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THE DEGREE OF APPROXIMATION BY CHEBYSHEVIAN SPLINES
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R. DEVORE(l) AND F. RICHARDS

ABSTRACT.    This papet studies the connections between the smoothness

of a function and its degree of approximation by Chebyshevian splines.    This

is accomplished by proving companion direct and inverse theorems which give

a characterization of smoothness in terms of degree of   approximation.   A deter-

mination of the saturation properties is included.

1.   Introduction.   The purpose of this paper is to study the relation between

the smoothness of a function and its degree of approximation by Chebyshevian

splines.   Many such results are known, especially, for algebraic polynomial

splines with equally spaced knots.    The most common type of result is one which

gives an estimate for the degree of approximation by a method of spline approxima-

tion in terms of the smoothness of the function.   This type of estimate is custom-

arily called a direct theorem of approximation.   Our main interest lies in the op-

posite direction.   Namely, when a certain rate of approximation is known, what

can be said about the smoothness of the function being approximated?   We settle

this this problem for Chebyshevian splines, with the knots satisfying a certain

mixing condition.

Let  Z2     • • . , u, _ .   be   k times continuously differentiate functions on  LO, l]

fo. £ C'fe'[0, l])  which form an extended complete Chebyshev (E.C.T.) system on

[0, l].   We refer the reader to either of the books S. Karlin and W. J. Studden [5]

or S. Karlin [4] for the definition and fundamental properties of E.C.T. systems.

We assume that the   u. ate the canonical basis represented by

uQ{x) = Wfj{x)

ul(x) = w0(x)fXowl(c;l)dc;l

(1.1)

"k_lM=^o^){l^l^l)fQlw2(c:2)...fok-\-k_l(c;k_l)dc;k_l...dc;l,
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where the functions  w . are strictly positive on  [0, l] and  w. £ C( [O, l].    If

we let   U, _     denote the span of  |«n, • • • , ",_,!•  then   fi, _ ,   is the null space

of the differential operator

(1.2) L = Dk-\ ■•■ D0    where   Dz(/) = (f/w,Y-

A function  S  is said to be a Chebyshevian spline if there are points   0 = xQ

< x,<■••< x       , < x    =1,  such that on each interval  [x .    ,, x .),  i = 1, • • • , m,
1 772—1 772 2 — 1 ' 2

S is in   LL_j.   The points  x . are called the knots of the spline.   We make no re-

striction on the continuity of S  at the knots.

If Ö = {0 = xrt < x, <•••<%       , < x    = 1 !,  let  oi8) denote the collection of
U 1 777—1 77Z

Chebyshevian splines whose knots are contained in  S.   Define the error in ap-

proximating / by  oiS) as

(1.3) Eff)=    inf     ||/-í||
Se&($)

where   ||»||   denotes 'he supremum norm on  [0, l].

Now, suppose     (8 )  is a sequence of sets of knots  8    = \0 = xf   < xf   <

••• <x(n)   , <x(n)  =lj.   We let

(1.4) ||SJ|=     max     Ix^-xj^l.
l£ 2S772

72

In order to guarantee that  E ^ if) —» 0 for each / £ C'[0, l]. we assume that

\\8 ¡I —» 0   (» -* °c).

For an integer r > 0,   let A^ denote the  rth  order difference operator with

step size  t,

(1.5) a;(/, x) = (-ir¿(-iv/rW
7=0 X/^

+ /Í71

The corresponding  rth  order modulus of smoothness of / is given by

(1.6) coif, h)=   sup  ||A;(/, x)||[0, 1 -rt].
0<t<b

The notation   ||-|| [a, b] is used to indicate that the norm is taken over  [a, b],

and is thus the supremum on   [a, b].   When   [fz, b] is omitted, the norm is under-

stood to be on  [0, l].

It is relatively easy to establish the estimate that if  0 < a < ze  and  coff, h)

= Oiha) ih — 0)

(1.7) Es(f) = 0(\\SJa)        (tz^oo).
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We do this in §4, where in fact we show that the estimate in (1.7) can actually

be obtained by using splines  S    £ ¡b{8 ) with  S    £ C [0, lj.   Our method of

proof is a straightforward extension of the techniques given by V. Popov and B.

Sendov [8], who gave similar estimates for algebraic polynomial splines.

What is of primary interest to us is in what sense are the estimates of (1.7)

the best possible?   More precisely we ask the following two questions:   When

does (1.7)   imply that coAf, h) = Oih  );  i.e., does the inverse theorem to (1.7)

hold?   Secondly, is it possible to improve (1.7) if we assume higher smoothness

for /?

