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INVERSE SEMIGROUPS WHICH ARE SEPARATED

OVER A SUBSEMIGROUP

BY

D. B. McALISTER( 1)

ABSTRACT. An inverse semigroup   T is separated over a subsemigroup  S if

T is generated, as an inverse semigroup, by  S and for each   a,   b £ S there

exists  x e SaPiSb   such that  a~  ab~   b = x~  x and dually for right ideals.    For

example, if   T is generated as an inverse semigroup by a semigroup S whose prin-

cipal left and right ideals form chains under inclusion, then   T is separated over

S.   In this paper we investigate the structure of inverse semigroups   T which are

separated over subsemigroups  S.

The structure theory of inverse semigroups has been the object of much study

over recent years with particular attention being paid to O-bisimple and 0-simple

inverse semigroups ([2], [9]> [lO], [il], [13L for example).   These papers attempted

to determine the structure of various O-bisimple or 0-simple inverse semigroups

directly in terms of groups and semilattices.   However the degree of complication

involved even in these cases leads one to suspect that this is, in general, a futile

task although it is possible in some cases.

In a general sense, the structure of inverse semigroups is determined by its

semilattice of idempotents and a semilattice of groups.   This is a consequence of

a theorem of Munn [ll] which shows that the maximal fundamental homomorphic

image S/¡i of an inverse semigroup S is a full subsemigroup of the semigroup TE

of isomorphisms between the principal ideals of the semilattice E  of idempotents

of S.   The canonical homomorphism p: S —» S/p. is idempotent separating so its

kernel is a semilattice of groups.   The problem of constructing idempotent separ-

ating extensions of semilattices of groups by inverse semigroups has been solved,

theoretically at least, by D'Alarcao [4]  and Coudron [3] so that one could, in

principle, construct all inverse semigroups if one could construct all fundamental

inverse semigroups; the latter, however, remain a mystery.
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In this paper, we shall adopt a more internal approach to describing inverse

semigroups.   Suppose that 6 is a homomorphism of a semigroup S  into an inverse

semigroup T.   Then we shall say that T is separated over S, by 6,  if T is

generated as an inverse semigroup by Sd and, for each a, b £ S,

adiad)-lbdibd)-1 = xfXxÖ)-1    for some   x £ aS n bS,

iad)-ladibd)-1   bd    =(yÖ)_1yö    for some  y £ Sa n Sb.

The main aim of this paper is to investigate the structure of an inverse semigroup

T, which is separated over a semigroup S, in terms of S.   Special cases of this

concept have been considered before.   For example, let T be a bisimple monoid

and let S be the right unit subsemigroup of T; if S is right reflexive then T is

separated over S.   Clifford [l] has described the structure of T in terms of S.   On

the other hand, Eberhart and Seiden [5] have described the structure of all one

parameter inverse   semigroups.   Any such semigroup T is separated over a sub-

semigroup S of the multiplicative semigroup of the positive reals.

Theorem 3-5 gives an explicit method of construction for all fundamental inverse

semigroups which are separated over an arbitrary semigroup S.   Thus, by using

D'Alarcao's extension theorem [4] one could, in principle, construct all inverse

semigroups which are separated over S.   We have not been able to do this explicitly

without imposing conditions on S.   A semigroup S  is naturally quasisemilatticed

it the sets of principal left and right ideals of S form semilattices under inclusion;

thus an inverse semigroup is naturally quasisemilatticed.   If S is naturally semi-

latticed and T is separated over S by d then, for a, b £ S,

adiad)' lbdibd)-1 = ia Ar b)v[ia Ar b)6]-\

iaO)-ladibd)-lbd = [ia A, b)d]~Ha A, b)d,

where, for example, a  A   b in S  is such that aSx n bS x = (a A   b)S  .   There is

thus a universal inverse semigroup EÍS) in the category of inverse semigroups

which are separated over S.   An explicit construction and several coordinatisations

for EÍS) are given in §4 while the congruences and ideal structure form the sub-

ject matter of $5.

Whenever the sets of principal left and right ideals of a semigroup S are

chains under inclusion, every inverse semigroup generated, as an inverse semi-

group, by a homomorphic image of S is separated over S.   Hence EÍS) is the free

inverse semigroup on S  and so S can be embedded in an inverse semigroup if and

only if it can be embedded in EÍS).   The last result remains true if S is naturally

quasisemilatticed (Theorem 4.6) so that we can use EÍS) to obtain a set of

necessary and sufficient conditions for the embeddability of such semigroups in

inverse semigroups.
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The main tools used in this paper are what we term shift representations of

S by one-to-one partial transformations.   These representations generalise both the

Vagner-Preston representations of inverse semigroups and the regular representa-

tions of cancellative semigroups.   They are described in §2.

The theory undergoes considerable simplification when the semigroup S under

consideration is cancellative.   It is applied in §6 to give necessary and sufficient

conditions on a cancellative semigroup so that each element of IÍS) should be of

the form ab~ c with a, b, c £ S; the precise conditions are that the sets of prin-

cipal left and right ideals of S should be chains under inclusion.   The theory is

also applied to give a characterisation of the positive cone of a right ordered group.

The final section consists of several examples of inverse semigroups which

arise from the general theory.   In particular the theory gives a method for con-

structing 0-simple inverse semigroups in which 5) ^ £).   The -D-classes in these

semigroups are traversed by a semigroup but noil-class is a subsemigróup so that

the 0-simple inverse semigroups obtained here are, in a sense, dual to those con-

sidered by Munn [12].

1.  Embedding a semigroup in an inverse semigroup.  If S  is any semigroup,

it follows from general categorical considerations, or from [8], that there is an

inverse semigroup IÍS) and a homomorphism 77: S —> IÍS) with the following prop-

erty: given any homomorphism 6 of S into an inverse semigroup T, there is a

unique homomorphism iff. 1ÍS) —» T such that the diagram

5.

commutes.   The semigroup IÍS) is called the free inverse semigroup on S.   One of

the aims of this paper is to investigate the structure of IÍS) and some related semi-

groups when the ideal structure of S has certain special properties; in particular,

when the sets of principal left and right ideals of S form chains under inclusion.

It follows easily from the functorial properties of S , S° and IÍS) that /(S1)

and IÍS)    and IÍS  ) and IÍS)    ate naturally isomorphic.   Hence, in studying the

relationships between S and IÍS) we may, without loss of generality, assume that

S has a zero and an identity.   We shall assume the  latter throughout this paper.

Because any homomorphism of S into an inverse semigroup can be uniquely

factored through r/,   S can be. embedded in an inverse semigroup if and only if r¡ is

one-to-one.   We can use this to give a short proof of Schein's theorem [l6] which

gives necessary and sufficient conditions for embedding semigroups in inverse

semigroups.

