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THE AUTOMORPHISM GROUP OF AN
ABELIAN p-GROUP AND ITS NORMAL p-SUBGROUPS

BY

JUTTA HAUSEN(1)

ABSTRACT. Let T be the automorphism group of a nonelementary reduced
abelian p-group, p 2 5. It is shown that every noncentral normal subgroup of T
contains a noncentral normal subgroup A of T such that af -, Furthemore,

every cyclic normal subgroup of T is contained in the center of T.

1. The results. Throughout this article, G denotes a reduced abelian p-
group for some prime p > 5 and AG its automorphism group. It is well known
that 1 is the only normal p-subgroup of AG if G is elementary abelian (see
[6, p. 409]). However, if pG £ 0 and G is not cyclic, then AG does in fact
possess a large amount of noncentral (i.e. not contained in the center of AG)
normal p-subgroups. This follows from our investigations in [7] where we de-
termined the class of all (not necessarily reduced) abelian p-groups G such that
every noncentral normal subgroup of AG contains a noncentral normal p-subgroup
of AG.

The purpose of this article is to improve earlier results (obtained in [7]) for

the special case of reduced groups. We shall prove the following theorem.

Theorem A. For a noncyclic reduced abelian p-group G, where p > 5, the
following conditions are equivalent.
(i) pG £ 0.
(ii) AG contains a normal p-subgroup # 1.
(ii1) AG contains noncentral normal p-subgroups.
(iv) Every noncentral normal subgroup of AG contains a noncentral normal
subgroup of AG of exponent p.

The exponent of a group X is defined to be the least positive integer n
such that x” = 1 for all x € X.
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The proof of Theorem A will be easily completed once we have established
the following result which is quite interesting by itself.

Theorem B. If G is a reduced abelian p-group, p > 5, then every cyclic
normal subgroup of AG is contained in the center of AG.

2. Preliminaries. Our notation and terminology concerning abelian groups
will be standard (see e.g. [3]). Mappings will be written to the right. If there is
no danger of confusion we may not distinguish between different identity mappings
and write 1 instead of 1.. The following symbols will be used.

Glpl = {g € G| pg = 0} [socle of G],
o(x) = order of x,
(x) = cyclic subgroup generated by x,
H ® K = direct sum of H and K,
AG = automorphism group of G,
zAG = center of AG,
cA = {a € AG| ab = 8a for all &€ A} [centralizer of A < AG in AG),
a|S = restriction of a €AG to $ <G,

R’; = group of units in the ring of p-adic integers.

A subgroup § of a group X is called noncentral if S is not contained in the
center of X. For n an integer, X" denotes the subgroup of X generated by all
x" where x € X. The exponent of X is the least positive integer n such that
X" =1.

Throughout this article, G will denote a reduced abelian p-group, p > 5.

In the course of our proofs, a number of well-known facts on the automor-
phism group of G will be used constantly. They are collected here for the con-
venience of the reader.

(2.1) The center of AG. The center of AG consists precisely of the multi-
plication with p-adic units, i.e.

zAG:R;- 1.

(1, pp. 110, 111). If G is unbounded then zAG = RY, and the center of AG

contains no element of order p. If G is bounded of exponent pmt!

, where m >0,
then zAG is a cyclic group of order p™(p ~ 1). An automorphism & of G be-
longs to zAG if and only if xa €(x) for all cyclic direct summands (x) of G

[, p. 201]. Furthermore, AG is commutative if and only if G is cyclic (cf. (3,
p. 222D.

(2.2) The normal p-subgroups of AG. Let
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F"G = (p™G)pl/(p™*1G)Ip]

denote the nth Ulm-factor of G. The maximal normal p-subgroup P__  of AG con-
sists of all torsion elements & € AG such that a induces the l-automorphism in
F™G for all integers n > 0 [6, p. 412]. If a induces the identity mapping in all
Ulm-factors of G, then the conditions a?” = 1 and a|p”G =1 are equivalent
(10, p. 101). In particular, if p”G = 0, then every automorphism of G fixing Glp]

elementwise belongs to P and, therefore, has order a power of p.

3. The proofs. We start out with a proof of Theorem B for a special case. In

the following lemma no restrictions are imposed upon p.

Lemma 3.1. Every normal subgroup of AG of order p is contained in the
center of AG.

Proof. Let N be a normal subgroup of AG of order p. Then N = (7)),
o(n) = p, is cyclic, and the automorphism group AN of N has order p — 1. Since
AG/cN is isomorphic to a group of automorphisms of N, it follows that

(3.1) n-af~l-aP~l.p forall acAG,
and
(3.2) na = an for all a€ AG of p-power order.

Assume, by way of contradiction, that
(3.3) n ¢ ZAG.

In [5] we have shown that (3.1) is valid for 7 ¢ 2AG only if G is bounded

(p. 206) and, also, that 7 ¢ zZAG implies x7 ¢ (x) for some cyclic direct sum-
mand (x) of G (cf. (2.1)). Hence (3.3) implies the existence of a decomposition
G =(x)®(y) ®C such that

(3.4) ip=kx +ly+c, ce€C,

for some integers k and I, and
(3.5) ly £0.

We construct an endomorphism o of G as follows. If o(x) > oly), choose any
x' € (x) such that o(x') = oly); if olx) <oly), let x’ = x. In either case, G has

an endomorphism ¢ such that
(3.6) x0=0, yo=x', Co=0.
Since 0 = 0, it follows that a = 15 + 0 is an automorphism of G the order of

which is equal to the (additive) order of 0 and therefore a power of p (cf. (3,
p- 221]). From (3.2) we obtain
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(3-7) 7’0. = a)".
If o(x) > oly), then o(y) = o(x') by construction, and Ix’ # 0 because of (3.5).
This together with (3.4) and (3.6) implies

xna = x7 + Ix' £ x7 = xan,

contradicting (3.7). Suppose that o(x) <oly). Then x' = x and, because of (3.6)
and (3-7))
yn+xn=yan=yna =ynlls + o) = yn + yno.