It is not possible to answer these questions without some additional restric-

tions on the sets of knots.   The simplest way to see this is when a fixed point,

say  H, appears in each set 8 .   Then, any Chebyshevian spline  S which has a

single knot at   M will have  Es  fo) =0,  n = 1, 2, • •• , while of course  S need
77

not even be continuous.    More generally, the same phenomenon manifests itself

when a fixed point falls only in small intervals (in comparison to   \\8   ||).   In order

to avoid this, we will require that the sequence of sets   (S )  satisfies the fol-

lowing mixing condition.

(1.8) There is a constant  p > 0,  with the property that whenever n > 0 and

I < i < m    — 1,  then there is an n   > n such that x.       < x       < x.   ,    with-        - 72 ' 727 + I

min fofo"''-*<">],   |xJ;'1)-*|.-)|)>pH8J.

It is easy to see that (1.8) guarantees that the following holds.

(1.9) There is a constant   p ~> 0,  with the property that whenever  n > 0 and

x £ [O, 1 - p\\8   ¡|],  there is an  n   > n  such that  x.    ) < x < x'\" /  with   \x - x("''|r"    n" - 7 - ,+1 I y+I I

>p||SJI-
It is important to point out that the mixing condition puts a restriction on how

fast  (IIS   II) can tend to  0,  since, for each  n,  there must exist an  22   > n with
II      n II J J 7

l|8  'II > p\\8  ||•   We can put this in the following form for later use.

Under condition (1.8), we have for each  n

(1.10) sup    ||SJ|>p||SJ|.
V>77 + 1

With the added restriction (1.8), we are able to establish in  S3, that if

£s   (/) = 0('|S  |fo) («—>«>),  then  coAf, h) = Ofofo  fo  —> O).   This answers our
n n k p , .

first question.   With regard to the second question, we show in   S3 that if  £j  (/)

= 0(||S   II   ),  then / ?  fot    i-   This is the saturation phenomenon, i.e., the esti-

mates of (1.7) cannot be improved by assuming higher smoothness for /.    Our

results show that Chebyshevian splines are saturated with order  (||S   j|   ) and

saturation class  [/: coAf, h) = 0(h■  )\ (see G. Lorentz [6] for a discussion of the
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concept of saturation).   Since our inverse and saturation theorems are proved with

no continuity restrictions at the knots, they apply to any spline approximation

method provided the mixing condition on the knots holds.

The most important case covered by our results is for algebraic polynomial

splines;  zz.(x) = xl,  i = 0, • • • , k — 1.   The saturation and inverse theorems for

algebraic polynomial splines with equally spaced knots (i.e.,  8   = ii/n)"_A were

first shown by K. Scherer [10],   Saturation theorems, in this case, were given in-

dependently by D. Gaier [3]  (for   "o") and F. Richards [9]  (see also G. Butler

and F. Richards [l] for saturation in  L     spaces).   We should also point out that

Scherer's results apply only to smooth splines (i.e. S £ O       ') while in [3] and [9] no

smoothness condition at the knots is needed.

The techniques developed here, besides having more general applications,

are also simpler than those developed in [9]. [l0], when we restrict our attention

to algebraic polynomial splines.   In §5, we give a finer description of the satura-

tion class for approximation by algebraic polynomial splines with equally spaced

knots by establishing an asymptotic formula of Voronovskaja type.

Our main tool is divided differences.   To handle the general case of Cheby-

shevian splines, we need to develop some properties of generalized divided dif-

ferences, which is done in §2.   The reader interested only in algebraic polynomial

splines can skip §2 and proceed directly to §3, in which case the generalized

divided difference fix, • • • , x + kt) is to be interpreted as

fix, ... ,x + kt)= rkA^if, x)/k\

2.   Generalized divided differences.   We will need to use the concept of gen-

eralized divided differences (see Karlin [4, p. 521 ]).   Let  u,   be defined by

(2.1) ufx) = w0ix)fowftffoX wfQ . . . Slk-lu>k(Ch)d4k • - - «f,

where  wfcfe) = 1   on   [0, l].   Then  Lu k = 1   on  [O, l] and  \uQ, • • • , a, j is also an

E.C.T. system.

If  0<x0<x,<...<x/a<l  and / £ C[0, l], then the generalized divided

difference of / at xQ, • • • , x^  is defined by

(2.2) /feo.xj, ••• ,xk)= UÍ

where

(23) .-»L-.0-
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As long as the points x. are distinct, the denominator in (2.2) does not vanish.

It is clear that if / £ sp iuQ, • • • , u,_f, then fixn, • • • , x, ) = 0 for any 0 < xQ

<...<x,<l.

Let  </Jt_i   denote the fundamental spline

<pk_fx; t)=   0,       x <t,

(2.4) =    wfx)^wf^)ftlw2(Q

The B-spline   Mit; xQ, • • • ,-x f) for the knots   0 < xQ < x, < • • • < xk < 1   is de-

fined as the generalized divided difference of  </>,    ,(x; 7) with respect to the first

variable.   Notationally,

(2.5) Mit; x0, ... , xf) = c!>Ie_j(x0, ... , xk; t).

