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OVERRINGS OF COMMUTATIVE RINGS. Ill: NORMAL PAIRS
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EDWARD D. DAVIS

ABSTRACT. A pair of integral domains (A, B) is a normal (resp., QR-) pair

provided that A  is a subring of ß and all intermediate rings are normal in  B

(resp., rings of quotients of A). The special case of B the field of fractions of

A (e.g., Prüfer domains and Dedekind domains with torsion class group) has been

studied in detail. It is shown that any domain  A   possesses a unique overring  B

maximal with respect to forming a normal (resp., QR-) pair with  A. An explicit de-

scription of this overring and all the intermediate rings in terms of localizations

A  is obtained, and further details are provided in the presence of a noetherian-like

condition on A. In addition, the "overring" characterizations of Prüfer domains

are extended to "intermediate ring" characterizations of normal pairs.

1. Introduction, notation and preliminaries. Recall that a Prüfer domain—in

the noetherian case, Dedekind domain—is an integral domain for which all locali-

zations are valuation rings. A number of papers have studied these rings in terms

of the overrings contained in the field of fractions. The result in this direction

which motivates the present paper is that Prüfer domains are characterized by the

normality of all such overrings [l]. Gilmer, in his survey address on Prüfer-like

conditions on the overrings of a domain [5], introduced the concept of an inte-

grally closed pair: a pair of domains iA, B) with A a subring of ß and all inter-

mediate rings normal (e.g., a Prüfer domain and its field of fractions^; and Kaplan-

sky, in the discussion following Gilmer's address, conjectured a possible charac-

terization of such pairs. We subsequently established the noetherian case of this

conjecture [2], and in that note promised a more general treatment in a future pa-

per. This is the promised paper.

Although our results have extensions to the context of rings with divisors of

zero, we limit our attention here to integral domains. Given a domain A, AiA) will

denote its field of fractions. By a pair of domains ÍA, B) we understand that ß

is an A-subalgebra of j(A), and by an intermediate ring oí such a pair we mean

an ¿-subalgebra of B. The assumption that AiA) Dß is superfluous for most of

our purposes (see the remark following the proof of Proposition 1 below), its in-

clusion in the notion of "pair" is merely for the convenience of exposition. The
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pair (A, B) will be said to be  normal provided that each intermediate ring is nor-

mal in B. (in [2] we used the more cumbersome "relatively integrally closed pair".

Furthermore, we observed there that, but for the minor exception of A a field and

B an algebraic extension, integrally closed pairs are special cases of normal

pairs.) Observe that for S a multiplicative system in A, every intermediate ring

of ÍAS,.BS) is of the form  Cs, toi C an intermediate ring of (A, B). Hence

ÍAS, Bs) is normal if (A, B) is. Conversely, (A, B) is normal if, for every maxi-

mal ideal M of A,  (AM, BA^) is normal. Moreover, to check the normality of

(A, B) it suffices to check the normality of (A, C) for each finitely generated

A-subalgebra  C of B. We shall use these points freely and without explicit com-

ment. Call a domain A  trivial it there is no overring B, other than A  itself, such

that (A, B) is normal. Call a prime ideal P of a domain A  trivial if Ap is trivial,

normal if (A, Ap) is normal. For f a set of prime ideals of the domain A, let

Aa, denote the intersection of the localizations of A  at the primes of J.

In §2 we see that (A, B) is normal if, and only if, B is an intermediate ring

of the pair (A, Ay), where f is the set of trivial primes of A. In that section we

also show how to translate the "overring" characterizations of Prüfer domains due

to Richman [12], Storrer [13] and Davis [3] into "intermediate ring" characteriza-

tions of normal pairs. In §3 we examine the condition that each intermediate ring

of a pair be a ring of quotients of the subring. In §4 we develop further the ideas

of §2 and §3 for the case of pairs with the first member noetherian.

2. Characterizations of normal pairs. Our first proposition—and main lemma

of this paper—says that "locally" the relationship between the subring and over-

ring of a normal pair is the same as that obtaining between a valuation ring and its

field of fractions (cf. Theorem 1 of [l]).

Proposition 1. The pair ÍA, B) is normal if  for each x £ B, x or l/x £ A.

Conversely, if (A, B) is normal and A  local, then   for each x £ B, x or l/x £ A.

