THE AUTOMORPHISM GROUP OF AN ABELIAN p-GROUP AND ITS NORMAL p-SUBGROUPS

BY

JUTTA HAUSEN(1)

ABSTRACT. Let Γ be the automorphism group of a nonelementary reduced abelian p-group, $p \ge 5$. It is shown that every noncentral normal subgroup of Γ contains a noncentral normal subgroup Δ of Γ such that $\Delta^p = 1$. Furthermore, every cyclic normal subgroup of Γ is contained in the center of Γ .

1. The results. Throughout this article, G denotes a reduced abelian p-group for some prime $p \geq 5$ and AG its automorphism group. It is well known that 1 is the only normal p-subgroup of AG if G is elementary abelian (see [6, p. 409]). However, if $pG \neq 0$ and G is not cyclic, then AG does in fact possess a large amount of noncentral (i.e. not contained in the center of AG) normal p-subgroups. This follows from our investigations in [7] where we determined the class of all (not necessarily reduced) abelian p-groups G such that every noncentral normal subgroup of AG contains a noncentral normal p-subgroup of AG.

The purpose of this article is to improve earlier results (obtained in [7]) for the special case of reduced groups. We shall prove the following theorem.

Theorem A. For a noncyclic reduced abelian p-group G, where $p \ge 5$, the following conditions are equivalent.

- (i) $pG \neq 0$.
- (ii) AG contains a normal p-subgroup $\neq 1$.
- (iii) AG contains noncentral normal p-subgroups.
- (iv) Every noncentral normal subgroup of AG contains a noncentral normal subgroup of AG of exponent p.

The exponent of a group X is defined to be the least positive integer n such that $x^n = 1$ for all $x \in X$.

Received by the editors July 10, 1972.

AMS (MOS) subject classifications (1970). Primary 20K30, 20K10, 20F15; Secondary 20F30.

Key words and phrases. Abelian p-group, automorphism group, normal subgroups of automorphism groups.

⁽¹⁾ This research was supported in part by the National Science Foundation under Grant GP-34195.

Copyright © 1973, American Mathematical Society

The proof of Theorem A will be easily completed once we have established the following result which is quite interesting by itself.

Theorem B. If G is a reduced abelian p-group, $p \ge 5$, then every cyclic normal subgroup of AG is contained in the center of AG.

2. Preliminaries. Our notation and terminology concerning abelian groups will be standard (see e.g. [3]). Mappings will be written to the right. If there is no danger of confusion we may not distinguish between different identity mappings and write 1 instead of 1_G. The following symbols will be used.

$$G[p] = \{g \in G \mid pg = 0\}$$
 [socle of G],
 $o(x) = \text{ order of } x$,
 $\langle x \rangle = \text{ cyclic subgroup generated by } x$,
 $H \oplus K = \text{ direct sum of } H \text{ and } K$,
 $AG = \text{ automorphism group of } G$,
 $zAG = \text{ center of } AG$,
 $c\Delta = \{\alpha \in AG \mid \alpha\delta = \delta\alpha \text{ for all } \delta \in \Delta\}$ [centralizer of $\Delta \leq AG$ in AG],
 $\alpha \mid S = \text{ restriction of } \alpha \in AG \text{ to } S \leq G$,
 $R_p^* = \text{ group of units in the ring of } p\text{-adic integers.}$

A subgroup S of a group X is called *noncentral* if S is not contained in the center of X. For n an integer, X^n denotes the subgroup of X generated by all x^n where $x \in X$. The exponent of X is the least positive integer n such that $X^n = 1$.

Throughout this article, G will denote a reduced abelian p-group, $p \ge 5$. In the course of our proofs, a number of well-known facts on the automorphism group of G will be used constantly. They are collected here for the con-

(2.1) The center of AG. The center of AG consists precisely of the multiplication with p-adic units, i.e.

$$zAG = R_p^* \cdot 1_G$$

[1, pp. 110, 111]. If G is unbounded then $zAG \simeq R_p^*$, and the center of AG contains no element of order p. If G is bounded of exponent p^{m+1} , where $m \ge 0$, then zAG is a cyclic group of order $p^m(p-1)$. An automorphism α of G belongs to zAG if and only if $x \ne e(x)$ for all cyclic direct summands (x) of G [5, p. 201]. Furthermore, AG is commutative if and only if G is cyclic (cf. [3, p. 222]).

(2.2) The normal p-subgroups of AG. Let

venience of the reader.

$$F^nG = (p^nG)[p]/(p^{n+1}G)[p]$$

denote the nth Ulm-factor of G. The maximal normal p-subgroup P_{\max} of AG consists of all torsion elements $\alpha \in AG$ such that α induces the 1-automorphism in F^nG for all integers $n \geq 0$ [6, p. 412]. If α induces the identity mapping in all Ulm-factors of G, then the conditions $\alpha^{p^n} = 1$ and $\alpha \mid p^nG = 1$ are equivalent [10, p. 101]. In particular, if $p^nG = 0$, then every automorphism of G fixing G[p] elementwise belongs to P_{\max} and, therefore, has order a power of p.