The B-spline   M(i; xQ, ••• , x.) has the following fundamental properties:

Mit; x-, ■ ■ ■ , xf) is nonnegative on   [O, l]

(2.6)
and vanishes outside   [xQ, xA.

(2.7) PoMi£x0,...,xk)d€=l.

As in the case of ordinary divided differences, we have the Peano formula

(2.8) /fe0>...   ,xf=   JoIL/(e)M(rf;x0,...   ,xk)dc¡

whenever f^k~       is absolutely continuous and  Lf £ L  [O, l].   On this point,

there is a misprint on p. 523 of Karlin [4], where it is stated that (2.8) holds but

with the adjoint operator  L* in place of  L.   The identity (2.8) is easily estab-

lished for functions  / with / absolutely continuous and  Lf continuous.

The general case is handled by taking a sequence of functions   (/  )  in  C(   '[0, l]

which converge uniformly to / and   Lf    —* Lf in  L   [O, l].

When / £ C[0, l], we define the generalized modulus of continuity  co*if, h)

by

(2.9) co*if, h) =    sup  i*||/(x, x + t, ... ,x + kt)\\[0, 1 - kt].
0<i<b

Our main objective in this section is to show how co*if, h) can be characterized

in terms of ordinary smoothness as described by co, if, h). We first establish an

identity between generalized divided differences and ordinary divided differences.
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Let  A(x, t) denote the determinant in the denominator of (2.2) for x. = x + it,
i

i = 0, • • • , k.   For the numerator in the expression (2.2) for fix, • • • , x + kt), we

add  (- l);(  )  times the  /th  column  to the  0th column for j = I, 2, • • • , k.   Note,

we have indexed the columns and rows from  0 to £   In this way, the determinant

remains the same but the  0th column now has  (— l)  \jfiu ., x) as its entry in the

z'th row,   0 < i < k — 1,  and  (- l)  A( (/, x) for its entry in the   ¿th row.   In a simi-

lar way, we can modify the suceeding columns to find

(x     ...    x + {k - l)t    x + kt\

= det((-l)*-J'Af-'(g.,x + ;r))*;.a0

E<0   "•     «k-i f     I

where g . = u .,  i = 0, • • - , k - 1  and g,  = /.   Note that A  (g, x) is understood to

be gix).

Now, we expand the right-hand side of (2.10) about the last row to find

k

(2.11) fix, X + t, ■ ■■   ,x + kt)=   {A{x; t))~l £   Akt~'{{, x + rt)A(x; t)

r=0

with

(2.12) A(x; t) = det((- D^'Af"''«*,.. x+ jt))^]'^ ^ .

The determinant  A{x; t) can be written in a similar way to (2.12), namely

(2.13) A(x; t) = det ((- l)fe->Af->foz, x  +  ;i))*   .=0.

Our first lemma determines the behavior of A{x; t) and A {x; t) as  t —< 0.   De-
r      '

note by  W{cpx, • • • , ep ) the Wronskian of  cp  , • • • , cp .

Lemma 1.   Let  p = l+2 + '-~+k.   Then

(2.14) {- lY lim t~ßA{x; t) = Wfon, • • • , u,){x) > ß > 0
z-0 u *

uniformly in 0 < x < 1.   Also for each r = 0, 1, • • • , k

(2.15) lim t~^k-rA (x; t) = {-ir+k-rdetiu{k-j){x))k~1'k
2-0 T ' 1=0,,=0,j*r

uniformly in   0 < x < 1.

Remark.   In particular,  i- lY~+k limt^Q t~fi+kAQ{x; t) = W{u0, ■ • ■ , uk_ ¡tx)

> S > 0 uniformly in  0 < x < 1.

Proof.   Suppose   0 < r < k and consider A fo; /) which is given by (2.12).

We have from (2.12) that
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(2.16) t-^-'A ix; f) = det((- l)k-'^-'iu.,x-yjt)/tk-'t n1'k
z = 0,/ = 0,/¡Ér

where we have divided each column by  t to compensate for the factor  t~'

Since  zz. £ C  [0, l], for each  i, j there is a point ç. . e ix, x + kt) tot which

\kt~Au., x + jt)/th~j = «**-,*(£.  .).   Therefore, as  t —> 0,  this quantity converges

to  u.—]ix) uniformly for 0 < x < 1.    This shows (2.15), where we have factored

out the terms  (-1)  ~'.

In the same way, we see that

i-iriimt-^Aix; t) = detiu(k->\x))k  .      = W(«„, .. . , u. )fe).
t—Q i, 7=0

It is shown in Karlin [4, p. 278] that WiuQ, ••• , afe)(x) = (wz0(x))* +I(77z,(x))fe ...

iwk_fx))2  and  W(zz0, ... , uk_fix) = iw fx))kiw fx))k~ X • • • iw k_ fx)).   Clearly

both these quantities are positive on  [0, l].

