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DECOMPOSITION THEORIES FOR ABELIAN CATEGORIES
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JOE W. FISHER AND HARVEY WOLFF

ABSTRACT. Both the classical approach to decomposition theories and

Fisher's technique of constructing decomposition theories from radical functions

are extended to and exploited in the context of abelian categories. These two dif-

ferent approaches to decomposition theories for abelian categories intertwine in

one theorem from which flows necessary and sufficient conditions for the existence

of the tertiary, primary, and Bourbaki's ¡P-primary decomposition theories.

Introduction. In L3l a new technique was developed for constructing decom-

position theories for modules. This technique was used in [3l to yield necessary

and sufficient conditions for the existence of the Lesieur-Croisot tertiary decom-

position theory and in [4] to yield necessary and sufficient conditions for the ex-

istence of the classical Lasker-Noether primary decomposition theory. We show

that this technique can be extended in order to produce decomposition theories for

certain abelian categories.

Our approach to decomposition theories in §1 is via associated element func-

tions with values in a partially ordered set. We define radical functions and as-

sociated element functions on admissible subcategories of abelian categories.

From a radical function  r on an admissible subcategory C, we construct an as-

sociated element function A  on C. We define A-subobjects and A-decompositions.

Theorem 1.3 then yields necessary and sufficient conditions for this associated

element function A, which is obtained from  r, to be a decomposition theory on C.

In §1 we give several examples of radical functions.

Our approach to decomposition theories in §2 is the classical approach via

radical functions. In order to do this we introduce a way in which concepts like

primary submodules, primary decompositions, tertiary submodules, and tertiary

decompositions can be handled in the context of abelian categories. This is

achieved by using a pair of radical functions  r.   and r2 to define  Tj - r-  sub-

objects and  r. - r, decompositions. These two different approaches to decom-

position theories intertwine in Theorem 2.1. As corollaries we get necessary and

sufficient conditions for the existence of the Lesieur-Croisot tertiary decomposi-
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tion theory (Corollary 2.2), for the classical Lasker-Noether primary theory (Cor-

ollary 2.3), and for Bourbaki's f -primary decomposition theory (Corollary 2.6).

Also we obtain Corollary 2.9 which asserts that an admissible subcategory C of

R-modules where  R  is a commutative Noetherian ring with unity has Bourbaki's

J-primary theory if and only if Ass(M) is finite for each M in C.

1. In this section we review some basic definitions, results and examples of

decomposition theories in the context of abelian categories. Since the proofs of

the results mentioned are the same or are slight modifications of the proofs in

[3], we refer the reader to that paper for more details.

Throughout we assume that ÍB is an AB-5 abelian category which is well

powered, although many of the results can be shown to hold with less restrictions

on the category. A full, nonempty subcategory   C of Jo is called admissible (a)

if Me (¿ and 0 — M' — M -» M" -» 0 exact in 8 then  M' and M" e &, (b) if M,,

ALe C then M¡ © M2£ C. So any Serre subcategory of S is admissible.

Let X be a partially ordered set and C an admissible subcategory of A.

Then a radical function on C with values in X is a function which assigns to

each M £ C an element riM) £ X such that if 0 —* /Vf' —> M is exact with  M £ £

then riM) < riM'). As an example, let $ be AB-5 with a generator P. Let C = fB

and X be the set of subobjects of P. Define riM) = OiKer f\ f: P — Ml. It is

clear that r is a radical function.

An object M ^ 0 of C is called r-stable if for every exact sequence  0—»

M' —* M, riM') = riM). H M £ C, then an element x£ X is an associated element

of M, if there exists an r-stable subobject S of M such that x = ris). We let

AÍM) be the set of associated elements of M. We call A  the associated element

function on C that is obtained from r. Then the following results are shown in

[3, 2.6, p. 245].

Proposition 1.1. Let Me C If x£ AÍM) then there exists a subobject Nix) of

M such that

(1) AiM/Nix))=\x\,

(2) AiNix)) = AiM)-\x\.

Theorem 1.2. // every nonzero subobject of M in C contains an r-stable sub-

object then there exists a decomposition of 0 in M of the form 0 = C\xe/\tM)^^x'

where  AiM/Nix)) = \x\ for x£ AiM).