Let S = S    be a semigroup.   Then a nonempty subset H of S  is strong it



88 D. B. McALISTER

ax, bx, ay e H together imply by   £ H. Clearly, if nonvoid, the intersection of

strong subsets is strong.

Let H / D be a strong subset of S = S    and define

x = y     (KH)    if and only if  H'x = H'y

where, for example, H/x = [u e S: x u e H\.   Then 3\H  is a right congruence on

on S [2, § IO.2] and can be used to construct a representation of S by one-to-one

partial transformations in the following way [2, §11.4].   Set W^ = [x e S: H 'x = □ }.

WH is clearly an J\„-class of S, and let XH be the set of J\„-classes different

from WH.   For each a e S,   define

xp    = xa    for each x  e !X„  such that ~xâ e Ji^.

Then the mapping p   : a —>p     is a representation of S by one-to-one partial

transformations of X„; thus p     is a homomorphism of S  into the symmetric in-

verse semigroup HjCA on Jl„.

Recall that, if T is an inverse semigroup, the natural partial order on T is

defined by

x < y  if and only if x = ey for some e = e    e T [2, §7.l].

Lemma 1.1.  Let  d be a homomorphism of a semigroup S = S    into an inverse

semigroup T and let a e S.   Then K - [x e S: ad < xd\ is a strong subset of S

which contains a.

Proof. Suppose bx, by. ex  e K.   Then ad<ibx)d, ad < iby)d, ad < (cx)<? and so,

also, iad)- ' < ibx)d~ l.   Thus

ad = adiad)-1 ad  < icx)dibx)d-liby)d = cdixd xd~ X bd~ X bd)y6 < icy)d.

Hence cy e K.   This shows that K is strong and, clearly, a  £ K.

Lemma 1.2.  Let S = S    be a semigroup and let   a 6 S.    Then a =

¡x e 5: «775x77! is the smallest strong subset of S which contains a.

Proof.   By Lemma 1.1, a is a strong subset of S which contains a.   On the

other hand, suppose that H  is a strong subset of 5 and a e H.   Let p  : S —» ÍOCJ)

be the representation of  S obtained from H and suppose that x e a.   Since p
ft ft

can be factored through 77,  it follows that  ap    < xp     and so, in particular, the

domain Apa   of p     is contained in Ap   .   Now a = 1 a   e ft„  so 1   e Ap   ; hence
— a     H H H
1   e Ap   .   Further, since p    < p   ,

a- = lpHa=-lp"x=ï-

Hence H 'x = H 'a and so, since   1 e H /a, x e H.   This shows that a C H.
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Theorem 1.3 (Schein [l6]). Let S = S1  be a semigroup.   Then S can be em-

bedded in an inverse semigroup if and only if for each pair of distinct elements of

S there is a strong subset of S which contains one of the pair but not the other.

Proof. Suppose that 77 is one-to-one and that a / b  in 5.   Then ar\ / br¡ and

so arj^bq or brj^an; thus bk a  or a | b.

Conversely, if H is strong and a £ H, b \ H then, since a C H, b § a and

so ar] ¿ en; in particular, an / b-q.

The method of proof of Theorem 1.3 can be used to give the relationship be-

tween the ideal structure of S  and that of IÍS).

Proposition 1.4.  Let S = S    be a semigroup and let  77: S —> IÍS) be the

canonical homomorphism of S  into the free inverse semigroup on S.   Then ar¡íar¡)~

Sbrjibn)'1  if and only if â O bS ¿ O.

Proof. Suppose a n bS /= D. Then bx £ a tot some x £ S and so an < íbx)r¡.

Hence an = br/ibq)~ 1an; that is a-qiarj)' ' < br¡ibr¡)~   .

Conversely, suppose that ar/ian)-    < br¡íbq)~     and let p be the representa-

tion of S by one-to-one partial transformations obtained from the strong subset a.

Then, since p can be factored through 77, apiap)~    <bpibp)~   ;  that is Aap C Aèp.

Since   1   £ hap, this implies 1   £  Ap    so that b £ X";  that is  bS C\ a ^ D.

Corollary 1.5. The mapping a defined by iaS)a - iaiflliS) is an order isomor-

phism of the set of principal right ideals of S into the set of principal right ideals

of IÍS) if and only if a O bS /= O implies a £ bS.

If T is an inverse semigroup, then the intersection of principal right (left)

ideals is again principal and, indeed, if aT n bT = cT then xaT O xbT = xcT

for each x £ T.   Thus, when one considers the relationships between S and liS)

it is of interest to suppose that 5  is naturally quasisemilatticed in the sense of

the following definition.

Definition.   Let S = S    be a semigroup.   Then S  is naturally quasisemilatticed

if, for each a, b £ S,  there exists a A    b £ S  such that aS O bS = (a   A   b)S  and,

for each x e S, (xa   A   xb)S = x(a   A   b)S and dually for left ideals.

If S = S     is a semigroup in which  2) is trivial then S  is naturally quasisemi-

latticed if and only if it is a left semilatticed semigroup under the partial ordering

a <f b  if and only if a £ bS and dually.   Any semigroup in which the sets of

principal left and right ideals form chains under inclusion is naturally quasisemi-

latticed as is the positive cone of an /-group and the multiplicative semigroup of

a principal ideal domain.   The free monoid on a set X  is not naturally quasisemi-

latticed; however if a zero is adjoined, the resulting monoid is naturally quasi-

semilatticed.
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In §6 we shall give necessary and sufficient conditions for embedding a

naturally quasisemilatticed semigroup into an inverse semigroup.   These condi-

tions, unlike those in Theorem 1.3, do not involve strong subsets; the latter are

hard to find in general.

2. Shift representations of semigroups.  Let S = çl be a semigroup and let

o be an equivalence on S x S which obeys the following condition:

(1) ia, xb) o ic, xd) if and only if (ax, b) o icx, d)

for all a, b, c, d, x e S and, for each x e S, define a partial transformation p

on the set ÍS x S)/a of CT-classes by

(a, xb) o p   = (ax, b)a.

Then pa is clearly a one-to-one partial transformation of (5 x S)/a.

Lemma 2.1.  Let  o be an equivalence, which obeys (1), on a semigroup S = S .

Then the mapping  p : S —> /((S x S)/a) defined by xpa = pa is a representation of

S by one-to-one partial transformations  ÍS x S)/o if and only if

(2) (a, b) o ic, d) implies ia, b) o (xa, dy) for some x, y e S.