3. The proofs. We start out with a proof of Theorem B for a special case. In the following lemma no restrictions are imposed upon p.

Lemma 3.1. Every normal subgroup of AG of order p is contained in the center of AG.

Proof. Let N be a normal subgroup of AG of order p. Then $N = \langle \eta \rangle$, $o(\eta) = p$, is cyclic, and the automorphism group AN of N has order p-1. Since AG/cN is isomorphic to a group of automorphisms of N, it follows that

(3.1)
$$\eta \cdot \alpha^{p-1} = \alpha^{p-1} \cdot \eta \quad \text{for all } \alpha \in AG,$$

and

(3.2)
$$\eta \alpha = \alpha \eta$$
 for all $\alpha \in AG$ of p-power order.

Assume, by way of contradiction, that

$$(3.3) \eta \notin \mathbf{z} A G.$$

In [5] we have shown that (3.1) is valid for $\eta \notin zAG$ only if G is bounded (p. 206) and, also, that $\eta \notin zAG$ implies $x\eta \notin \langle x \rangle$ for some cyclic direct summand $\langle x \rangle$ of G (cf. (2.1)). Hence (3.3) implies the existence of a decomposition $G = \langle x \rangle \bigoplus \langle y \rangle \bigoplus C$ such that

$$(3.4) x\eta = kx + ly + c, c \in C,$$

for some integers k and l, and

$$(3.5) ly \neq 0.$$

We construct an endomorphism σ of G as follows. If o(x) > o(y), choose any $x' \in \langle x \rangle$ such that o(x') = o(y); if $o(x) \leq o(y)$, let x' = x. In either case, G has an endomorphism σ such that

$$(3.6) x\sigma = 0, y\sigma = x', C\sigma = 0.$$

Since $\sigma^2 = 0$, it follows that $\alpha = 1_G + \sigma$ is an automorphism of G the order of which is equal to the (additive) order of σ and therefore a power of p (cf. [3, p. 221]). From (3.2) we obtain

$$\eta \alpha = \alpha \eta.$$

If o(x) > o(y), then o(y) = o(x') by construction, and $lx' \neq 0$ because of (3.5). This together with (3.4) and (3.6) implies

$$x\eta\alpha = x\eta + lx' \neq x\eta = x\alpha\eta$$

contradicting (3.7). Suppose that $o(x) \le o(y)$. Then x' = x and, because of (3.6) and (3.7),

$$y\eta + x\eta = y\alpha\eta = y\eta\alpha = y\eta(1_G + \sigma) = y\eta + y\eta\sigma.$$

Consequently,

$$x\eta = y\eta\sigma \in G\sigma = \langle x' \rangle = \langle x \rangle$$
,

contrary to (3.4) and (3.5). Thus assumption (3.3) has led to a contradiction, proving the lemma.

We are now in a position to give a proof of Theorem B.

Proof of Theorem B. Clearly, the proposition holds true if AG is abelian. Therefore we can assume that G is not cyclic. If pG = 0, then G is a vector space over the prime field of characteristic p and, since $p \neq 2$, 3, every noncentral normal subgroup of AG contains the group of all linear transformations of G of determinant 1 (see [2, pp. 41, 45]), which is not cyclic. Therefore, we can restrict ourselves to the case $pG \neq 0$. Let $\langle \xi \rangle$ be a cyclic normal subgroup of AG and assume, by way of contradiction, that

$$(3.8) \qquad \langle \xi \rangle \not \leq \mathbf{z} A G.$$

According to [7], every noncentral normal subgroup of AG contains a noncentral normal p-subgroup of AG. Therefore, without loss of generality, we can assume that

(3.9)
$$\langle \xi \rangle$$
 is a p-group.

Let $\eta \in \langle \xi \rangle$ be an element of order p. Since $\langle \eta \rangle$ is a characteristic subgroup of $\langle \xi \rangle$ and $\langle \xi \rangle$ is normal in AG, it follows that $\langle \eta \rangle$ is a normal subgroup of AG of order p. From Lemma 3.1 we obtain $\eta \in zAG$, and consequently

(3.10)
$$\alpha^{-1}\eta\alpha = \eta \quad \text{for all } \alpha \in AG.$$

Clearly, $AG/c\langle\xi\rangle$ is isomorphic to a group Φ of automorphisms of $\langle\xi\rangle$. It follows from (3.10) that every $\phi\in\Phi$ fixes the socle $\langle\eta\rangle$ of $\langle\xi\rangle$ elementwise and, therefore, the order of ϕ is a power of p (cf. (2.2)). Hence $AG/c\langle\xi\rangle\simeq\Phi\leq A\langle\xi\rangle$ is a finite p-group. In particular, $AG/c\langle\xi\rangle$ is finite and

$$(3.11) (p-1) \nmid [AG : \mathbf{c}(\xi)].$$

In [5] we have shown that for every noncentral normal subgroup Γ of AG such that $AG/c\Gamma$ is finite, p-1 divides the index $[AG:c\Gamma]$ of the centralizer $c\Gamma$ of Γ in AG (p. 214). Therefore, (3.11) implies $(\xi) \leq zAG$, which is the desired contradiction to (3.8). This completes the proof of Theorem B.