Proof. Observe that if x is integrally dependent on a ring containing l/x,

then x lies in that ring too. This remark suffices to prove the first assertion of

the proposition. As for the second, let xe B - A. Since x is integrally dependent

on A[x2], we have

(i) x = a +bx2 + ... +cx2n,       a,b, •■■ ,c £ A.

Dividing (i) by x shows that a/x e B; multiplying by a2n~x/x2n yields an equa-

tion of integral dependence of a/x on A. So a/x e A, and it must be a nonunit

because x ¿ A. Now divide (i) by x    and rearrange the terms to obtain

M il-a/x)/x = b + ... +cx2"-2.

Since 1 - a/x is a unit of A, this equation shows that l/x £ B. Now divide (ii) by
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x2"-2  to obtain an equation of integral dependence of 1/x on A, and thereby to

conclude 1/x £ A.

Observe that the proof of the second assertion did not employ the fact that

B C j iA); indeed it is a consequence of the condition that every ring between A

and  B  is normal in  B.

Proposition 2. Assume (A, B) normal and A  local. Then

(1) For P a prime ideal of B,  ßp = ApnA.

(2) For P a prime ideal of B, iA/P n A, B/P) is a normal pair.

(3) For  / a proper ideal of B,  1 Ci A = /.

(4) ß = AM for M a certain prime ideal of A.

(5) For  P a prime ideal of A  contained in M,  PB = P.

(6) Each ideal of A  contains or is contained in M.

Proof. Proposition 1 implies that B  is a ring of quotients of A. (l) is an im-

mediate consequence of this fact. (2) follows from the  "x or 1/x" criterion of

Proposition 1. (3) is an immediate consequence of Proposition 1. To prove (4) it

is enough, in view of (l), to show that  B is local; and this fact follows from (3)

which implies that the sum of proper ideals of B is contained in the maximal ideal

of A. (5) is a consequence of (4) and (3). As for (6), note that for y e M and x £

A - M, y/x is by (4) a nonunit of B. By Proposition 1, y/x £ A. This establishes

(6).

Theorem L Assume  A   local. Then iA, B) is normal if, and only if,  B = A

where  A/M  is a valuation ring and MB = M.

Proof. The necessity of the two conditions is given by (2), (4) and (5) of the

preceding proposition. As for the sufficiency, we need only show, in view of Prop-

osition 1, that for each unit x of B, x or 1/x e A. Since A/M is a valuation ring,

of the field B/MB, x or 1/x e A + MB = A.

Remark. Theorem 1 says that all "local" normal pairs are obtained by "com-

posing" a local domain with a valuation ring. Specifically, given a local domain

B, let  A  be the preimage with respect to the canonical homomorphism from ß  to

its residue field of a valuation ring of the residue field. Then iA, B) is normal by

Theorem 1. So if the residue field of B is not algebraic over a finite field,  B  oc-

curs as the second member of infinitely many local normal pairs. If the valuation

ring is taken minimal among the set of valuation rings of the residue field of B,

then the resulting normal pair is maximal as far as the first member is concerned —

i.e., there is no local subring of A  forming a normal pair with  B. We next show

that a local normal pair can be maximized with respect to the second member, and

in a unique way. This last fact is valid even in the nonlocal case (Theorem 2 be-

low).
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Proposition 3. Assume A  local. Then

(1) // (A, R) and (R, B) are normal, then so is (A, B).

(2) A  contains a unique prime which is both trivial and normal.

Proof. The  R  of (l) is local by Proposition 2. Hence for x £ B, x or l/x € R

by Proposition 1; then x or l/x e A (again Proposition l). So (A, ß) is normal by

Proposition 1. Now let B be the compositum of all rings  R such that (A, R) is

normal. Each such  R  is of the form A p for a normal prime  P by (4) of Proposition

2. The linear ordering of the normal primes—a consequence of (6) of Proposition

2—implies that every finite set of such R's is contained in one of them. If follows

that (A, C) is normal for every finitely generated A-subalgebra  C of B, and so

that (A, B) is normal. Now B - Ap tot some normal prime  P, which must be triv-

ial because of (l). That this  P is uniquely determined by "trivial" and "normal"

is clear from the linear ordering of the normal primes.

Remark. Localization shows that (l) is valid without the local assumption on

A.  Exercise: Can one prove either version of (l) directly from the definition of

"normal pair"?