Proof.  For any a, b £ S, Ap  , C Ap p    and further, if (x, aby)o £ Ap  .,

ix, aby) o pah = ixab, y)a = (xa, by) a pcT = (x, aby) ap'j)'7.

Hence p    is a representation if and only if Apflp, C Ap'T,  for all a, b £ S.

Suppose that (2) holds.   Then (x, ay)a e Ap pf implies  (xa, y) o iu, bv) for

some u,v e S.   Hence, by (2), (xa, y) o (rxa, bvs) for some r, s e S.   Thus, by

(1), (x, ay) a irx, abvs) so that (x, ay)o e Ap^

Conversely, suppose that Ap^p^C Ap^fc and let (a, b) a ic, d).   Then

(1, ab) a p^=ia, b)o = ic, d)o implies (l, ab)o e Ap^p^ = Ap^rf.   Hence  (l, ab) a

(x, ady) for some x, y e S and so,  by (1), (a, ¿) a (xa, ¿y).

Definition. If S = S    is a semigroup then an equivalence o on S x S is called

a sèz'/i equivalence it (1) and (2) are satisfied.   If a is a shift equivalence on

S x S then the corresponding representation pCT of S by one-to-one partial trans-

formations of (S x S)/a is called a shift representation of S.

Equivalence relations on S x S which obey (1) arise naturally when one con-

siders homomorphisms of S  into inverse semigroups as the following examples show.

Proposition 2.2.   Let  6 be a homomorphism of a semigroup S = S    into an

inverse semigroup T and define equivalences  aL, oR, aE on S x S as follows:
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(a, b) oL (c, d) «=» Wiab)6-1 = ddicd)6-1,

ia, b) op ic, d) «=* iab)e-laB = icd)d-1cd,

ia, b) oP ic, d) <=► ad~ XaQ bd bd~ l = c6~ Vcd dd dd~ 1.

■r

TE

Then each of these equivalences obeys (1).

Proof.  We show oE  obeys (1).

(a, xb) oE (c, xd) ~ ad-la6ixb)ixb)d-1 = cfT lcdixdMxdtf- !

« ae-liax)dbebd-xxd-1 = cd-licx)dddd9-ïxd-ï

~ xÖ- ̂ aO-Haxydbdbd- l = XÖ" 1c0- licx)6dddd- l

« (öx)Ö- liax)6bdbd-l = (cx)0- licx)dddd6- l

<=> (ax, ¿z) 0"E (ex, a")

since idempotents commute.

The other two are proved similarly.

There is clearly a smallest equivalence on S x S which obeys (1).   In some

important cases, this can easily be described and is a shift equivalence.

Lemma 2.3.  Let 5=5    be a semigroup and define a relation  t    on S x S by

ia, b) t. (c, d) <=> there exist x., • • • , x , y„, • • • , y    such that a = x_,  c = x ,
U U fj 0 w ITfl

b = y., d = y    flrzfi x.   ,y.   ,=x.y.   , = x y .,  \ < i <n.   Then r„ ts an equiva-
y0 Jn i—lyz—1 iJ i— 1 7^7 —     — 0 v

lence and is contained in the smallest equivalence on 5 x 5 which obeys  (1).

Proof,   r.  is clearly an equivalence on 5x5.    Further, if o is an equivalence

on 5 x 5 which obeys (1) then x ._ y ._    = x¿y        = x .y . implies

K--.iy.--i» 1^^,-.i« ^  and   ^»Vi-i^^'Vp'

Thus, by (1),  (x¿_ , y¿_ j) a (x     y¿_ j) cr (x¿, y¿) so that, from the definition of

Propositions 2.6,  2.7,  2.9 give examples of types of semigroups on which

tq is a shift and thus is the finest shift on 5 x 5.   Under these circumstances we

can use rQ to give necessary and sufficient conditions for embeddability in inverse

semigroups.

Lemma 2.4.  Let S = 5    be a semigroup such that rQ is a shift and let p be

the shift representation associated with  t .   Then  p   = p,   if and only if a = b.

Proof.  If rQ is a shift, then  p can be factored through r¡ and so a = b

implies pa = pè..
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On the other hand, pa = p,   implies (l, a) rQ (x, by) and (a, l) r. (xfj, y) for

some x, y e S.   The first of these equivalences implies the existence of u-, • • • ,

u , v -,•••, v     in S   such that u - = 1, u    = x, v - = a, v    =èy  and zz.    ,v .    , =
71 0 71 0 '        71 0 71 -^ l-ll-l

u v .   , = u v .,   1 < i < n.   Then v.=a £ a.   Suppose v .   ,  £ a;  then u .   ,v .   . =
11-1        I   i —     — 0 rr i-l ' i-l   i-1

u v .   , = u v . = a £ a implies a     ,v . e a  and so zz.   , £ a' v . C\ a' v .   ,.   Since
Z    I— 1 I    1 r 1—1     1 1—1 •     ! •     1—1

a   is strong and   1  £ ay_,,  this implies   1 £ a' v . so that v . £ a.    Hence, by

induction, by £ a.    Dually, the second equivalence implies xb € a.

Since xby = a £ a and by £ a we have y £ a 'xb O a / b and so, since a  is

strong and  16 a'xb,   1 £ a ' b; thus b £ a.    Finally, by duality, we also get

a £ b.   Hence a = b.

Theorem 2.5.  Let S = S    be a semigroup on which  t-  is a shift and let

p: S —* iííS x S)/tA be the corresponding shift representation.   Then S can be

embedded in an inverse semigroup if and only if p is one-to-one.

We now give some examples of semigroups in which  T-  obeys (1) and (2).

Proposition 2.6.  Let  S = S    be a left cancellative semigroup.    Then  t-  is a

shift equivalence on S x S.

Proof.  Suppose S  is left cancellative and let (a, b) r   (c, d).   Then a = x

c=x   , b = y -, d = y     and x .    -,y .    , = x y .    , = x y .,   1 < i < n, for some
n J 0 J n i—Vv—l iJ i— 1 i/i'       —     —

x., y . £ S.   Since S  is left cancellative, this implies y ._ . = y .,   1 < z' < n; hence

each y    is b  and so (a, b) tq ic, d) implies b = d and ab = cb.   On the other hand,

b = d, ab = cb  clearly implies (a, b) r   (c, d).  Hence

(a, b) TQ ic, d) «=» b = d,        ab = cb.

It follows from this characterisation of r    that (a, xb) r   ic, xd) if and only if

axb = cxd, xb = xd.    Since S  îs.left cancellative, the last two equations hold if

and only if axb = cxd and b = d.   Hence (1) holds.   Finally, from the characteri-

sation of T-,  ia, b) t   ic, d) implies  (a, b) t   ia, d) so that (2) holds trivially.