Lemma 2.   There is a constant  C > 0 such that for each f £ C[0, l],  ' > 0,

xQ £ [0, 1 - kt], we have  tk\fixQ, • • • , xn + &')| < C||/||[x0, xQ + ze/].

Proof.   It follows from Lemma 1 that there is a constant C    > 0 such that,

for each  r = 0, 1, • • •, k,   \\tk~riAix; t))-XAfx; t)\\[0, l] < C,,   0< t < 1,  where

the norm is taken with respect to the variable  x and the constant  C.   can be

chosen independent of r and  t.   Using this in (2.11), we find

k

tk\fixQ, x0 + t, ... ,x0 + kt)\ <C, Z  'r|Af~r(/, x0 +ri)| <C2||/||[x0, x0 + kt]

7 = 0

for some constant  C"2 > 0.   Here, we have used the fact that   |AJ(/, xQ+ r/)| <

C0' XQr\\f\\[xn,xn + kt].

Lemma 3.   If 0 < a < k and f £ C[0, l],  then

(2.17) o>*(/, /)=   0(ta)       it-,0)

if and only if

(2.18) .(/. t) = 0(ta)       (/_» 0).

Proof.   First suppose that (2.18) holds.   Then, using (2.11 ) together with

Lemma  1, we find that

||/fe, x + i, . . . , x + /ei)||[0, 1 - /fei] < Z   a>k_rif, t)

(2.19)
7 = 0

A  (x;  /)

zA(x; 0 |

<c5rkZ ^k_ii. t)
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with  C    > 0 an absolute constant.   From our assumption (2.18), it follows (see

Timan [il, p. 10 7]) that as  I  ^0.

ÍO(fo), v > a,
0{taln t),     v=a,

0{tv), v<a,

Using (2.20) in (2.19), we find for  0 < a < k that

tk\\fix, x + t, ... ,x + *0||[0, 1-*/]

= o( X   ta+r+  Z  «*ini +   Z  tk)=0(ta)    u — o)
\Ze — r>a Ze-7-=a Ze —r<a     /

as desired.   When  a = ze,  then, because of (2.2 0),

tk\\f{x, x + t,.-. ,x + kt)\\[0, l-kt] = o(cokif, t) + ¿ f*J = O(fo)

as desired.

For the other direction, we again use (2.11) and find

Al     A k A   {x; t)

A* (/, x) = ff^/fo, • - • , x + ht) - Y   Af-fo/, x + rt) -L- ..
1 A„(*;t) ~ A0(x;  t)

Therefore from Lemma 1

(2.21)        <u¿(/. i)<C/||/(x, ... ,* + fe)||[0, l-kt]+ £   <'<ufc_r(/, fo.
7 = 1

Now, suppose that co*{f, t) = 0{ta), so that tk\\fix, • • • „x + zs')||[0, I - kt] =• 0{ta).

We want to show that &->,(/> i) = 0{t ). This is clear when a < 1, because the

first term on the right-hand side of (2.21) is Oit ) by assumption and the second sum is

0{t) because each term in the sum has a factor A, r > 1. Suppose we have estab-

lished the result for all a < I, I an integer I < I < k - I. lfl<a<l+l, a/k

and co*{f, t) = 0{ta), then by our induction hypothesis &v(/> i) = 0{tl). Therefore,

using (2.20) in (2.21), we find

cAf,t) = 0(ta+     Z    'r+/+     Z   fo'+fonz-W    Z    *k)
\ k-r>l k-r = l k-r<l       )

= 0{ta+tl + l +tklnt + tk)=0{ta)       (i — 0).

When a = k, we have to use the additional information we have just obtained.

For example, now we know eoAf, t) = 0{t 2). Using this in (2.21), together

with (2.20),, we find ojfe(/, t) = 0{tk + 2*=J tk~r • /r) = 0(tk).

3.   Saturation and inverse theorems.   Our main result is the following inverse

theorem for approximation by Chebyshevian splines.
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Theorem 1.    Let  iS ) be a sequence of sets of knots with   ||<5   || —> 0 and

iS ) satisfying the mixing condition (1.8).   //  0 < a < k and f £ C[0, l] with

(3.1) Eg if)<M\\8Ja,      72 = 1,2,...,
n

then coff, t) = Oif)  it —>0).

Proof.    Because of Lemma 3, it is enough to show that

(3.2) co*if, t) = Oita)       U —0).