Proposition 4. Suppose (A, B) normal. Then

(1) For P a prime ideal of B,  ApnA = Bp and ÍA/P HA, B/P) is normal.

(2) For P a prime ideal of A with PB ¿ B, PB is prime and P = PB DA.

Every prime of B  is the extension of its contraction to A.

(3) The trivial primes of B are precisely the extensions of the trivial primes

of A.
(4) B - A a, where  J   is the set of contractions of the prime irespectively,

maximal) ideals of B.

(5) B = A«, where f  is the set of prime ideals of A  which extend to proper

irespectively, maximal) ideals of B.

Proof, (l) follows from Proposition 2 by localization. As for (2), first note

that BAp = Ap by Proposition 2. Let Q = PApC\ B. Then one readily checks via

Proposition 2 and (l) that QBM = PBM fot every maximal ideal M of B. So Q =

PB, and the rest of (2) then follows. That every trivial prime of B  is an extension

of a trivial prime of A  is a consequence of (l) and (2). Conversely, for P a triv-

ial prime of A, Ap = BAp, whence  PB 4- B, and PB is then a trivial prime by

(l) and (2). (4) and (5) follow from (1), (2) and (3) and the fact that B = B%, tot

M the set of prime (respectively, maximal) ideals of B.

Theorem 2. Let  B = A-, j  the set of trivial primes of A. Then

(1) (A, ß) is normal.

(2) (A, C) is normal «ACCCB«=»C = A,5llDÍP.
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(3) ß  is trivial.

(4) ß   z's uniquely determined by (l) and (3).

Proof. For M a maximal ideal of A, there is a trivial prime P C M with

(A     /4p) normal (Proposition 3). Since BAM is an intermediate ring of (A^, Ap),

(A      ß^w) is normal. Consequently (A, B) is normal. Suppose (A, C) is normal.

Then by (3) and (5) of Proposition 4, C = A^, 3H D 9\ This remark suffices to prove

(2). B  is trivial by (l), the remark following the proof of Proposition 3 and (2).

(4) is an immediate consequence of (2).

Remarks. An immediate corollary of (2) is that for C the compositum of a col-

lection or rings  R with (A, R.) normal, (A, C) is normal. Exercise: Can one see

this directly from the definition of "normal pair"? Observe that we have not

given a criterion for determining whether or not A is trivial—i.e., whether or

not A = B. Clearly if every maximal ideal of A is trivial, then so is A. But

it is by no means clear that a trivial domain cannot possess nontrivial maxi-

mal ideals.  In the noetherian case (see §4 below) everything is clear: a do-

main is trivial only if each of its maximal ideals is.

An immediate corollary to Proposition 1 is that every intermediate ring of a

normal pair (A, ß) is A-flat. This fact is well known in the case of B = j(A)—i.e.

for A a Prüfer domain—and the property is indeed characteristic of this class of

rings (Richman [12]). This result is a consequence of either of the following char-

acterizations of Prüfer domains: A  is Prüfer «=> for each x e 3"(A), A[x] 0 A[x]

has no z4-torsion (Storrer [I3]) «=» for each 0 ^ x £ fiA), A[x] ® A[l/x] has no A-

torsion [3]. All three extend to characterizations of normal pairs; both Richman's

and Storrer's proofs apply in the more general setting, but the other requires a bit

of extra work. The generalizations are as follows:

Theorem 3. The following are equivalent for the pair iA, B).

(1) (A, B) z's normal.

(2) Each intermediate ring is A-flat.

(3) For each x £ B, A[x] ® A[x] has no A-torsion.

(4) For each 0/xeS, A[x] ® z4[l/x] has no A-totsion.

Proof, (l) ■"» (2) has already been noted. That (2) -=» (3) and (4) is clear.

(3) ™* (l) is Lemma 3 of [13]. It remains to prove (4) =» (l). As in [3], (4) implies:

(5) For x e B and y = 1/x, XV - 1 lies in the ideal of the polynomial ring

A[X, Y] generated by the kernels of the A-algebra homomorphisms  A[X] —* A[x]

and A[Y] — A\y].