Proposition 2.7.   Let S = 5    be an inverse semigroup.    Then  rQ  is a shift

equivalence on 5x5.

Proof.  Suppose (a, xb) r   ic, xd);  then a = a  , c = u  , xb = v-, xd = v    and

a     ,v.   , - u v .   , = a v .,  1 < i < w, for some a ., v . £ 5.   Set p . = ax, p   = ex,1—1     1—1 1     1—1 I    1 —       — ¡'       1 r0 r 77

qn = b, q    ~ d  and  p . = u x    q . = x~  v .,   1 < i < n.   We show that p     .c? .   .  =
'0 J71 rl !      '     'l l' . rl-l'l— 1

p q ■_, = p q  ,   1 S. ' -"•   This proves that (ax, è) r   (ex, a") and, together with

its dual, gives (1).

Since a .    ,v .    , = u .v .   .,  it follows that a .   ,f .    ,v~ ,xx~    = u .v .    ,v~ ,xx~
i-l   i-l        i   i-l' i-l   i-l i-l i   z-1 ¡-1

and so, since idempotents commute, (a;     x)(x~ v.   A = (a .x)(x~ v ._ A;
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similarly iu x)ix~ lv ._  ) = íu.x)íx~  vt),  l<i<n.   Hence, for   l<z<w, Pi_1Q._1

= Pfli-l =Piai-    Fu«her

p0q0 = axb = u0v0 =uiVq= u {xb = p {qQ

and, as above,  u xx~ 1v Q = u xx~ lv . = p .q ,   so that, since v. = xb, p q . = u .vQ

= u,xx~  v,. = p ,q,.   Similarly p      ,q      , = p q     , = p q .   Thus p .   ,q .   , =
1 0 r lJ l '     rn-\'n-\ r77J77-l r77'rj r7-lJ7-l

Pfli-X =Pfli'   1 <l <n-
Finally, suppose that  (a, b) rQ ic, d); then a = x 0,  c=x,è=ya' = y

and x¿_ y ._    = x .y ._    = x .y .,   1 < i < n, tot some x ., y . e 5 and some positive

integer zz.   As in the immediately preceding paragraph, this implies  (x .a~ a, y  )

7Q (x a~ la, y  );  that is (a, ¿z) rQ (ca~ a,, d).   Hence (2) holds.

Corollary 2.8.   Let S = 5    be an inverse semigroup and let  p be the shift

representation associated with  r .    Then  p is faithful.

Proposition 2.9.  Let S = S    be a naturally quasiordered semigroup on which

J) is trivial.    Then  r„  z's a shift equivalence on 5x5.

Proof.   This is a special case of Theorem 3.9 so we omit a proof.

3. Fundamental inverse semigroups separated over a semigroup 5.

Lemma 3.1.  Let 6 be a homomorphism of a semigroup S  into an inverse semi-

group  T.   Let  a, b, c £ S and suppose that

adad-xbQbd-x = xGxd'1,       bd-xbdc6-xc6 = uQ-xuQ

where x = ay = bz, u = vb = wc.    Then

aß-xbdcd-x = y6ivbz)6-xiv6.

Proof.   For convenience of notation, let us identify 5 with its image in T.

Then

a-Xbc~X = a~ l aa~ l bb~ X bc~ X = a~ X iay)iay)~ l bc~ X = a-1 ayy~X a-1 bc~X

= yy-Xa-Xbc~X =yx-1¿>c~1 = yx~ X bb~ X bc~ X cc~ X = yx" ' biwc)~ Xwcc~ X

= yx~   biwc)~   w = yibz)~   bivb)~   w = yívbz)~   w

since idempotents in T commute.

Lemma 3.1 is similar to Lemma 3.4 in [5]>

Theorem 3.2.  Let 6 be a homomorphism of 5=5    into an inverse semigroup

T.   If T is separated over S by  8 then   T = \adb6~1cd: b £ Sa n cS,   a, c £ S\.
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Proof.  As in Lemma 3.1, we identify 5  and Sd.   Let ab~ c, de~ f £ K, where

K denotes the right side of the equation for T, and suppose that b = ua = cv,

e =pd = fq.

By Lemma 2.1, if bb~ xcdicd)~ x =hh~x  and  icd)~ xcde~ xe =k'Xk with

h - by = cdz and k = xcd = we, then

è~   cí/e"    = yíxcdz)-  w

so that aè ~ cde ~ xf = ay(xcaz)" tzz/.    Further xcaz = xhy = xaay e 5ay  and

xcdz =wez =wfqz £ wfS  so that ab~  cde~ f £ K.   Since, by Lemma 3.1,  X is

closed under inverses, it follows that K = T.

Definition.  Let T be an inverse semigroup and let S = S    be a subsemigroup

of T.   Then T is an inverse semigroup of strong quotients of 5  if each element

of T is of the form ab~  c where b £ Sa O cS.

In the light of this definition, we have

Corollary 3.3.  Let  T be an inverse semigroup which is separated over a sub-

semigroup 5.   Then  T is an inverse semigroup of strong quotients of 5.

The inverse semigroups which are separated over a semigroup 5 = 5    appear

to be closely related to the shift representations of 5.   We have not been able to

determine this relationship in general; however we have been able to characterise

fundamental inverse semigroups which are separated over 5.

Lemma 3.4.  Let  d be a homomorphism of a semigroup 5=5     into an inverse

semigroup  T.   Suppose that  T  is separated over S  by  d and define  o"_  on

S x S by

ia, b) aE ic, d) «=. ad~Xadbdbd-X . cd-Xcddddd~X

for all a, b, c, d £ 5. Then oE is a shift equivalence on 5 x 5 arza* 5 x S/aF

is a semilattice, isomorphic to the semilattice of idempotents of T, under the

partial ordering

ia, b)oE < ic, d)oE <=> ia, b) o£ iu, v)    for some a e Sa n Se,  v e bS n dS.

Proof.  Since T is separated over 5, Theorem 3.2 shows that each element

of T is of the form adbd~ cd where b e Sa n cS.   For such an element of T,

adbd~ X cdiadbd- ! cd)~! = adbd~ xcdcd- 1 bdad~ x

= adbd-1bdad~l    since b e cS

= ud-Xudadad~X     it b = ua.