We will show first that (3.2) is valid for any  '   of the form

(3.3) t= t     =k-xp\\8    ||,
77 22

(3-4) 11-5.   || =  sup IIS J,
A,

sup

where (3.4) is used to define the sequence  (A ).   Let  /  be of the form (3.3) and

xQ  be any point in  [0, 1 - kt].   Then because of (1.9), we can find an  72   > À

for which *<"'> < x0 < x^ and   \x$ - xj > p^J,

From our assumption (3.1), it follows that there is a spline  S  ,  in   M<5  i)

fot which   ||/ - Sn,|| < 2M||On,||a.   Then because of (3.3), if  0 < h < t,  the points

xq, x0 + h, ■ • • , x0 + kh all lie in the interval  [x{n \ x(n )) andj since  S  ,  is in

Uk_ ,   on   [xf\ f0,  fix0, x0 + h,...,x0 + kh) = (/ - s\)ixQ, x0 + h,...,xQ + kh).

From Lemma 2 and (3.3), we see that

eo*if, t) =    sup  hk\fix0, x0 + b, ■ ■ ■  , x0 + kh)\ < C\\f - S   , ||[x     x    + kh]
0Sb<(

(3.5)
<2CM||on,||a <2CM||SA   ||a =2CMUp-1r)a = Cta

72

with  C   a constant independent of t.   This establishes (3.2) for t = t.    .
A 72

Now, it follows from our remark (1.10) that

(3-6) *a "\ r]l8> ii/i|Sa i11^-1-
n 72+1 n 72 + 1

Hence, given any  t >  0,  t. < t < t.     fot some 7z  and  co*if, t) < co*if, t\   ) <
1 A72 + l - »a - A72   -

Ci,    < Cp~  t,        < Cp~~  t  .   This is (3.2) and the proof is complete.
Q 72 + 1

In §4, we will establish the direct theorem that  coff, t) = 0(t  ) implies

F g  (/) = 0(||<5  ||   ).   This gives the following corollary to Theorem 1.

Corollary 1.    Let   (8  )  be a sequence of sets of knots satisfying the mixing

condition (1.8).   //  0 <a < k and j £ C[0, l] then

(3-7) Fs (f) = 0(\\SJa)       (72-^00)
72

if and only if coff, t) = 0(ta)  (t — 0).
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The following theorem is a "o" saturation theorem which shows that the

estimate (3-7) cannot be improved by assuming higher smoothness for the function /.

Theorem 2.   Let  (S ) be a sequence of sets of knots satisfying the mixing

condition (1.8).   If f £ C[0, l] and

(3.8) Fs{f) = o{\\8Jk)      fo.^-)
72

then j £ lfo_p

Proof.    From the representation (2.4), it follows that there is a constant  C >

0 such that

(3.9) \cßk_{ix;e:)\<Ctk-1,       \€-x\<ht.

Using this in Lemma 2, we find that

(3.10) |zM(£ x, ■■■ , x + kt)\ = \epk_xix, •■•  ,x + kt;c;)\< Ct~X

for all x  and   cf.   Here, we have used the fact that  Al  vanishes for A,  outside

[x, x + kt], and hence we needed only to estimate for   |çf — x| < kt which is done

by (3.9).

Now, suppose / satisfies (3-8).   From Theorem 1, we have that  eoAf, t) =

0{tk) and hence  /( is absolutely continuous and /       £ L^.   This gives that

Lf £ L^ and therefore

: +kt
f{x, x + t, ■ ■ ■ , x + kt) =   fX+ ' L/(cf)/Vl(cf; x, x + t, ■ ■ ■ , x + kt)d£.

Let x0 be any Lebesgue point of  Lf,  i.e.,  h~ l /^0+*fo/fo0 + t) - L/(xQ)| dt

fo -♦ 0).     Thus, using (3.10), (2.6) and (2.7), we find

|/fo0, • • • , x0 + kt) - Lf(x0)\

=   j*0       {Lf{C)-Lf{x0))M{c;; xQ, xQ +

0

(3.11) • • , x    + kt)dC

< Ct 7
Xfj+kt

Lf{é;)-Lf{x0)\dc;^0       {t -» 0).

Now, we can argue the same as in Theorem 1 to show that (3.8) implies that

||/fo, - - • , x + kt)\\[0, 1 - kt] -»0 it —• 0).   Using this with (3.11) shows that

L/fo0) = 0 at each Lebesgue point xQ and hence  Lf = 0,  a.e.   Since f is

absolutely continuous,  / € ffo_p

4.   A direct theorem.    In this section, we will establish a direct theorem

which is a companion to Theorem 1.   However, for the direct results we do not
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need the mixing condition (1.8).   Also, we will be able to establish our upper

estimates with splines of continuity class   CA   ~   '[0, l\.

We introduce the auxiliary E.C.T. systems for  v = 0, • • • ,,k - 1:

uQ   fx) = wfx)

ulfx) = wfx)fXowv+fÇfdc;l

(4.1)

k — 1 — y,  y ix) = Wvix)fXowvnitffo\+2iÇ2)

■■• Stk~v'2wk-i^k-v-i^kk-l^k-v-l'^k-v- 1

Note that for  v = 0,  we get our usual system.   Also,

(4-2) b;.+1> v_,fe) = wv_ fx)fXo uu ft)dt.

