p(A) < «. The follow-
ing theorem indicates the relation between Rg(4) and p(A) if Th (() is totally

transcendental.

Theorem 1'. Let T be a totally transcendental theory and } a saturated
model of T then, for A €S (L(®)), Rg(A) = (a, k) if and only if p(A) =
® - @ +m where 2"'_<_1e<2”'+1. Rq(A) =1 if and only if p(A) =-1.

Proof. Since (T is a saturated model of T we may take @ for M in the
definition of p(A). The result is evident if Rg(A) =~ 1. For the rest we induct
on Rg(A). It is easy to verify that Rg(A) = (0, 1) if and only if p(4)=0.

Now suppose the conclusion holds for each A € §,(L (@) with Rg(A) < (a,k)
and choose an A €S, (L (@) with Rq(A) = (a, &).

Casel. Let k=1. To show p(A)>w - @ it suffices by [6, Theorem 1.1
A, Bl,as T is totally transcendental, to show there is an increasing sequence
of ordinals (yi)i<w tending to @ - @ and a collection of formulas B; € SI(L @)
such p(A AB,) >y, and p(AAN~B)>y,. Let (3,, k) be an increasing
sequence tending to (a,1). For each i, choose B, le‘ e S, (L (®) such that
B ca@, B(DcAW®, BANNBID) =g and Rg(B,) = Rg(B)) = (3, &,)-
Then by induction p(A, AB)=w -8, +m; and p(AA ~ B)>w - 0; +m; where
2™ <k; < 2mi+l. Let y, = - 0, + m ; we have an appropriate sequence.

But for each formula B € SI(L (@) either Rq(A A B) < (a,1) or Rg(AA~B)
<(a,1). Say Rg(A A B) = (B, k) <(a,1). Then by induction p(4 A B) =
w-B+m<w-. o where 2" < k< 2" Hence p(A)<w - a so p(A)=w - a.

Case 2. Suppose k>1,and 2™ <k <2™'!. Let B €S (L (), then either
RG(A A B) <(a,2™) or RG(A A ~ B) <(a,2™) since Rg(A A B) > (a,2™) and
Rg(A A ~ B) > (a,2™) implies Rg(A) > (a, 2"*1) > (a, k). Hence by induction
p(ANB)<w-a+m or p(AN~B)<w - a+m Thus pA)<w - a+m.
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There exist formulas B ,---, B, € Sl(L (@) such that the Bi((‘f) partition
A((®) and each R@(Bi) =(a,1). Let B= \/3:[1_131.. Then by induction p(A AB)

—w-a+(m-1)and p(AA~B)>w-a+(m=1) soby [6, Theorem 1.1B]
pA)>w . a + m Thus p(A)=w - @+ m.

Corollary to Main Theorem. If T is X, -categorical, Q@FT and A € SI(L(@)),
pA)<w - .

Proof. This is immediate from Theorem 1’ and Theorem 3.

We now restrict our attention to N, -categorical theories. In particular, we
will deal with an K, -categorical theory T with a specified strongly minimal
formula D such that, for each model B of T, D(B) N cl(@) is infinite.

We want to assign to each formula B € SI(L () a formula B* which “‘wit-
nesses’’ the rank of B. In order to do this we consider formulas A € SI+1(L') for
each I. Toeach A and for each n we assign a class qu") of possible witnesses.
Each FX’) is a set of l-ary formulas such that there is a positive integer & with
Rg(A (al,. .., al)) = (», &) if and only if, for some A* € Fé”), ({fE A"(al,. . al).
The simplest cases are as follows. If A ((®) is finite, A* tells how many elements

are in A(®@). If A is strongly minimal A* expresses A as a ‘‘uniform union of

’)

finite sets’’ over the fixed strongly minimal set D. In the following definition A*

will be in CDX’) just when Rg(A) = (n, 1). The definition of @f“") arises from the
intuition that Rg(A) = (n, k) when A () is a union of finitely many definable sets
with rank (n, 1).