Hence the mapping defined by (a, a)oE —> ud~ udadad'    is a bijection of

(5 x 5)/o"E  onto the  semilattice  of idempotents of   T.    Further,  since



INVERSE SEMIGROUPS SEPARATED OVER A SUBSEMIGROUP 95

ad~ Xa8b8b8~ X < cd~ xc8d8dd~ X   if  and only if ad~ xadb8bd~ ' -

ad-Xa0cd-lcdb8bd-Xd8dd-X  and since  T is separated over 5,  a6~ Xa8b8b8~ l <

c8~ xc8ddd8~ x  if and only if ia, b) o£ iu, v) for some u £ Sa <~) Sc,  v £ bS n dS.

Hence  (5 x S)/oE  is a semilattice under

(a, b)oE < ic, d)oE <=» ia, b) oE iu, v) fot some  u £ Sa O 5c,  v £ bS n dS.

Finally, Proposition 2.2 shows that oE obeys (1) while, since  (5 x S)/oE is

a semilattice under the partial order described above,  o£ clearly obeys (2).   Hence

oE  is a shift.

Lemma 3.5.  Let 5 = 5    be a semigroup and let o be an equivalence on S xS.

Suppose that  (5 x S)/o is a semilattice under

ia, b)o < ic, d)o <=> (a, b) o iu, v)    for some u £ Sa O 5c,   v £ bS n dS,

Then,

(i) (l, a)o A (l, b)o = (l, v)o for some  v £ aS n bS,

(ii) (a, 1)ct A ib, l)o = iu, l)o for some u £ Sa C\ Sb,

(iii) (a, \)o A (l, b)o= ia, b)o

for a, b £ 5.

Proof,  (i) Suppose (l, a)rj A (l, b)o = (x, y)o.   Then, because (x, y)cr<(l, a)o,

there exist x    £ S,   y    £ yS n aS  such that (x^ y ^ o íx, y).   Since  (x   , y j)o <

(l, b)o,  there exist u £ S,   v £ y .5 n bS C aS n bS  such that íx ^, y A o iu, v).

Thus (l, a)o A (l, b)o = iu, v)o.   But iu, v)o < (l, v)o < il, a)o, (l, b)o from the

definition of < since v £ aS CibS.   Hence we must have (l, a)o A (l, b)a — (l, v)o.

(ii) This is dual to (i).

(iii) From the definition of the partial order on (5 x S)/o, ia, b)o < ia, \)o,

(l, b)o.   On the other hand, if (x, y)a< (a, l)a, (l, b)o, then  (x,y) o íx     y  ) fot

some x     £ Sa n Sx  and then, since  (x  , y,)o-< (l, b)o, ix y  ) o íx , y A fot

some x2 £ Sx   n Sa and y    £ y  S n bS C bS.   Thus (x, y)o = (x , y Ao < (a, ¿z)o\

Hence  (a, l)o A (l, tz)o = (a, ¿7V.

Suppose that  T  is an inverse semigroup with semilattice of idempotents  E

and for each a £ T define a partial transformation p    of E by xp.   = a~ xa  for

each x e Eaa~x.   Then zMunn [il] shows that /í: T —» â(£) defined by ap = p

is a representation of T by partial one-to-one transformations of E  and that

T/zi  "is" the maximum fundamental homomorphic image of T.

Theorem 3.6.  Let S = 5    èe a semigroup and let  8 be a homeomorphism of S into

a fundamental inverse semigroup  T which is separated over S by  B.   Define

oE on S x S by
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(a, b) oE ic, d) ^ ad~Xadbdbd-X = c<9_'cfWöacT '

and let p: S —» <K(5 x S)/oA be the shift representation associated with  o¿.   Then

T is isomorphic to the inverse hull of Sp in 3((5 x S)/oA.

Conversely, let  o be an equivalence on S x S which obeys (1) and is such

that  (S x S)/a  is a semilattice under

ia, b)o < ic, d)o <=> (a, b) o (a, !■>)    for some a e Sa D 5c,     v £ bS O dS

and let  p be the shift representation associated with  o.   Then the inverse bull

of Sp in 9((5 x S)/a) is fundamental and o - Og.

Proof.   Let d be as in the statement of the theorem.   Then, by Lemma 3.4, the

mapping (p defined by  o.cp = (a, b)aE  if  a = ad~ adbdbd~     is an isomorphism

from the set F  of idempotents of T onto (5 x S)/oE-   Thus we can use (5 x S)/aE

to obtain a representation if) of T equivalent to p and hence to obtain an

isomorphic copy of T/p.   For each  a e T,  since ip is equivalent to p,

Ai/za = [ed> £ iS x S)/a£: e e ApJ = ¡e<^ e (5 x S)/o£: e < aa~x\.

Hence, if a = adibd)~ xcd, where b = ua = cv,

At/*a = iecS: e<adibd)-Xcdcd-Xbdad-X\

= \e<f>: e < ud~Xudadad'X\ = [ecb: ecb < (a,  a)aE\

= [ixu, ay)oE: x, y e S\    by Lemma 3.4.

This is independent of the particular choice of a, b, c, u, v e S, with b = aa = cv,

such that  a = adibd)~  cd.   Further, using the fact that dj is equivalent to p,

direct calculation shows that  (xa, ay) a£ t/ra = (xc, vy)o£.

Consider the diagram

Let a e 5; then, since ad = adiad)~ ad where a = 1 ■ a = a • 1,

Aaöt/i = !(x, ay)ap: x, y e S] = Aap

and, for (x, ay)aE e Aadifi,

ix, ay) Op add/ = (xa, y)ap = (x, ay) ov p

from the calculations in the preceding paragraph.   Hence  p = dip and the diagram

commutes.   Since Tip ^ T/p is generated, as an inverse semigroup, by S0yj = Sp,
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it follows that T/p is isomorphic to the inverse hull of Sp in §((5 x 5)/a£).   In

particular, if T  is fundamental, so that p is an isomorphism [il],  T  is isomorphic

to the inverse hull of Sp in 9((5 x S)/oE).

Conversely, suppose that o is an equivalence on 5 x 5 which obeys (1) and

is such that  (5 x S)/o is a semilattice under

ia, b)o < ic, d)o <=> ia, b) o iu, v)    for some  u £ Sa   n 5c,   v £ bS C\ dS.

Then, clearly, o obeys (2) and so gives rise to a shift representation p of 5  by

one-to-one partial transformations of  (5 x S)/o.   For each  a £ S,

Ap   = !(x, ay)o: x, y £ S\ = \iu, v)o: iu, v)o < (l, a)o\.

Hence, by Lemma 3.5 (i), since  (5 x S)/o is a semilattice

àpa n Apb = \iu, v)o: iu, v)o< (1, a)o A (l, b)o\

= \iu, v)o: iu, v)o < (l, y)o\

= Ap      tot some y £ aS n bS.