We define the new space of spline functions  Mia 8 )  to be the collection of

all functions   S tot which

OZ2 each interval fx'"',, x'"'),  i = 1. . . .  , m   .

(4.3) '-1     •

S    IS   ,72    Sp(u0^,   U^y,   ...    ,  Uk_l_vf),

and

(4.4) S£Ök~v-2)[0, 1].

In particular, for  v = k — 1,  there is no continuity assumption on the splines.

We begin with the following reduction lemma.

Lemma 4.   Suppose  (8  )  is a sequence of sets of knots and   1 < iz < k - 1.

Given  f £ C[0, l], suppose e    > 0 07223? S    ,, £ S(zy, 5 ) satisfy
c 72 72, V n ' J

(4-5) H/-S„,J<V       « = 1.2,....

Then, for any   F satisfying  D„    ,(F) = /,   there exists S ,  6 oXv - 1, 5  )  sat-' J ° IZ—   1 ' 77,  ÎZ—   I 72

isfying

(4-6) ||F-5niV_1||<(2¿ + l)íJ|UzJ/_1||||OJ|.

Proof.    Let   M. ^(ii be the B-splines with respect to   \uQ v, ••• . u,_v_^ f,

that is M.   if = A,    „   ,   ,(x("). ••• . xin),      :f,0<i<m   - £ + v, where
Z.ÎZ 1    fe-lZ-l,!/        , ¡+!;_jy' — — 72
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<Pk-v-l   iÁx'> ¿)=   0,     x < t.

Zk-v-2
(&-v-l>     ^'fe_l^fe-v_l .V- 1

X > Í.

As usual,  M. „ is nonnegative on  [O, 1],  vanishes outside of  [x .    , fo.   ,      1  and
'      l,V ° 2     '     z+ze — v

/J M.vit)dt = 1.
Now, let

>)

(4.7)

and set

*,= J '(n)(f(f)-Sn vit))dt,      , = 1, ' OT„>

7-1

777    —72+7

(4.8) Jn,,-.W = ViW}¡SM(í)¿í+^-iW    £     fo/oMz(z' ¿Í.

7 = 0

From (4.2), one easily verifies that S    u_.  e ûfo - 1, S )

First suppose   Fjfo) has the form  Fj(x) = wv_ Ax) J"* f{t)dt.   If x e [O, l],

-»v_iW    Z    ajf"0M.tV(t)dt

say  x(n) <x < x("',   then

FlW-^,,.,«

^.iW

(4.9)
7=0

t)-snv{t))dt
-_n J  x .

z'-ze+v j

- z « - f' «■ r«- „w<¿*■*     ; *— i J o    i,v
;'=2-fe+iT + l

=   227¡y_1fo)

;=z-7e+^+l

X       ß;+ r    (/(,)-^foOV;

i
Y'        a.fXM.   At)dt
¿- 1J 0     Uv

j=i-k+v+l

The notation S    is used to indicate that the upper limit in the sum is to be re-

placed by to    - ze + 17 when  i > m    - k + v.   In the second inequality, we have

used the fact that  M . v is supported on   [xin), *■*],_„] and   f|, M. vit)dt = 1.

From the definition of the  22.'s,  we find
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An)

(4.10)

Similarly,

(4.11)

Also,

(4.12)

Z     \",\<Sl)    l/W-*■>>!*
xi-k + v

< \x(n) -x(n\     | ||/-S     „II <¿|IS  \\(  .
—  I    ; i — k+v[ '" 72, v" —     "   n"  n

7=i—k+V+l

An)     An)

T.'       a   TM.  At)dt\ <        y \a.\ < k\\8  \\e  .
¿—i ij o   ;. v —       *-> ' ;■ —    M  77" n

i-i-k\v + \ i-k+v+1

A")

ifX(72,(/(Z)- Sn, ¿t))dt\ < S Mm)-5: mdt - l|S"lk"-

Using these last three estimates back in (4.9) shows that   fo,fo) - Sn>v_lix)\ <

(2/% + l)f  ||S   || \\w^_ p||.   Since  x was arbitrary

(4.13) l*i-*„.v-ili<G* + n«jK-iilii8j

Finally, if  F  is any function such that  D¡y_,(f7) = f, then   F = F^ + Cwv_.,

with  C a constant, and thus the spline  S    v_    + Cwy_x  provides the desired

estimate (4.6).

Lemma 5.   Suppose  f £ C[0, l],  E>k_lif) £ LM,   Then, there exists a sequence

of splines  {S ), with S ,  £ S(/e - 1, S ) such that   If - S    ,    A\ <
'        r 77,75-1 72,7e-l 72 "' n,k-l"   -

K-i « HU«0*- i^L-

Proof.   From our assumptions, we have fix) = Citt, _,(x) + w.    Ax) fl D,_(f\t)dt

with  C a constant.