Theorem B enables us to establish the following result which is the essential part of Theorem A.

Theorem 3.2. Let G be a reduced abelian p-group for some prime $p \ge 5$ and let $pG \ne 0$. Then every noncentral normal subgroup of AG contains a noncentral normal subgroup of AG of exponent p.

Proof. Let N be a noncentral normal subgroup of AG. Then N contains a normal p-subgroup N_1 of AG such that

$$(3.12) N_1 \nleq \mathbf{z} A G$$

(see [7]). For elements γ in the maximal normal p-subgroup of AG, the conditions $\gamma^p = 1$ and $\gamma \mid pG = 1$ are known to be equivalent (cf. (2.2)). Hence

(3.13)
$$P = \{ \gamma \in N, | \gamma^p = 1 \} = N, \cap \{ \alpha \in AG | (\alpha | pG) = 1 \}$$

is a normal subgroup of AG of exponent p which is contained in N. Assume, by way of contradiction, that

(3.14)
$$P = \{ \gamma \in N_1 \mid \gamma^p = 1 \} \text{ is cyclic.}$$

Then $P \le zAG$ according to Lemma 3.1 and, since $P \ne 1$, it follows that $zAG = R_p^* \cdot 1_G$ has elements of order p. Hence $p^nG = 0$ (see (2.1)) and therefore

$$N_1^{pn} = 1$$

for some positive integer n (cf. (2.2)). Consider the subgroup chains

(3.16)
$$G[p] > (pG)[p] > (p^2G)[p] > \cdots > (p^nG)[p] = 0.$$

(3.17)
$$G = G[p^n] \ge G[p^{n-1}] \ge \cdots > G[p] > 0.$$

Philip Hall has proved that a subgroup Γ of AG (G any group) is nilpotent if Γ stabilizes a finite subgroup chain of G, i.e. Γ induces the identity mapping in all factors of this chain [4, p. 787]. Since N_1 is a normal p-subgroup of AG, N_1 induces in G[p] a group θ of automorphisms which stabilizes (3.16) (see (2.2)). Clearly $\theta \simeq N_1/M$, where M is the set of all $\gamma \in N_1$ such that $\gamma |G[p] = 1$. One verifies that M stabilizes (3.17). Applying P. Hall's result it follows that $\theta \simeq N_1/M$ and M both are nilpotent. Hence, N_1 is a solvable p-group and consequently (cf. [9, p. 190]),

$$(3.18) N_1 is locally finite.$$

It follows from (3.14) and (3.15) that every abelian subgroup of N_1 is cyclic. A finite p-group, $p \neq 2$, is cyclic if all its abelian normal subgroups are cyclic (cf. [8, p. 304]). Consequently, every finite subgroup of N_1 is cyclic, and because of (3.18), so is every finitely generated subgroup of N_1 . Hence N_1 is abelian and (3.14) and (3.15) imply that N_1 is cyclic. From Theorem B we obtain that N_1 is contained in the center of AG violating (3.12). Hence, the assumption (3.14) has been contradicted and P is not cyclic. Since the maximal p-subgroup of the center of AG is cyclic (cf. (2.1)) it follows that $P \not\leq zAG$ and, because of (3.13), P is a noncentral normal subgroup of AG of exponent p which is contained in N. This completes the proof.

Proof of Theorem A. The automorphism group of a reduced abelian p-group G is commutative if and only if G is cyclic (cf. (2.1)). Since this, by hypothesis, is not the case, AG is a noncentral normal subgroup of itself. Therefore, (iv) implies (iii) which in turn implies (ii). Since every normal p-subgroup of AG fixes G[p]/(pG)[p] elementwise (cf. (2.2)), (i) is a consequence of (ii). Theorem 3.2 completes the proof.

REFERENCES

- 1. R. Baer, Primary abelian groups and their automorphisms, Amer. J. Math. 59 (1937), 99-117.
- 2. J. Dieudonné, Les determinants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943), 27-45. MR 7, 3.
- 3. L. Fuchs, Abelian groups, Akad. Kiado, Budapest, 1958; republished by Internat. Series of Monos. on Pure and Appl. Math., Pergamon Press, New York, 1960. MR 21 #5672; 22 #2644.
- 4. P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787-801. MR 21 #4183.
- 5. J. Hausen, Near central automorphisms of abelian torsion groups, Trans. Amer. Math. Soc. 174 (1972), 199-215.
- 6. ———, On the normal structure of automorphism groups of abelian p-groups, J. London Math. Soc. (2) 5 (1972), 409-413.
- 7. ———, The automorphism group of an abelian p-group and its noncentral normal subgroups, J. Algebra (to appear).
- 8. B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302.
- 9. A. G. Kuroš, Theory of groups. Vol. II, GITTL, Moscow, 1953; English transl., Chelsea, New York, 1956. MR 15, 501; 18, 188.
- 10. H. Leptin, Einige Bemerkungen über die Automorphismen abelscher p-Gruppen, Proc. Colloq. Abelian Groups (Tihany, 1963), Akad. Kiadó, Budapest, 1964, pp. 99-104. MR 29 #5929.