Now Me C is called Astable it M £ 0 and there exists an x £ X with AÍM) -

\x\. Note that if M is  r-stable then M is A-stable. If 0 —' N —> M is exact then

N is an A-subobject of M if M//V is A-stable. We say M £ C is A-finite if

AÍM)  is a finite set. A finite set [N.: i£ ¡\  of subobjects of M £ C is an A-de-

composition of N in M it
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(l)fl .,,/V.- N and for no i£ I is fV./V. C N.;
id    z ;^i    j —     i

(2) each N. is an A-subobject of M; and

(3) AiM/N) ¿ AiM/N)  for i 4 f.

An object M e C is said to be worthy of a decomposition theory with respect

to r or just  r-worthy if each quotient M" of M satisfies

(a) each nonzero subobject of M   contains an r-stable subobject, and

(b) AiM") is finite.

Let L be an admissible subcategory for the radical function r. Then A  is a

decomposition theory on C  if for each M £ C, 0 has an A-decomposition in  M.

Theorem 1.3. [3, Theorem 4.10, p. 252J. Let r be a radical function on an ad-

missible category (_ and let A  be the associated element function on C that is

obtained from r. Then A   is a decomposition theory on C  if and only if each ob-

ject in (_  is r-worthly.

We end this section with some examples.

Example 1. Let  R be a ring, let   Am denote the category of left  R-modules

and R-homomorphisms, and let C be an admissible subcategory of  Am. For M£

C let aiM) be the annihilator of M, i.e., aiM) = (0 : M) = ix e R: xM = Oj. Then a

is a radical function on C.

Example 2. Let R,  R1W, and C be as in Example 1. For M £ £  let /(/M) be

the  tertiary radical of M, i.e., tiM) = ix e R: there exists an essential submodule

£ of M with xE = Oj. Then / is a radical function on C by L3, Lemma 2.l]. Let

T be the associated element function on C which is obtained from t 1.3, v5j.

Theorem 1.3 shows that  T is a decomposition theory on C if and only if each

object in C is  /-worthy.

Example 3. Let  R,  RM, and C be as in Example 1. For M £ (_ let piM) be

the  primary radical of  M, i.e., the intersection of all the prime ideals in  R which

contain  (O : M). Then p is a radical function on C Let  P be the associated ele-

ment function on C which is obtained from p 14, §ll. Theorem 1.3 shows that  P

is a decomposition theory on C if and only if each object in C is p-worthy.

Example 4. Let  R  be a commutative ring with unity and let C  be an admis-

sible subcategory of  R5li. For  Met.  let wiM) be the  weakly primary radical of

M, i.e., wiM) = \x£ R: for each  m £ M  there exists a positive integer n with  xnm =

Oj 13, §10]. Then w is a radical function on C. Let W be the associated element

function on C which is obtained from w. Theorem 1.3 shows that  If is a decom-

position theory on C  if and only if each object in C  is  »-worthy.

Example 5. Let s> be a locally Noetherian abelian category. Then by [2]

every injective object is a direct sum of indecomposable injectives. Let X be a

partially ordered set with infs. Then we can define a radical function r on ÍB by

first defining riu) where   U is an indecomposable injective. Then if £(A) is the
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injective envelope of A,   EÍA) = X¿£/ 0 fy\ where   U{ is an indecomposable injec-

tive. Hence we can set r(A) = A ¡€¡r(U). That this is a radical function follows

easily from the fact that if 0 —» M   —* M is exact in ÍB then  EiM ) C F(m) and

the  U. appearing in the decomposition for E(Mj) appear among the   U ■ appearing

in the decomposition for EÍM) [2, p. 1631. If C is the full subcategory of S whose

objects are the Noetherian objects of 5$, then C is admissible and it can be eas-

ily shown that every object in C is r-worthy. Hence by Theorem 1.3, C has the

A-decomposition theory.

Example 6. Let  Y be a Hausdorff space,  R a sheaf of rings on   Y and jH the

category of sheaves of R-modules. Then M is an AB-5 abelian category with a

generator, and so is locally small [61. For the set X we take the set of subsheaves

of R. We show that given a radical function on m we get one on the category of

R-modules ÍR    is the stalk of R at y). Conversely, given radical function r    on

R  -modules for all y e X, these generate a radical function on M.

Lemma, (a) Let C be an admissible subcategory of m. Then for every y£X,

C = JC | C £ C¡ is an admissible subcategory of m . (JÍ¡ is the category of R -

modules.)

(b) // for all y, X     is an admissible subcategory of M     then \jJ  \ = \C £ M |

C   £ L    for all y £ X\ is admissible in  M.

(c)Ccie \,e =ie i.

Proof, (a) It is clear that C    is closed under direct sums. Suppose that (1)

0 —* A —' C   —> B —>0is exact. Considering iyl Ç V asa subspace we have that

(1) is an exact sequence of sheaves. Denoting by iD the extension of D by zero

we get the following two exact sequences of sheaves on iyi.