Thus  PaPj lPbPb ' = *Vy '   for some  y£flSnW  and, dually,  p~ lpap7 lpbp- l =

p~  p    tot some x e 5a n Sb.   Hence the inverse hull K  of 5p is separated over

5  by  p and so, by Corollary 3.3, is an inverse semigroup of strong quotients of

Sp.   In particular, the idempotents of K ate all oí the form p~  p p,p~   .   Further,

Pa XPaPbP~b 1 - P~ lPcPdP~d l *=» (a> b)o - (c' d)a>

by Lemma 3.5 (iii).   Hence the semilattice of idempotents of K  is isomorphic to

(5 x S)/o and o = oE.   From the proof of the first part of the theorem,  K/p, the

maximum fundamental homomorphic image of K,  is isomorphic to the inverse hull

of 5p  in iiiS x S)/o);  that is, to  K   itself.   Hence  K  is fundamental.

Remark.    The proof of the first part of Theorem 3.6 shows the following:  if

T  is separated by  8 over 5  then  T/p is isomorphic to the inverse hull of Sp in

iiiS x S)/oE).

The second part of the theorem shows that if o is an equivalence on 5 x 5

which obeys (1) and is such that  (5 x S)/o is a semilattice under the relation

(a, b)o < ic, d)o «=> ia, b) o iu, v)   tot some  u £ Sa O Se,   v £ bS O dS,

then there is a homomorphism of 5 into an inverse semigroup T with semilattice

(5 x S)/o.

Theorem 3.6 characterises fundamental inverse semigroups which are separ-

ated over 5  in terms of equivalences on 5 x 5.    To end this section, we show

how such equivalences can be obtained from equivalences on  5.

If n is a right congruence on 5 = 5    then there is a natural action of 5 on

the set S/rr of equivalence classes as follows:
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an • x = (ax)iT    for ail a, x e S.

Dually, if J7 is a left congruence on 5, then 5  acts naturally on the left of S/n.

Let n be a right congruence on 5  such that 5/z7 is a semilattice.   We say

that 5  acts naturally on the semilattice  S/n if

iâ~Ab)-x = a~-xAb ■ x

for all a, b   e S/n, x £ S.

A dual definition holds for left congruences.

Lemma 3.7.  Let o be an equivalence on 5 x 5 which obeys (1) and is such

that  (5 x S)/o is a semilattice under the partial ordering

ia, b)o < ic, d)o « (a, b) o (a, v)   for some a e 5a n 5c,  v e bS C\ dS

and define

a L b « (a, 1) o ib, 1),       a R b « (l, a) a (l, fc).

Then  L  is a right congruence on S,   S/L   is a semilattice (with operation    A.)

under

aL < bL <=> a L u    for some u £ Sa n Sb

and S acts naturally on S/L.   Dual results hold for R.   Further

ia, b) o ic, d) — abL ia  A, c)b R ia  A, c)ib Ar d) L cib A, d) R cd

where, for example,   a   f\.c denotes any element of 5 such that  ia   A, c)L =

iaL   A/CL).

Proof.   Let p be the shift representation associated with o.    Then (a, b) a

(c, d) if and only if p~  PaPbpI    = P~  P PjPj   •   Hence a L b  implies ap~ ap =

bp~ bp which, in turn, implies  iax)p~  iax)p = ibx)p~  ibx)p;  that is, ax L bx.

Thus L  is a right congruence on 5.

Let a, b £ 5 and pick u e Sa n Sb  such that (a, l)a A (¿>, l)a = (a, l)<j;

by Lemma 3.5 (iii) such an element exists.   Then, from the definition of the partial

order on S/L, uL < aL, bL.   On the other hand, if vL < aL, bL then vL = yL  for

some y £ Sa Ci Sb and so iv, l)o = (y, l)<7 < (a, l)a, ib, l)o; thus iv, l)a < (a, l)o.

This implies iv, l)a = iv, l)o A (a, l)o and so, by Lemma 3.5 (iii),  iv, l)a =

(z, l)cr for some z £ Sv C\ Su C Su.   Hence yL = zL < uL.   It follows that S/L  is

a semilattice with aL  A bL = uL  where u £ Sa n Sb is such that (a, l)o A

(i>, l)<r = (a, l)<7.   Further, ap~  ap = ap~xapbp~  bp implies

(ax)p" Xiux)p = xp~ liap~ lapbp~   bp)xp

= xp-Xap-Xapxpxp-Xbp-lbpxp = (ax)p~ Kax)p(f>x)p~  ibx)p.
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Hence iux)L = iax)L   A   ibx)L  and so 5 acts naturally on 5/L.

Next ia, b) o (c, d) if and only if

ap~Xapbpbp~    - cp"   cpdpdp'

implies ap~  apbpbp~X = (a A, c)p~   ia  A{ c)pbpbp~

implies (a A, c)p~Xia  A, c)pbpbp~X = ia  A¡ c)p~Xia A; clpib AT d)pib Ar d)p~X

implies  (a A,- c)p~Xia A, clpib Ar d)pib Ar d)p~X = cp~Xcpib Ar d)pib Ar d)p~X

implies   cp~Xcpib A   d)pib Ard)p~X = cp~Xcpdpdp~

where, for example, (a   A¡ c) L iaL   A  cL).   These implications give in sequence

iab)p~Xiab)p = [ia A, c)b]p~X[ia A, c)b]p   so az3 L ia A¡ c)b

[ia A; c)fc]p[(a A, c)^-1 = [(a A; c)ib Ar d)]p[ia A, c)ib AT d)]p~l

so (a A, c)è R (a A; c)ib Af d)

Vía A¡ c)ib AT d)]p-X[ia A; c)ib Ar d)]p = [cib ATd)]p-\cib Af d)]p

so (a A, c)ib ATd) L cib ATd)

[cib A r d)]p[cib Ar d)]p- X = icd)picd)p- x    so cib Ar d) R cd.

Hence ia, b) o ic, d)  implies

ab L ia A, c)b R ia A, c)ib Ar d) L cib AT d) R cd.

The converse follows, as in the proof of Theorem 3.8, because o is a shift.

Lemma 3.7 shows that o   is determined by the equivalences  L  and  R.    The

next theorem shows how, starting with a pair of equivalences  L  and/?  we can

obtain a shift o.

Theorem 3.8.  Let 5 = 5    be a semigroup and let  L   and R  be respectively

right and left congruences on S such that S/L  and S/R  are semilattices under

aL < bL <=» a L c    ¡or some  c £ Sa O Sb,

aR < bR <=> a R c    for some c £ aS D bS.