For each natural number [, for each A € Sl+1(L) and to — 1 and each natural

number » assign a set of formulas as follows

i =i~ 34l
(2 = 30,4 A ¥Rk 4] 0<k <),
4 =130, 1, -+, W, (Vo (4 & Fv, (C AD(v,, ;) AC*)
AV (A — HSﬂvk“(C AD(vy D)
A (Hspvk+13v0(D(vk+l) ANC AN(~AV ~CH)
0<p<w,I<k<w,CeS, (L), and C* e M1,

0 =13v,, 1, -5 0, (VoA > (A V. VAN AALA .- AAY)]

I<k<w,A; €S, ,(L),s<o each A;!‘GUFX). U(I)l(“".)

r<n 1 &

k+l

(n)
and some A’l!‘e CDAi},

(n) (n) (n)
r{= o vey.
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Note that if A €S,,,(L) and A* ¢ I“/((’) for some n, then A* has free vari-
ables Vst U Thus when we write A*(al, cee, al) we mean the result of
substituting @, for v; for i=1,2,..., . We abbreviate Aul,---,w(al’ R a,)
by A(al,---,a[). Thus A(al,---,al) eSl(L({al,--.,a[})).

Theorem 2. Let T be an K, -categorical theory and D a strongly minimal
formula in T such that, in each model B of T, D(B) N cl(&) is infinite. Let
® be a modelof T, m e{-1}Vw, A €S, (L), and a,---,a, €|®|. The
following two propositions are equivalent.

(i) There exists a formula A* € F,(ﬁn) such that A E A*(al, e, al).

(i1) For some kR@(A (vo, @y, al)) =(m, k) if m >0. If m=-1,

Rg(A (g, ay,- - a)) =~ 1.

Notice that there is no loss of generality in this theorem because of our
assumption that T has a strongly minimal formula D and that, for each model B
of T, D(B) N cl(@) is infinite. For, let T be an arbitrary K, -categorical theory
in a first order language L. Then there is a principal extension T' of T with a
strongly minimal formula D’. Let @ be a prime model of T'. Let X be an infinite
subset of D'(("). Then Th((', X) = T" is a theory of the specified kind. Sup-
pose B is a model of T", A € SI+I(L)’ A* ¢ FX") for some m, and a,,---,q,
€|B|. Then BEA*@ ,---,a)) if and only if B|LF A*(a ..., a,). Moreover,
R$|L(A (vy @ 5 <., a)) = Rg(A (vo, Apyeeey al)). Thus it suffices to prove the
theorem for T".

Proof of theorem. The proof proceeds by induction on m. If m=—1, (T F
A*@ .- 7al) for some A * GF/("'” if and only if A (v, Ay ,al)(@) =g
which is equivalent to Rg(A (v, ap,-e., al)) = ~1. We assume the theorem is
true for m <n and prove (i) implies (ii) for m = n. Then we prove a lemma.
Finally we assume the theorem holds for m <n and prove (ii) implies (i) for
m=n.

Tc prove (i) implies (ii) consider a formula A € Sl+1(L) and a formula A* €
I"f(‘") such that @k A*a ,---, “l) with a ,..-,a, € |}]. WNotice first that it
suffices to prove the case in which A* € (I)(") For, suppose that (i) implies (ii)
has been shown for each integer I, each A €S /(L) and each A* ¢ (D(") and

that A¥e 9("). Then since @ F A* (@ape:-, ap), A, a,"r,a )((’f) =
Ul Ay, a 1,--~,ak)(@)) for some a;,,,--+,a, in |@) and some A -, A
Moreover, for each i, ({ satisfies A¥a,,---,a ) and each A% € U"'IF("I"”

(D(") and some A¥ € (D("). So for each i there exists n, <7 and a k; such that

R@(A (UO’ ,a )) = (n » k ) and for some i there exists k such that

Rg(Afa,,- -, “l)) = (n, k), by induction and the assumption that the theorem
holds for each B* € (Dg'). But then RG(A (al, cee, al)) = (n, m) for some integer m.
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Thus to prove (i) implies (ii) when m =n, let A €S,,,(L) and suppose
@ FA*a,,---,a,) where A* €<I)f4"). Letting A' = A (vy, @,,- -+, a,) we wish to
prove that, for some g, Rg(A’) = (n, q). From the definition of QXZ) we see A*

has the form

Jy e, 3vk(\1vo(A — 3vk+1(C /\D(vk+1) A C*))

141 °

A(Vv (A — 3P C AD(v, )

Uk+1( k+1

AFPv, 30, (D, , DACA(AV ~CH)

w+o(L) and C*is in DD,
Since FF A¥a,,---,a,) there exist a4, -, a, € |(f| such that, for all but p
elements b of D((), Tk C*(ax,u-,ak, b). Thus, for any @1 > @ and d €
D@)-D@, O,k CHay, -, a,, d.