(2) 0 - CY_{y] -+ C - iCy - 0,

(3) 0 — iA — iC   — zß -> 0.

From (2) we conclude that iC   £ ff and from (3) that iA and z'B e C So A = iA   £

£y and B = z'B £ £

(b) and (c) are clear.

Proposition, (a) Let C be an admissible subcategory of m and r a radical

junction with values in X, the subsheaves of R. Then r , defined on C    by

r (C ) = riiC )  , is a radical function on  C   .
y    y y y ' y

(b) If for ail y£ Y, r    is-a radical function on 2)    with values in the sub-

modules of R   ,  then there exists a radical function \r  I  on jD   i  with values in X.'y' ' y y

(c) // r is a radical function on C  in \ such that if 0 —»A —* ß —• C —' 0

is exact in C then  riß) < riC), then for every  Ce C riC) < ¡r  1(C).
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Proof, (a) If 0 —» A —> B is exact in C    then 0 —» iA —* iB  is exact in C?.

Hence  r(z'B) < riiA)  so r (ß) = riiß)    < riiA)    = r (A).- y y - y      y

(b) If f/   e ''n    for ail y, let  Pi\H  j) be the sheaf whose value at the open set

Í/ is Ux£UHx (seebl). Now let D£\$y\. Then for every y £ Y,  0 — ryÍDy) —

R     is exact. So there exists an exact sequence   0 —' P(jr (D  )j)     ' Pi\R   SV Now
y ^ y    y y

there exists a canonical monomorphism of sheaves  R —> P()R   j), We define

ir   S(D)  to be the following pullback:

fr   1(D)-. R

I 1
P(iry(Dy)j)-• P(,Ry!)

It is clear that ir j  is a radical function on ííD   \.

(c) Now  ric) < riiC ) for all  y. Hence the following diagram commutes for

all  y.

riC)   ->   riiC   )    =r  (C  )
y y y      y    y

y

So we get the following commutative diagram.

riC)-' R

I 1
P(MC)y})-+P({ry(iC)y})— P{\Ry\)

Consequently there exists a map of subsheaves of  R from  riC) —► ir 1(C). Thus

r(C)<iryj(c).

2. In this section we introduce a way in which concepts like primary submod-

ules, primary decompositions, tertiary submodules, and tertiary decompositions

can be handled in the context of abelian categories.

Let  ÍB be as in yl and let C  be an admissible subcategory of A Let  r. and

r2 be radical functions on  C with values in   X  such that  r. < r2, i.e., for each

Ce C,   r Ac) < r2iC). A subobject   N of an object   M £ t is called an  r. - r2 sub-

object if  N fí M and if for each nonzero subobject   M   of  M/N,   rAM") < rAM/N).

A finite set i N .: ¡ell  of subobjects of  M £ C  is an   r, -   r, decomposition of a

subobject  N of  M  if the following are satisfied:

(l)fVe//V.= /V and for no  i£ ! is f\-éiN. C /V.;

(2) the  /V¿, z e /, are  rj - r2 subobjects of  M; and

(3) r2(M//V¿) ¿ r2iM/N) for  i ¿ /.

We say that  C has the  r, - r2  decomposition theory if for each  M € C,  0 has an

z-j - r2 decomposition in  M.

Example 7. Let  R,   Am, and C be as in Example 1. First we note that a <

t on C If M £ C, then   N is an  a - t submodule of M if and only if N is a ter-
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tiary submodule of M [3, p. 243]. Moreover, a finite set {N.: i£ I\ of subobjects

of M £ £ is an a - t decomposition of a subobject N of M if and only if it is a

tertiary decomposition of N in M [3, §5]-

Example 8. Let  R,   JM, and <2 be as in Example 1. We note that a < p on (2

and for M £ c,  N is an a — p  submodule of M  if and only if N is a primary sub-

module of M  [4]. Furthermore, a finite set \N.: i£ 1\ of subobjects of M e C is

an a — p decomposition of a subobject  N of M  if and only if it is a primary de-

composition of N in M  [4].

Example 9. Let  R be a commutative ring with unity and let (_ be an admis-

sible subcategory of R!Hi. We note that a <w on Q. and for M e £, N is an « - w

submodule of M if and only if N is a weakly primary submodule of M  [3, §10].

Again, a finite set \N.: i£ ¡} of subobjects of Me c is an a-w decomposition

of a subobject N of M if and only if it is a weakly primary decomposition of N

in M  [3, §10].