To prove (5) =* (l) it suffices to take A local. In that case, as in [3], (5)

implies that, for each x e B, x or 1/x is integrally dependent on A. Proposition

1 then says that (zV, ß) is normal, where N is the normalization of A  in B.
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If we knew N to be necessarily local, we could then argue exactly as in [3]—spe-

cifically (i), (ii), and (iii) on pp. 236-237—to conclude that A = N.

We prove that for A  local (5) implies that N is local. Let x be a nonunit of

N, and let XY - I = f + g with / and g  in the extensions of the kernels of A[V]—»

A[y] and A[X] —• A[x] respectively. That y cannot be integrally dependent on A

implies that the constant term of g cannot be a unit, and so that the constant term

of / is a unit. Let f = a + bX + • • •, with a, b, • • • £ A[Y]. Since xY - 1 = a + bx +

• • • , we see that every coefficient of a other than the constant term must lie in

An xN C M, the maximal ideal of A. Observe now that because fiX, y) = 0, aiy) =

0. Multiplying this last equation by a suitably high power of x  shows that that

power of x lies in M/V. So the nonunits of N form,an ideal,, namely the radical of

MN.

3. Normal pairs and rings of quotients. A number of papers have studied do-

mains with the QR-property: domains A with the property that each A-subalgebra

of JÍA) is a ring of quotients of A. Such rings are necessarily Prüfer domains,

and in the noetherian case, exactly those Dedekind domains with torsion class

group [l], [6], [7]. More generally, Pendleton proves [il]: A Prüfer domain has the

ÖR-property if, and only if, the radical of each of its finitely generated ideals is

the radical of a principal ideal. Both results have their formulations in the context

of normal pairs. We say that a pair has the  QR-property or is a QR-pair if each of

its intermediate rings is a ring of quotients of the subring of the pair. Such a pair

is necessarily normal—a fact contained implicitly in the proof of Proposition 1.

Proposition 5. Let  (A, B) be a normal pair and I a finitely generated A-sub-

module of B. Then IB = B   if, and only if, I  is invertible and /      CB,

Proof. That IB = ß  is implied by the other two conditions is clear. Converse-

ly,   suppose   IB = B.  To prove   / is  invertible  it  is enough to take  A   local and

to prove  / is principal. Let x £ I be a unit of B. Then for y £ I, y/x £ B, and so

by Proposition 1, y/x or x/y £ A. By induction then, / is singly generated. To

show that r1 C B: ß = 1~X1B = I~lB Dl'\

Proposition 5 indicates how to reformulate Pendleton's theorem in the con-

text of normal pairs. This having been done, for a proof one need only repeat the

argument given in [ll]. We remark, however, that in the course of the proof one

must translate yet another characterization of Prüfer domains into a characteriza-

tion of normal pairs: (A, B) is normal <=> fot each x £ B, the denominator and nu-

merator ideals of x in A  are comaximal. Modulo the definitions (see [ll]), this fact

is an immediate consequence of Proposition 1.

Theorem 4 (Pendleton's criterion). The normal pair (A, ß) has the QR-prop-
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erty if, and only if, the radical of each finitely generated ideal of A  which extends

to the unit ideal of   B  is the radical of a principal ideal.

Given a pair iA, B), the A -submodules of B form a monoid with respect to

multiplication, and the group of invertible elements of this monoid is the group of

fractional ideals of the pair. The quotient of this group by the subgroup consisting

of those principal fractional ideals generated by units of B  is the  class group of

the pair or Pic (A, B). Observe that for B = JÍA), this reduces to the usual defini-

tion of Pic iA), and that PicU, B) is a subgroup of PiciA).

Corollary. // PiciA, B) is a torsion group, then the pair iA, B) has the  QR-

pr op erty.

Proof. Suppose / is a finitely generated ideal of A with IB = B. Then, ac-

cording to Proposition 5, I belongs to the group of fractional ideals of the pairs.

Some power of / is then principal, and since the radical of / is the radical of this

principal ideal, we conclude from Pendleton's criterion that iA, B) is a QR-pair.

A partial converse to this result—essentially the noetherian case—will be re-

corded in §4. The converse is not in general true, even for B = JÍA)(Heinzer

[9]). The next theorem shows that for any domain A, there is a unique ¿-subalge-

bra of JÍA) maximal with respect to forming a QR-pair with A. Unfortunately we

do not have a criterion for determining in general whether or not this overring ac-

tually differs from A. (Cf. the analogous question in §2 concerning the unique

maximal overring B  such that iA, B) is normal.) In §4 we do give an explicit

criterion for the noetherian case.