By induction, for some s, RGI(C;kﬂ(d)) =(n-1,s) where C' =

where p is a positive integer, [ <k <w, C isin §

Clog, ay,---,a,, Uk+1)' Then Rg(A") is < (n, s). For, if not there exist L-
formulas Bi,oee, BS+1 where each Bl. has free vgriables Vor Vpagr 0 Uy with
the following properties. There exist constants a;e+2, cee,ar € |(f| such that if
Bi=B vy @4y, an), BADCA@D, BADNBI(D) =g if i £}, and
R@(B)) > (n, 1). We will show that this condition implies for each elementary
extension (I, of (f, each d €D (@1) - D((®), and each i that Ral(B;/\C;kH(d))z

1
Vk+1
tion allowing us to conclude that Rg(A") < (n, s).

Suppose RG(B;) > (n, 1) and for some (fl > ® and some d € D((‘fl) -D (('f),

(n =1, 1). This in turn implies R@l(C (@) > (n -1, s) which is a contradic-

R@l(Bl'. A C;kﬂ(d)) <(n -1, 1). By induction there exists a formula (Bi A C)*e
Féri)/\c for some 7 <n —1 such that @1!2 (Bi/\C)*(al" e, dy, d, a2+2, e, d;)'

Since D is strongly minimal, there exists p, € @ which may be assumed
larger than p such that, for all but p, members of D (@), @13=
(Bl. A C)*(al,- e, ay, b, a2+2” . a;). Consider the formulas

F=3v, 0@, YAB,AC AB, ACOH,

G = (Voo(F o F) A (Vo (F — 3 Lo, (D, ) A (B, ACH))

Vi1 k+1

A

V13700, ) A B, A C)A(MF YV~ (B, ACY),
I = 3vF.

If r=—1 let F*=H; otherwise let F* = G. Then F*€ I, U I''! and
@E F*(al’ ERN a;”z,. . afn) so if F'is the formula F(Uo,al,. S ,a, a;+2,.-. ,ai”)

by induction there is an integer ¢ such that Rg(F') = (r + 1, ¢) < (n, 1). For
each element c € B;((‘?) there exists an element b in D ((f) such that @ F B;(c)
ANC'(®, c) A C*(al,- ce,dy, b) since B:(@) C A'(®) and @ ':A*(al, e, ak)’ Let
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by,oee,y bq be an enumeration of the elements & € D ((f) such that
qE C*(al, cee s dy, YA~ (Bl. A C*)(al, ey a,, b, a2+2, ee, a:”).

We know there are only finitely many such & from above. Then
Rg(B; A C;kﬂ(b)) < RG(C;kﬂ(b)) =(n -1, u) for some u < w by induction. But

a
@ FV%(B.' —F'v VB,rC (b.))>.
i z v ]

j=1 k+l
So B;((f) is the union of a finite number of definable sets each with rank less
than (7, 1) and thus Rg(B}) < (n, 1) contrary to assumption. Thus we conclude
as outlined above Rg'A") < (n, s). Since @F Vv 3" 1u,, (C"), Rg4") > (n, 1).
Therefore there exists an /, 1 <1<, such that Rg(A Y= (n, I). We have shown

(i) implies (ii) when m = n.

Lemma 2. Lez(‘fFT,AeSHI(L), ay,---,a, € |@|,A'=A(u0, “1"""11) and
o < w. Suppose the theorem holds for each m < o and that for each B > ({
there is some k such that Rg(A Y= (a, &), then there exists r < a and A* €
l_‘f“’”) such that A F A*(al, cee,a).

Proof. Adjoin a new unary predicate symbol ¢ to L to form L' and a new
constant symbol f to L' to form L". Let A be the set of L' sentences which
are true in an L' structure C' just if there is an elementary substructure C* of
the reduct of C’ to L such that |C¥ = ¢(C"). Let D" be the L' sentence
32"y (DA ~ q). Let I'| be the set of sentences

{elementary diagram of @} U A U{D"| n < w} U lg(a)| a € ||}

If k<wand F €5, (L) consider the following formulas.
Let m=1+ k.
Let F, €S_,.(L) be the formula

Flog, vy pq oo s U Um+1) A A

Let F¥ be in Sm+1(L).
Let G(F, F)=3v_, (D, ., ) AF AF}).
Let G*(F, F*, p) be

(Voo (G(F, F¥) & G(F, FYN A (Voo (G(F, F}) - 3%Pv (DG, ) A F)))

m+1

A3y 30D, ) A GF, FPV ~ F)).