Define  S. ,   by
77,ze— 1     »

5..*-lW-c«'*-iW + "'fc.iW/¡,'Ds-iV)0)*,

x e [x., xí+1),  i = 0, ■ ■ ■ , mn - I.

Then, for x £ [x ., x.   A

I/W-S„.*-1«I viW/l**-^**!- K.JIIUK-iWL-

Since  x  is arbitrary,   ||/ - S^_ , || < ¡fo^ , || ||SJ| ||Dfc_ ,(/)|L as desired.

Theorem 3. Let (S ) be a sequence of sets of knots with ||S || —' 0. If 0 <

a < k and f £ C[0, l] with eoAf, t) = 0{t ), t —» 0, then there exists a sequence

of splines  {S  ) with  S    £ S(0, 8  ) C S(S  ) H C*_2[0, l] such that
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(4.14) \\f-Sj = 0i\\8Ja)      (72^00).

In particular,

(4.15) Fs (/) = 0(||oJa)       (72-+00).
72

Proof. First suppose that (off, t) = Oitk) so that f^k~ is absolutely con-

tinuous and Lf£Lao. Let F = D 2„ • • • , D ff). Then, D fp) = Lf e L^ and

therefore from Lemma 5, there exist splines S , _ , £ o(& - 1, 8 ), n = 1, 2, • • • ,

with ||F - 5 _ , || < H"', , || ||S || IlLÍ/)!!^. Now, we use the reduction lemma re-

peatedly to find that there are splines  5    n £ ö(0, 5  ),  n = 1, 2, • •> ,  with

11/-i, oll<KII---K-illö* + »*"1lli'/Ulsjl*
(4.16) ,

<C||L/|L||8J|k,       72 = 1,2,...,

with  C an absolute constant.   This proves the theorem for  a = k.

To establish the theorem for  0 < a < k, we use an intermediate space tech-

nique.   If / £ C[0, 1]  and  <r > 0,  there is a function f( £ C(k)[0, l] for which

(4.17) ll/-/6!l<C,^(/, f),

(4.18) ||/^||<C2(-^(/,f),      j = 0,--.,k,

with C, and C constants depending only on k. For a proof of this fact, we re-

fer the reader to the paper of G. Freud and V. Popov [2]. Freud and Popov have

only stated (4.18) for the case j = k but the estimate for other values of / is im-

mediate from their explicit construction of /.

Now, suppose  / £ C[0, l] and   0 < a < k with

(4.19) ojff, t) <Mta.

For 72 a positive integer take e = (   = ||S  |  in (4.17) and (4.18).   The function

/,    has  f    ~     absolutely continuous and  Lf     £ L   .   In fact, if we express the
72 tn , , e72

operator L  as   L = z. =0 a.(x)D*,  D = d/dx, with  a. £ CLO, lj,  7 = 0, • • •, k, then

by using (4.19) it follows that

(4-2°) KIL<C3   sup   \\f(en\\<C4c-kcokif,cn)<C4Mc--k,
n Osjsk        n

with  C    and  C    constants independent of 72.

Let S    be a spline in  SiO, 8 ) fot which
72 r '72

<4-21> ll/f   -KW<CCaK-
n

The existence of such a spline is guaranteed by the first part of our proof because
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of the estimate (4.20).   Therefore, for n = 1, 2, ••.,    / - SJ\ < \\f - f    || +
n tn

S   11 < C,Mea + CC,Mea < CA\8  \\a where the term   ||/-/,   ||  was estimated by
n "  —       1       77 4      72 —      5"   n" '" cn

(4.17).   This completes the proof of the theorem.

5     The saturation class for algebraic polynomial splines with equally spaced

knots.    In this section, we suppose that the E.C.T. system is ordinary polynomials,

i.e.,  zz it) = t',  i = 0, • • • , k - 1,  and the knots are equally spaced  (S    = ,z'/72¡"_0).

In this case, it is possible to give a more precise characterization of the satura-

tion class.   We let  E  if) = F?  (/).
77 „

Theorem 4.    For algebraic polynomial splines with equally spaced knots, the

following two statements are equivalent for f £ C[0, l]:

(5.1) • limT2^(/) = 2-2^1^;

(5-2) ¡{k-x)  is absolutely continuous f{k) £ L     and  \\f {k)\\     = M.
1 ' > oo 117 lloo

Proof.    The proof is based on a well-known theorem of S. Bernstein (see G.

Meinardus [7, p. 78]), which states that if g £ C[- 1, l], with g absolutely

continuous on  [- I, l] and g       £ Lx[- 1, l] then there exists a polynomial   P  of

degree  < k - l  fot which

(5.3)     ||g - P||[- 1, fo < ||TJ|[- 1, 1] • \\gik)\\J- 1, 1] = (2-*+1A!)||g(*>||J- 1, 1]

where   T    is the normalized Chebyshev polynomial

(5-4) Tk{x) = (2-fe + 1/ze!)cosfo arc cos x) = xk/k\ + ....