Suppose also that S acts naturally on the semilattices  S/L  and S/R.   Define

a relation o = ct(L, R) on S x 5 by ia, b) o ic, d) <=> there exist finite sets

x0' ' " ' ' xrí y0' " * " ' y„  in S such that  a = xQ,   c = x ,   b = y0,   d  = y    and, for

1   < i < 77,

X .    , y .    ,   L x .y .    ,  R X .y ..
z— lJ i— 1 iJ 7— I iJ i
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Then a is the finest equivalence on S x S with the following properties:

(i) a obeys  (1),

(ii) (5 x S)/a is a semilattice under

(a, b)'o < ic, d)o <=» (a, b) o (a, v)    for some  a e 5a n 5c,  tz e W n a"5,

(iii) a L c, b R d implies (a, è) a (c, a").

Proof. First, it is easy to see that a is an equivalence on S x S. Suppose

that (a, b) o (c, d) and let u, v e S. Also let xQ, ..., x , yQ, .-. ., y be as in

the definition of ff.   Then

x . iVi-i L Vi-i imPlies x«-iy,_i A/ay.-.i L Vi-i A/ "yi-1

where, for h, k e S,   h   A.k denotes any element of Sh n 5zs  such that (¿ A   k)L =

¿L   A   &L.   Since 5 acts naturally on the semilattice 5/L,  it follows from this

that (x._,   A. zz)y._j L (x .   A. zz)y _ j   and hence, because L   is aright con-

gruence, (x_j   ^   u)(y._x Arv)Lixj  A[u)iy._x   A   v).   Similarly, xy_l R x y

implies  (x.   A; a)(y._j   Af f) R (x    A; a)(y    Ar v),     1 < i < n,   Thus

(a  A; a, b Ar v) aie A ¡ a, d Afv).

This shows, in particular, that the mapping 5/L x S/R —> (5 x 5)/ff defined

by iaL, bR) —» (a, z3)ct is a semilattice homomorphism so that (5 x S)/o is a

semilattice.   Further, because of the order on S/L  and S/R,

(a, è)a < ic, d)o <=> (a, b) o ía A¡ c, b Ar d)

«=» (a, è) o" (a, w)    for some u e Sa C\ Se,  v e bS n J5.

Suppose that a = a     • • •, un = c, xb = tzQ, • • •, vn = xdand u._xv{_ x L um{_x R uají,

1 <   i <  n.    Define   a . = w.,   0<  1 <  n, where  tii^   is such that xizz¿ e

xS n tz.5 and   xiii.R = xR Ar tz^R   with   wQ= b,    wn = d  and set   p¿ =

a .x ,   0 < i <  n.   Then
z —     —

ô .   , (7 .    , = a .    , xa/ .    ,  L a xif .    , = p q .   .     for   1 < i < n
Zl— l^i— 1 i—1 ¡—I 1       i—l       rlJl— l —

since xw ._x  e f _ ,5  and  L   is a right congruence, and  p0q0 -uQxb =

UqVq L uxvQ = u.xb = pjOq.   Further, since 5 acts naturally on the semilattice 5/R,

p a .   ,R = u xw .   ,R = u xR A   u v .   ,R
r l ' 1— 1 1 !— 1 1 7       11—1

= uxR A   u .v.R = u ixR A   v.R)
i r     i   i i ri

= a .xtzz R = p a R,        1 < i < n.i     i        r i' i —    —

Hence  (ax, è) er (ex, d).   The dual also holds so that o  obeys (1).

Finally, a L c, b R d implies (a, l) a ic, l)  and (l, b) a (l, d)  and so

ia   A    1, b  A    1) a ic   A. I, d A    l)by the first paragraph of the proof; thus

(a, c) a ib, d) so that (iii) holds.
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Conversely, suppose that rz obeys (i), (ii), (iii).   Then x._ly._l L xpi._l R xy.

implies  («f.iy,.!! D ff(*¿yf..p D> i1,xiyi^i) 7TH>xiyi)  and so, by (i),

(x .    ,, y .    , ) 77 (x ., y .    , ) Z7 (x ., y .).   Hence  (a, b) o ic, d)  implies  (a, b) n ic, d).
7— 1      y 7 — 1 7       -^ Z — 1 7^7 '

Thus  o is, in fact, the smallest equivalence on 5 x 5  which obeys (i) and (iii).

If L   and R   ate right and left congruences on 5 = 5  , which obey the hypoth-

eses of Theorem 3.7, it is easy to see that iCL, J\ C R   where i- and J\ are the

familiar Green's relations.   Since i  and J\  obey the hypotheses of the theorem

when 5  is naturally quasisemilatticed we get, immediately, the following result

which is of fundamental importance in later sections.

Theorem 3.9.   Let  5 = 5     be a naturally quasisemilatticed semigroup and

define a relation r on 5x5 by

ia, b) r ic, d) <=> there exist finite sets xQ, • • • , x , yQ, • • • , y     z'tz 5

such that a = x„,   c = x  ,   b = y„,  d = y    and x .   ,y .    . ii.y.    ,  J\ x .y .,   1 < z < zz.
U 77 J U J 77 I—I' I— I ZyZ-l 7^ 7 —       —

T/bezz  T is the finest equivalence o on S x 5 which obeys (1) azT^ z's szzc/z ¿zW

(5 x 5)/ct  is a semilattice under

(a, b)o < ic, d)o <=> (a, b) o iu, v)    for some u £ Sa n 5c,  v e ¿>5 n Ä.

Remark.   If 5 = 5     is naturally quasisemilatticed then  (5 x S)/o is a semi-

lattice under the partial order in Theorem 3-8 if and only if (a, b) a (c, d) implies

{a   A,u, b   A   v) o ic  A.u, d A   v) for all zz, v £ 5 where, for example a A .u

denotes any element of 5 such that 5(a A   u) = 5a n 5zz.

4.  Naturally quasisemilatticed semigroups.   If 5 = 5    is a naturally quasi-

semilatticed semigroup then it is easy to see that an inverse semigroup T  is

separated over 5,  by a homomorphism 8,  if and only if  T  is generated as an

inverse semigroup and, for each a, b £ S,

a8ad-Xb8bß-X = (a A    b)8ia A   b)8~X     if (a A   b)S = a5 O bS,
r r r

ad-xa8b8-xbd = ia A, b)8~xia A¡ b)8    if 5(a A, b) = Sa O Sb.

It follows that there is a universal inverse semigroup £(5) which is separated

over 5;  £(5)  is the quotient of /(5) under the relations

aa-Xbb-X = (a A   b)ia A   b)~X     if (a A   b)S = a5 n W,
r z- r

fl~ ̂ ¿V !è = (a A, Z>)~ !(a A, ¿>)    if Sia A; ¿) = Sa O 5è.