Theorem 5. Given a domain A, let  B be the compositum of all rings  R such

that iA, R) is a QR-pair. Then iA, B) is a QR-pair.

Proof. That iA, B) is normal is a consequence of Theorem 2. To prove that

iA, B) has the QR-property it suffices to prove: if both iA, A  ) and iA, A   ) have

the Q R-property, then so does iA, A     ). We shall make several applications of

Pendleton's criterion. Let  ' be a finitely generated ideal of A with IA      = A
'  " xy xy

Since  (/ + xA) A    = A   , there is, by Pendleton's criterion, u £ I + xA  such that

rad iuA) = rad (/ + xA). Likewise there is v £ I + yA  such that rad(iA) =

rad(/ + yA). Since  IA      = A^ , xy e rad(/), whence uv e rad(0. Now rad iuvA) =

rad iuA) D rad ivA) D /, so rad (/) = rad iuvA). Thus  iA, A     ) has the QR-property

by Pendleton's criterion.

The following provides further examples of QR-pairs.

Theorem 6. Assume that JÍA) is of transcendence degree 0 or 1  over its

prime field according to whether the characteristic is 0 or not. Then the following

are equivalent ¡or the pair iA, B).
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(l) A  is normal in B.

Í2) (A, B) is normal.

(3) (A, B) has the  QR-property.

Proof. It suffices to prove (l) =* (3). Define a subring R of A as follows. In

characteristic 0, R  is the normalization of Z in A; in nonzero characteristic, R

is the normalization in A  of F[t], where F is the prime field and t£ A   is trans-

cendental over F. It is clear that j(A) = j(R) and that  R  is normal in every ring

between R and B. It follows that each such ring is a ring of quotients of R [4],

4. The noetherian case. Somewhat more generally we will deal with a class

of rings we designate with Krull's name—this because his principal ideal theorem

is valid in them. A domain is  krullian provided that the radical of each of its prin-

cipal ideals is the intersection of a finite number of height 1 primes.

Examples. Any domain with normalization a Krull domain (in particular, any

noetherian domain) and any 1-dimensional domain with the property that each non-

zero element lies in but finitely many maximal ideals. Notice that in certain

krullian domains the principal ideals have primary decompositions in the usual

sense: noetherian domains and krullian domains A such that A = Ay, tot J  the

set of height 1 primes of A (e.g., Krull domains and 1-dimensional krullian do-

mains).

Proposition 6. A local krullian domain is nontrivial if, and only if, it is a 1-

dimensional valuation ring.

Proof. Suppose  P is a nonmaximal normal prime ideal of the local krullian

domain A, and let x i P be a nonunit. Then xA D P by Proposition 2. So  P = 0,

for it must be contained properly in a height 1 prime. Thus  (A, JÍA)) is

normal—i.e., A  is a valuation ring—and since every prime of a valuation ring is

normal, the only prime of A  apart from 0 is the maximal ideal.

Proposition 6 gives us the "noetherian" version of Theorem 2:

Theorem 7. Assume A  krullian. Then (A, B) is normal if, and only if, B =

Aj., where M is a set of maximal ideals excluding at most such for which the cor-

responding localization is a valuation ring. The excluded set may be taken to be

those maximal M for which MB = B; it is unique if the primary decomposition theo-

rem holds for the principal ideals of A.

Corollary (Kaplansky's conjecture). Assume A noetherian. Then (A, ß) is

normal if, and only if, B = Aj., for M a set of maximal ideals excluding at most

invertible such. The excluded set is unique, consisting of those M for which MB = B.

Proof. By Proposition 6, every nonzero, nonmaximal prime of A  is contained
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in a trivial maximal ideal, and the localizations at the nontrivial maximal ideals

are valuation rings. That being the case, we may substitute "maximal" for "prime"

in Theorem 2 and thereby prove the first assertion of Theorem 7. As for the

uniqueness, it suffices to show that A ¿ A^, where M consists of all the maximal

ideals of A  with the exception of a single height 1 maximal ideal M. Let 0 4 x e

M and select y i M lying in all the primary components of xA  other than that as-

sociated to M. Then y/x e A p for every prime  P /= M, and y/x /È AM. The corollary

is an immediate consequence of the theorem, for in the noetherian case the non-

trivial maximal ideals are locally principal (i.e., invertible).