This result is usually only stated for g continuous but is routinely extended

to the general case g e L^ by approximating g by ze times continuously dif-

ferentiable functions  gv with   Hg^Ht- 1, l] < ||ga)||J- 1, fo-

We know from our inverse theorem (Theorem 1) that  E  (/) = 0{n~   ) if and only

if / is absolutely continuous and /(   ' e L^.   For this reason, it will be

enough to show that (5-2) implies (5.1).   The other direction follows from Theorem

1 and the fact that (5.2) implies (5.1).

We first wish to show that (5-2) implies

2 - 2 k+1 w

(5.5) limnkEn{f)<-.
72-.oo k !

This is an easy consequence of (5-3).   For each   0 < i < n — 1,  there is a poly-

nomial  P .      of degree at most  ze - 1   for which
i.n b



416 R. DEVORE AND F. RICHARDS

(5.6) I)/-  P.    n||[z/72,   (Z   +   l)/72]<2-2í: + 1M/72^zfe!.

Here, (5.6) is a restatement of (5.3) for the interval  [z/72, (z + l)/n] as obtained

via the usual transformation of  [i/n, (2 + l)/n]  to   [- 1, l] and back again.   Thus,

the spline  S    £ 5(5  ) defined to be   P.      on [/'/«, (z + l)/n),  i = 0, • • • , n - 1,
r 72 72 2, 72

gives the estimate   E  (/) < ||/ - S   ¡|[0, l] < 2~ 2k + XM/nkk\  which, of course, shows

(5.5).

We will now show that (5.2) implies that

,                 2"2fe + 1M
(5.7) Um nkEiJ) >--

72-O0 k\

which will complete the proof of the theorem.   Suppose (5.2) holds but

2~2k+lM'

(5.8) lim.B*E (/) =
k\

with  M   < M.   We will show that (5.8) implies the existence of a polynomial  Q  of

degree at most  k — 1   for which

(5.9) \\Mxk/k\ - Qfe)||[- 1, 1] < 2~k + XM/k\.

This will contradict the well-known minimality [7, p. 78] property of the Cheby-

shev polynomial  T    of having the smallest norm among all polynomials of degree

k with leading coefficient   l/k\.

Let  (77.Y be ?i subsequence for which  lim.   „ 72  E    (/) = 2~2k+XM'/k\.   For
1 7-00    _,    „. 1

£ = 2~ik+fM - M'), choose   N  so that for  n.> N

(5.10) n*Enif)<2-2k + HM' + e)/kl.

1

1     n.

Since   ll/H^ = M,  there is a point xQ  for which f     ix f > M - c/2.   Here, we may

have to work with  - / in place of / in order to have the inequality read in the

direction we want.   There is a   8 > 0 such that

0.11) iM-e)ix-x0)<f(k-X\x)-f^k-l\x0)< Mix-xf,    for  xQ < x < xQ + 8.

If we integrate the inequality (5.11) k — 1   times, we find

(Ai - f)(x - xfk/k\ </fe) -fixf) -f'ixflix - xf

-/(fe-1)fe0)fe-x0)fe-1A!

< Mix - xfk/k\,     for  x0 < x < x0 + 8.

This last inequality shows that there is a polynomial   P,   of degree  < k — 1   such

that for each  0 < r¡ < 8
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(5.12) \\Mxk/k\ - fix) - Ppfo)||[x0, x0 + rj]< (z//ze!.

Now, choose  77. > min(/V, 2S~~   ).   Then, for some  0 < z <   72. - 1,  we have

[i/n., ii + l)/n.]c[xQ, xQ + 2/n.]c[x0„x0 -1   8].   Taking   77 = 2n~ l   in (5-12)

gives

(5.13) \\Mxk/k\ -fix)- Pj(x)||[//b;., (z + D/77.] < (2k/n*kl.

Since  E    if) < 2~2k+1{M' + e)/nkk\, there is a polynomial  P2  of degree at most

ze - 1   such

(5.14) ||/(x) - P2(x)||[¿/«., (z + I)/«.] < 2-2^ + 1(M' + f)/«;¿!.

Using (5.14) in (5.13) gives

(5.15)
k nr ¿       -     n      2~2k + lM'       2k + A      2~2k + lM

P.ix) - P,{x)\\lÍ-, Íí±~\
IILtt-      n.   J

Mxk

k\        ' V" 'IILtt.'    n.    J"        nkk\ nkk\ nkk\
I 1 1 1 1

where in the last inequality we have used our choice of f. Finally, P. - P2 is

a polynomial of degree < k - 1 and so transforming (5-15) to the interval 1—1, 1]

establishes the existence of the polynomial Q  in (5-9).   The proof is complete.
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