Now we come to the main theorem in this paper.

Theorem 2.1. Let  (¿ be an admissible subcategory of 5B and let  r    and r7

be radical functions on £ with values in X such that r   <r?. Suppose that A   is

the associated element function on C that is obtained from r    and suppose that

for each r. - r    subobject N  of M £ C,  M/N is Testable. Then necessary and

sufficient conditions ¡or c to have the r   — r    decomposition theory are (i) each

object in (_ is r -worthy, and (ii) each Astable object in '£ is r -stable.

Proof. In order to prove sufficiency assume that C satisfies (i) and (ii). If

M e c, then it follows from Theorem 1.3 that 0 has an A-decomposition Í/V.: i £ I\

in M. Since each M/Ni is A-stable, each M//V¿ is r-stable by (ii). Each N. is

an 7j - r2  subobject of M since M   a subobject of M/N. yields rAM  ) <

r2(M") = r2iM/N). Moreover, r2(M/N.) ¿ r2ÍM/N.) fot i 4 j because AiM/N.) ¿

AiM/N.) for i 4- j- Wherefore  {/V.: z e /| is an r^ - r    decomposition of 0 in M

and therefore C has the r   — r    decomposition theory.

In order to prove the necessity, assume that C has the r   - r    decomposi-

tion theory. If \N.: i £ I\ is an r. - r. decomposition of 0 in M, then we claim

that [AL: i e /| ¡s an A-decomposition of 0 in M. Since each N.  is an r   - r2

subobject of M, we have by hypothesis that each M/N. is r2-stable. Hence each

N. is an A-subobject of M because AiM/N.)= \r2iM/N.)\. Moreover AiM/N.) ±

AiM/N.) for i ¿ j, since r2ÍM/N.) ¿ r2ÍM/N.) tot i ¿ j. Thus  (AL: z e /| is an A-

decomposition of 0 in M and so (l  has the A-decomposition theory. Consequently,

each object in C is r2-worthy by Theorem 1.3.

Now suppose that M is an A-stable object in (E. Then there exists an

Tj - r2 decomposition i/\\: z = 1, 2, • • •, k\ of 0 in M. As above \N.: i = 1, 2,
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• • • ,k\ is an A-decomposition of 0 in M. Since  M is A-stable and AiM) =

U*   , AiM/N.) [3, Proposition 4.5], we have that k = 1. Therefore /Vj = 0 and so

M  is r -stable. This completes the proof.

Remark. Suppose that we are in the situation of Theorem 2.1, i.e., we have a

pair of radical functions r^  and r2  on £ with ^  < r2; A  is the associated

element function on £ that is obtained from r  ; and for each ^ - r.  sub-

object N of M £ £, M/N  is r2-stable. If each object in £ is zyworthy, then

Theorem 1.3 guarantees that the A-decomposition theory exists on £. Theo-

rem 2.1  affords  that the r. - r    decomposition theory also exists on C and

it coincides with the A-decomposition theory on C when and only when

each A-stable object in £ is r -stable.

Now we apply Theorem 2.1 to the tertiary, primary, and weakly primary de-

composition theories for certain categories of modules. For these categories the

complicating hypotheses in Theorem 2.1 melt away and leave uncomplicated ex-

istence theorems. We begin with the existence theorem for the tertiary decomposi-

tion theory which is found in Fisher [3, Theorem 5.4].

Corollary 2.2. Let R be an arbitrary ring and let £ be an admissible sub-

category of Am. Then a necessary and sufficient condition that the tertiary de-

composition theory exists on £  is that each object in £ be t-worthy.

Proof. From Examples 2 and 7 we have a pair of radical functions, a and t

on £ with a < t, T is the associated element function on C that is obtained from

t, and for each a - / subobject N of M £ £, M/N is /-stable [3, Theorem 5.3].

Moreover, each  T-stable object in £ is  /-stable [3, Theorem 5.3]. Therefore a

necessary and sufficient condition for £ to have the tertiary (a - t) decomposi-

tion theory is that each object in £ be /-worthy.

As another corollary of Theorem 2.1, we have the following existence theorem

for the primary decomposition theory which is found in Fisher [4, Theorem 1.7].

Corollary 2.3. Let  R  be either a commutative ring or a left Noetherian ring

and let £ be an admissible subcategory of RJI¡. Then necessary and sufficient

conditions for £ to have the primary decomposition theory are (i) each object in

£ is p-worthy, and (ii) each  P-stable object in £ is p-stable.