A special case of normal pairs has been studied by Grell [8] and subsequently

reworked by Krull [lO]. The main lemma of that circle of ideas is: If a 1-dimen-

sional, noetherian local domain A  is normal in an ¿-subalgebra B of JÍA), then

B = A  or j(A). The proof requires "noetherian" only to the extent of using the

fact that the normalization of A  is a semilocal Prüfer domain (see the proof of

Satz 1 of [lO]). Having noted that, we may reformulate Grell's Fundamental

Struktursatz as follows: Assume that R  is a 1-dimensional domain with normaliza-

tion a krullian Prüfer domain, and let B be an R-subalgebra of J (R). Then for A

the normalization of R  in B, the pair (A, B) is normal.

Our final two theorems give further information on QR-pairs in the event that

the first member of the pair is krullian—and especially noetherian.

Theorem 8. Assume A  krullian and iA, B) normal. Then the following are

equivalent.

(1) (A, B) is a QR-pair.

(2) Each maximal ideal of A  which extends to the unit ideal of B  is the radi-

cal of a principal ideal.

(3) B = Ay., where m  is a set of maximal ideals excluding at most such which

are radicals of principal ideals and for which the corresponding localizations are

valuation rings.

(4) B = As, where S  is a multiplicative system in A generated by elements

having for radicals maximal ideals with corresponding localizations valuation

rings.

Proof, (l) =» (2). Suppose that M is maximal with MB = B. Then there is x e

M such that  1/x e B. Now every prime ideal containing x extends to the unit ideal

of B, and so is maximal and of height 1 by Theorem 7. Therefore x lies in but fi-

nitely many prime ideals, and all of them are maximal. Select y e M lying in no

other prime containing x. Then rad(xA + yA) = M. So M is the radical of a princi-

pal ideal by Theorem 4.

(2) =* (3). By Theorem 7,  ß = A^, where M is the set of maximal ideals of A
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with the exception of those M for which MB = B. The excluded set has the desired

properties by Theorem 7 and (2).

(3) => (4). For each M £ Î1Ï, select x £ M with rad(xA) = M. Then B = A$,

where S is the multiplicative system generated by the chosen x's.

(4) =» (l). If rad (xA) = M, a maximal ideal with AM a valuation ring, then

ÍA, A  ) is a ßR-pair, for the pair has no intermediate rings other than A and A^

by Theorem 7. Now (4) says that B is the compositum of such  A^'s, whence  (A, B)

is a GJR-pair by Theorem 5.

Theorem 9. Assume: A krullian; (A, B) normal; for each maximal ideal M  of

A with MB = B, the valuation ring  A„ rational. Then  (A, ß) is a QR-pair if, and

only if, Pic(A, B) is a torsion group.

Corollary. Assume A  noetherian and (A, ß) normal. Then (A, B) is a QR-

pair if, and only if, Pic (A, B) is a torsion group.

Proof. That (A, ß) is a QR-pair if Pic (A, ß) is a torsion group has been

noted above (Corollary to Theorem 4). Conversely, assume the  ßR-property. One

easily checks that each invertible fractional ideal of the pair is of the form l/x,

where x e A  is a unit in B and  / is an invertible integral ideal of the pair, ac-

cording to Proposition 5, a finitely generated ideal of A with IB = B. So to prove

Pic (A, B) is torsion it suffices to show that some power of each such  / is prin-

cipal. Since IB = B, the only primes containing / extend to the unit ideal of B,

and so by Theorem 7 and the fact that A is krullian, they are maximal, of height

1 and finite in number. It follows that / is the product of ideals primary for such

maximal ideals. Now each of the primary components of / is invertible—it is a

factor of an invertible ideal—and so finitely generated. Consequently we lose noth-

ing by assuming that / itself is primary for a maximal ideal M with MB = B. M is

the radical of a principal ideal xA  by Theorem 8, whence since the valuation ring

AM  is rational, lnAM =xmAM for suitably chosen positive integers zzz and n.

Because both /" and xmA  are M-primary, it follows that  /" = xmA. The corollary

is clearly a special case of the theorem.
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