m4l

Then if F isin T, G¥(F, FY, p) is in T Jpr) Let T’y be the set of

sentences
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rota’ (A~ qg(Diu {'” (G(F, F¥Nfs ayy -+« ay brgs e b))

/\G*(F; F}{: P)(aly M ) al’ b1+19 ] bm))'

for k € w let F € Sk+2(L)9

Fre U l",f}‘l)bl“, ooy bo, € |@|}.
u<a

Now we show that F2 is inconsistent by finding for each L" structure C"

such that C"k '}, for each element f € (A"'A ~ g)C") formulas F and F¥,an

integer p, and constants C41s° "€, such that

e” t: G(F; FT)(/} q19"'9a1a CI+17"’9C )

m

N G*(F, F%, p)(al, R TR cm).

Let C"FT'* and |B| = ¢(C"). Let C=C"|L. B is an L-structure. Let
C, be an L-structure prime over |@| U {f}. Then D @) - D(B) £ &. For, sup-
pose D(C))CD(B) and let B, be prime over D(C)). (B,, C; exist by 4.3 of
(71.) Then C, =8, forif not B, & €, while D(B,) =D (C)). Butthen B,
and @1 are models of T which satisfy the hypothesis of the two cardinal theorem
so T is not K, -categorical. For, by the two cardinal theorem [5] there is a model
@ of T with (@) = X, and «(D (M) = X,. But there is certainly a model B of
T with «(B) = X and (D (B)) = X,. Thus there exists d € D(C)) A~ D(B).
Let C€S,,,(L) and c,,--+,c, €|®] such that C(f, cp,-++,cp v 4
generates the principal 1-type in Th(C, |®| U {f}) realized by d. Then
C(/, Clstres Cpo Uk+1)(€) is finite. For if not, since D is strongly minimal and
contains infinitely many algebraic points there exists an algebraic point b € |@
such that CE C(f, Cpsrre s Cps b). Since b is algebraic there exists a formula
B €5 (L) and an integer ¢ such that CF B(6) A 35%uB. But since CF
C{f, cyy-rvycp b), Cf, -+, ¢y v, 4,) generates a principal type and
Cc(, Clssers Cps Uk+l)(e) is infinite, B(C) is infinite. So for some g < w,

CEC(fcpyevnycp AT (Cfcpyoe o vy )

Let C, be the following member of §_,,(L).

C (vl+1,--~,v YA AN F99

Vistttalp m 41 m+1CU1,...,vk+,(Vz+19 ’vm+1)'

Let C'l be obtained from C1 by substituting a,,---,a, for v,,---, v, and
Cypeery €y for vyyp,eoe, v . Forany b eD(®) -D®), RC’(CIIU +1(b)):

!
Re(C}

m

(d)) since any such b realizes the same 1l-type in
+1

m
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Th (C, {al,- ce,dp Cpyeee,cl) as d and Cis homogeneous by Theorem 0.
Since D(C) - D(B) is infinite and @ F V3% . C',if Ro(C] (@) >
Vm+t1

(a,1) then Re(A") > (a + 1) contrary to hypothesis. So for some < a and
some k, Ro(C) (d)) = (u, k). Thus by hypothesis, there exists a formula
Um+1

c* 61"8‘1) such that CF CHay,- - ,ap cpyene, Cpr d). Let p be the maximum

of g and the cardinality of ~ C¥(a ,---,a, c,- -, ck)(e") which is a finite
subset of D (C"). Then

C”l'—' A’(/)/\ ~ q(/) /\G(C: CT)(/: a19 A ’a[: C], Sty Ck)

N GXC, CY, pNay, -+ ,a, ¢ c

2)

. bt
so C" does not model I', but C" was an arbitrary model of I'} so I', is incon-
sistent. By the compactness theorem, there exists & € w, Fl, ..., F% in

Sk+2(L) and F'i* € F(ti) for some ¢, < a such that
F1

r,r <Vv0 <A'(vo)/\ ~ q(vo)—-» f/ G(F?, F’i*)(al, @ cpyeee, Ck)))‘
1 y

& . .
/\</\ G*(F?, le*’pi)(al’ Cee @ Cp, e ’Ck)>'
1

ClattsCy list the constants occurring in some F! and are assumed to occur in
each F; for notational convenience.