Proof. From Examples 3 and 8 we have a pair of radical functions, a and p

on C with a <pt P is the associated element function on £ that is obtained from

p, and for each a - p subobject N of M £ £, M/N is p-stable [4, Proposition

I.5]. Therefore necessary and sufficient conditions for £ to have the primary

(a — p) decomposition theory are (i) and (ii).

As another corollary of Theorem 2.1, we have the following existence theo-

rem for the weakly primary decomposition theory. First a lemma.
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Lemma 2.4. Let R  be a commutative ring with unity and let M £ „JR. Then 0

is a weakly primary submodule of M  if and only if M  is w-stable.

Proof. Suppose that 0 is a weakly primary submodule of  M and  N is a sub-

module  of M. Evidently wiM) C wiN). If x £ wiN), then there exists a nonzero sub-

module  M   of M such that x £ aiM ) C wiM).

For the "if" suppose that M is w-stable. If M   is a nonzero submodule of M

and y £ aiM ), then y £ aiM  ) C wiM ') = wiM). Consequently  0 is a weakly primary

submodule of M.

Corollary 2.5. Let  R  be a commutative ring with unity and let C be an admis-

sible subcategory of  „JR.  Then necessary and sufficient conditions for £ to have

the weakly primary decomposition theory are (i) each object in C  is w-worthy,

and (ii) each W'stable object in Ç.  is w-stable.

Proof. From Examples 4 and 9 we have a pair of radical functions, a and w

on (l with a < w, W is the associated element function on (_  that is obtained

from w, and for each a — w subobject N of M £ £, M/N  is  tf-stable by Lemma

2.4. Therefore, necessary and sufficient conditions for C to have the weakly

primary (a — w) decomposition theory are (i) and (ii).

Corollary 2.6. Let  R  be a commutative Noetherian ring with unity and let  C

be an admissible subcategory of RjR. Then a necessary and sufficient condition

for C to have the weakly primary decomposition theory is that each object in (l

is  w-worthy.

Proof. Since R is Noetherian, we have from Proposition 10.3 in [3] that each

W-stable object in C is w-stable. Consequently the result follows from Corollary

2.5.

Remark. Proposition  1 in [l, p. 139] shows that for R commutative Noether-

ian with unity, Bourbaki's concept of  P-primary coincides with weakly primary.

Therefore Corollary 2.6 is an existence theorem for Bourbaki's  P-primary decom-

position theory.

Now we head toward one final corollary of Theorem 2.1.

Lemma 2.7. Let R  be a commutative Noetherian ring with unity and let M £

„JR. Then each nonzero submodule  N of M contains a w-stable submodule.

Proof. The set j(0: x): 0 / x £ N\ has a maximal element (O :n) and (O :«) =

(0 : Rn). Then  Rn is testable since the maximality of (0 : n) forces  (0:7z) =

(0 :rn) for each 0 / rn e Rn.

If  R  is a commutative ring with unity, and  M £ „JR, then following Bourbaki

[l, p. 13l] we define Ass(M) = \j: J  is a prime ideal in R  tot which there exists

0 / m £ M  such that ? = (O : m)\.
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Lemma 2.8. Let  R  be a commutative Noetherian ring with unity and let  M £

RÎH. Then WiM)ÇAssiM).

Proof. Let j £ W(/Vf). Then there exists a »-stable submodule 5 of M such

that J  ■= wiS). Again the set i(0:x): 0 /- x £ S\ has a maximal element (0:s)and

(0 : s) = (0: Rs). Since S is »-stable, ? = wiRs). We assert that ? = (0 : s). Obvi-

ously Í0:s)Cj. If y £j = wiRs), then there exists a positive integer rz such

that y" e (0 : s). However, (0:s) is prime. Hence ye(0:s).

Corollary 2.9. Le/  R  be a commutative Noetherian ring with unity and let £

be an admissible subcategory of „JR. A necessary and sufficient condition for £

to have Bourbaki's j-primary decomposition theory is that Ass (M) is finite for

each Me£.

Proof. Proposition 1 in [l, p. 139] shows that for R  commutative Noetherian

with unity, the concepts of J -primary and weakly primary are equivalent. There-

fore, in order to prove the sufficiency, Corollary 2.6 shows that it is enough to

prove that each  M e c is »-worthy. Lemma 2.7 shows that each quotient object

M   of M satisfies the property that each nonzero subobject of M   contains a »-

stable subobject. That W(M  ) is finite follows from Lemma 2.8 and the hypothesis.

The necessity follows from [l, Proposition 4, p. 144].
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