Consequently,
xn=yno€Go =(x") =(x),

contrary to (3.4) and (3.5). Thus assumption (3.3) has led to a contradiction,
proving the lemma.

We are now in a position to give a proof of Theorem B.

Proof of Theorem B. Clearly, the proposition holds true if AG is abelian.
Therefore we can assume that G is not cyclic. If pG =0, then G is a vector
space over the prime field of characteristic p and, since p # 2, 3, every non-
central normal subgroup of AG contains the group of all linear transformations of
G of determinant 1 (see [2, pp. 41, 45]), which is not cyclic. Therefore, we can
restrict ourselves to the case pG # 0. Let (£) be a cyclic normal subgroup of AG
and assume, by way of contradiction, that

(3.8) (€) £ zAG..

According to [7], every noncentral normal subgroup of AG contains a noncentral
normal p-subgroup of AG. Therefore, without loss of generality, we can assume

that

(3.9 (£) is a p-group.

Let n€(£) be an element of order p. Since (7) is a characteristic subgroup of
(£) and () is normal in AG, it follows that (7) is a normal subgroup of AG of
order p. From Lemma 3.1 we obtain € zAG, and consequently

(3.10) a~lga =7 forall a € AG.

Clearly, AG/c(f) is isomorphic to a group ® of automorphisms of (£). It follows
from (3.10) that every ¢ € @ fixes the socle (1) of (£) elementwise and, there-
fore, the order of ¢ is a power of p (cf. (2.2)). Hence AG/c({)~® <A(£)isa
finite p-group. In particular, AG/c(£) is finite and

(3.11) (6 - 1) 4 [AG: ()]
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In [5] we have shown that for every noncentral normal subgroup I' of AG such
that AG/cl is finite, p — 1 divides the index [AG:cI'] of the centralizer eI
of I in AG (p. 214). Therefore, (3.11) implies ()< zAG, which is the desired
contradiction to (3.8). This completes the proof of Theorem B.

Theorem B enables us to establish the following result which is the essential

part of Theorem A.

Theorem 3.2. Let G be a reduced abelian p-group for some prime p > 5 and
let pG # 0. Then every noncentral normal subgroup of AG contains a noncentral
normal subgroup of AG of exponent p.

Proof. Let N be a noncentral normal subgroup of AG. Then N contains a
normal p-subgroup N, of AG such that

(3.12) N, € 24AG

(see[7]). For elements y in the maximal normal p-subgroupof AG, the condi-
tions ¥’ =1 and y|pG =1 are known to be equivalent (cf. (2.2)). Hence

(3.13) P=tyeN |y =1}=N nlaecAG|(a]pG) = 1}
is a normal subgroup of AG of exponent p which is contained in N. Assume, by
way of contradiction, that

(3.14) P={ye N, |y? =1} is cyclic.

Then P < zAG according to Lemma 3.1 and, since P # 1, it follows that zAG =
R: - 1 has elements of order p. Hence p"G = 0 (see (2.1)) and therefore

(3.15) NB" =1

for some positive integer n (cf. (2.2)). Consider the subgroup chains
(3.16) Glp] > @GPl > (%G)Npl > -+ - > (p"G)p) = 0,
(3.17) G=Glp" >Glp™ 1> ... >Glp] > 0.

Philip Hall has proved that a subgroup I" of AG (G any group) is nilpotent if '
stabilizes a finite subgroup chain of G, i.e. I' induces the identity mapping in
all factors of this chain [4, p. 787]. Since N { is a normal p-subgroup of AG, N,
induces in Glp] a group ¢ of automorphisms which stabilizes (3.16) (see (2.2)).
Clearly 02 N, /M, where M is the set of all y €N, such that y|Glp] = 1. One
verifies that M stabilizes (3.17). Applying P. Hall’s result it follows that

0=~ Nl/ M and M both are nilpotent. Hence, N, is a solvable p-group and con-
sequently (cf. [9, p. 190]),

(3.18) N, is locally finite.
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It follows from (3.14) and (3.15) that every abelian subgroup of N, is cyclic. A
finite p-group, p # 2, is cyclic if all its abelian normal subgroups are cyclic (cf.
[8, p. 304]). Consequently, every finite subgroup of N, is cyclic, and because of
(3.18), so is every finitely generated subgroup of N,. Hence N, is abelian and
(3.14) and (3.15) imply that N, is cyclic. From Theorem B we obtain that N, is
contained in the center of AG violating (3.12). Hence, the assumption (3.14) has
been contradicted and P is not cyclic. Since the maximal p-subgroup of the cen-
ter of AG is cyclic (cf. (2.1)) it follows that P £ zAG and, because of (3.13), P
is a noncentral normal subgroup of AG of exponent p which is contained in N.
This completes the proof.

Proof of Theorem A. The automorphism group of a reduced abelian p-group G
is commutative if and only if G is cyclic (cf. (2.1)). Since this, by hypothesis, is
not the case, AG is a noncentral normal subgroup of itself. Therefore, (iv) implies
(iii) which in turn implies (ii). Since every normal p-subgroup of AG fixes
Glp)/(pG)p] elementwise (cf. (2.2)), (i) is a consequence of (ii). Theorem 3.2

completes the proof.
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