Let B' = \/$G(F', Fi'ug ay,e vy ap cpyeeeycy) T (A'A~BY® is
infinite then there are models of T of arbitrarily large cardinality with
(A'AN~BYB) - (A'A ~ B'®) £ . Thus there is a model € of " with
(A" AN ~B)C) - a(C) £ &. But this is impossible. Let H be '

VUO<A'H <\/ (G(Fi, F’i*)(al, Cee L, @p Cpyeen ,ck)) v (A4’ /\"’B)))
i=1

" (Z\ (G, Fli*’Pi))) A (E‘Sjvo (A h <z\z/1 oy Fil)»)

Then @ FH so
@Faul, cee 3U[+kHCI,“° ,Ck(vl’ R | v1+k)
and
(u+1)
3Ul e Eh’I+leHc1, .ck(vl’ o Ul+k) € rAu

where # = max (”i) <a,

We return to the proof of Theorem 2. The induction hypothesis asserts that

(i) is equivalent to (ii) if m <n. We have already proved (i) implies (1)) if m=n




50 J. T. BALDWIN

and now we wish to show (ii) implies (i) if m = n. Suppose A €S, (L), @ ,---,
a, € lﬁ)], A'Z A (al, cee, al) and, for some &, R@(A') = (n, k). The definition of
@X’) allows us to assume that 2 =1. We will find a formula A* € FX’) such that
(@ A*(al,- ceya).

By Theorem 1 (v) there is an elementary extension of B of @ and a formula
B' €5 ,(L(B)) such that B'(B) C A'(B) and Rg(B") = (n, 1) = sup{Rp(B") | C > B}.
Now B and B satisfy the hypothesis of Lemma 2 so there exists B* € Fg‘“)
for some k < n such that B E B*(bl, ceau b ) If k<n-1 by the induction
hypothesis Rg(B') < (n, 1) so k=n~1. .‘BI:B*(bl,.. b)) A
Vv, (B (bl" ., b )——v A") and B is an elementary extension of (f so for some
CpsvtvsCg € |(f[, @k B* (Cl"' ,cs)/\ VUO(B(CI""’ s)——' A"). Since B* €
Fg’ ) and we have proved (i) implies (ii) for m = n, for some |, R@(B (Cl" .. ’Cs))
=(n, ). [ must equal 1 since B (cl, cee, cs)((f) CA'(®@) and RG(A') =(n 1). If
C'=C(v Lo 2 @p Cpyee c)—A'/\wB(vo,cl, ,c.) then Rg(C’) <
(m, 1). So by induction there exists C*¢€ U""l F(’) such that @ F

c* (ap"',al, Cl,---,cs). Hence letting
A* = 3v1+1’ e, 3yl+s((VvO(A - B(yo, Vit U1+s) V C)) A B¥ A C*).

A* is in l_‘/(“") and @ F A*(al, -++,a,) proving the theorem.

Recall that a.. is defined to be the least ordinal such that, for all ® (1)
and 3> aT,SaT((?) = SA®). In [4] Morley proved o, exists and is less than
28" for every complete theory. In [2] Lachlan shows that a.. <w,; for each

complete theory. We apply Theorem 2 to prove the following conjecture of Morley.

Theorem 3. If T is R -categorical then @ is finite.

Proof. If for some (f and some B> w there exists p € SA(®), then since T
is totally transcendental for some y > 3, p € Tr” () and by Lemma 1 there exists
Bx@®R, g eTc?@ N l*"l(p) so there is a formula A' = A (vg,a Pt ) in
S, (L (B)) with rg(A )_ w. By Theorem 1, there exists C = B and an integer k
such that, for every elementary extension @ of C, R(‘f (A) = (w, k). Now by
Lemma 2 with @ = w, there exists an 7 < w and a formula A* e F(" D such that
C EA*@,,---,a). By Theorem 2, for some &, Re(A Ve +1, k) This is a
contradlcuon so there is no f and no 8> w and no p with p € SA(@). Hence
ar <w.

This proof relied on Theorem 0 which is shown in [1] to be equivalent to
Vaught’s conjecture that K -categorical theory has either 1 or X,-countable
models. According to Morley this conjecture had already been verified under the

assumption that a, was finite. In fact, it is easy to deduce Lemma 13 of 1]

which is crucial to the proof of Vaught’s conjecture from our Theorem 3.
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