In this section we shall give an explicit construction for £(5),  as the inverse hull

of 5p  under a shift representation p  of 5,  and several coordinatisations of F(5).

Throughout this section and the following ones we shall suppose that a

choice of representatives has been made from the generators of the principal left
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and right ideals of the naturally quasisemilatticed semigroup being considered; if

a, b e S then a A    b will denote the representative of the principal right ideal

aS n bS and a  A   b will denote the representative of the principal left ideal

Sa O Sb.   For each a, b e 5 we also choose elements a *  b and a * y    in 5 such

that aia * b) = a A    è,  (a * è)è = a  Ai.

Definition.  Let 5=5    be a naturally quasisemilatticed semigroup and let ff

be an equivalence on 5x5.    Then we shall say that ff  is a semilattice congruence

on 5 x 5  if (5 x S)/o is a semilattice under

(a, b)o < (c, d)o <=> (a, b) o (a, tz)   for some  a e 5a n 5c,  i> e í>5 n ¿5.

Thus ff is a semilattice congruence if and only if, for every choice function

on the generators of the principal left ideals and right ideals of 5,

(a, b) ff (c, d), (a, v) a (x, y) implies (a A¡ u, b Arv) o ic  A¡ x, d Ar y).

Lemma 4.1.   Let  5=5     be a naturally quasisemilatticed semigroup and let

a be a semilattice congruence on S which obeys (1).   Define a relation a   on

S xS by

(a, b) ff  ic, d) «=» (a, b) ff ic, d) o iu, v) for some  u, v e S

such that av = cv,   ub = ud.   Then o   is an equivalence cot 5 x 5 which obeys (1) and

(3)      (a, b) o  ic, d) «=> (a, b) o   (x, y)    for some x e Sa O Se,  y £ bS Ci dS;

in particular,  ff   is a shift.

Proof.  First of all, ff    is clearly reflexive and symmetric.   Suppose that

(a, b) ff   (c, d) and (c, a") ff  (e, /).   Then there exist x, y, u, v, e S such that

(a, è) ff (c, aO ff (a, tz)  with  flf = cv,   ub = aa" and  (c, a") ff (e, /) ff (x, y)  with

cy = ey,   x¿ = xf.   Since ff  is a semilattice congruence,  (a, b) o (e, /) o

iu  A. x, v  A   y).   Further, since  v  A   y = viv * y), aiv  A^ y) = aviv *r y) =

cviv * y) - c(u A   y) and similarly c(v A   y) = eiv  A   y);   likewise (a   A( x)b =

(a   A, x)/.   Hence  (a, è) ff   (e, /) and so ff   is transitive.

Suppose now that (a, x/3) ff   (c, xaO.   Then (a, x/3) o ic, xd) a iu, v) for some

u, v £ S  such thataf = cv,  uxb = axa\   Then, since ff is a semilattice congruence

(a, xb) o iu, x A    v) = (a, x(x * f)) so that (ax, ¿z) ff (ex, aO ff (ax, x * v) by (1).

Further,

ax(x *  y) = a(x A   v) - axiv *   x) = cviv *   x) = cxix *   v)    and
r r r r r

(ax)è = a(xè) = a(xaO = iux)d.

Hence,  (ax, b) o   (ex, d).   The dual holds by symmetry so we get (1).

Next suppose that (a, b) o   (c, d).   Then it is easy to see from the definition
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of a* that there exist e £ Sa,  f £ bS such that (a, b) o (c, d) o (e, /) and eb = ed,

af = cf.   Since 5  is naturally quasisemilatticed and eb = ed e ebS O edS,  eb =

eib A   d)t for some   / £ S,   and, similarly af = sia   A. c)f tot some s £ S.

Because (e   A a)  X e, f Â if A   b) and, by Theorem 3.9,  r C o, these equations

imply

(a, b) o ie, b) oíe, ib A   d)t)    and    (a, b) o isia A, c), /).

Set

u'= sia A{ c)  A¡ e,        v = f A   ib A   d)t.

Then, since o is a semilattice congruence and (a, b) o isia A  c),/) o (e, ib A   zi)i),

(a, /?) a (s(a A¡ c)  A¡ e, f /\rib Ar d)t) = (a', z/).

Further

sia A; cV = s(a A, c)fif *r ib A T d)t) = afif *r ib Ard)t) = av'

and similarly u ib   A   d)t = u b.

Finally, since iu , v ) < isia A( c), ib A d)t) < ia, b) in the natural quasi-

order on 5 x 5 and each o class is convex, the fact that (a, b) o iu , v ) implies

(a, b) o isia  Al c), ib A   d)t).   Hence we have shown

(a, b) o isia A, c), ib AT d)t) o iu, v)    and    av' = sia A, c)v , u b = u'ib Af d)t;

that is ia. b) o* isia   A; c), ib   Ar d)t).   Thus (3) holds.

Lemma 4.2.   Let  5=5    be a naturally quasisemilatticed semigroup and let

o be an equivalence on S x 5 which obeys (1) and (3).   Suppose that p is the

corresponding shift representation of 5.    Then the inverse hull of So in 9((5 xS)/o)

is separated over S  by  p.

Further the semilattice congruence  oF defined by

ia, b) oE ic, d) - p~ Xpapbp-b X = p- XPcPdP~d X

is contained in every semilattice congruence which contains   o.

Proof.   Let a, b £ S;  then  Ap    = [(*, ay)a: x, y £ S\ and so, since  o obeys

(3), Apa n Apfc = ¡(x, (a A r b)y)o: x, y £ S\ = Apa A     ..   Hence   pap~ XpbP¡ ' =

p     «    bp~ .    ,   and dually.   Thus the inverse hull of 5p is separated over 5  by p.

By Lemma 3.4, o- is a semilattice congruence on 5 x 5. Suppose that Z7 is

also a semilattice congruence and that o C 77.   Then

(a, b) Op ic, d) implies  (a, b) n (xc, dy), ic, d) n iua, bv)    for some x, y, u, v £ 5
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and so, since  77 is a semilattice congruence,   (a, b) rr (c, d).   Hence aF C n.

It follows from Lemma 4.2 that, if ff is a semilattice congruence on 5 x 5

which obeys (1), then ffg C a.   However ff need not equal ff£.   (For example, if

5   is cancellative with trivial group of units  ffg  is always the identity while  ff

could be 5 x 5).   However, if we take ff = r then,  since, by Theorem 3.8,  r is the

smallest semilattice congruence which obeys (1), r = r  .   We can use this to find F(5).

The next lemma is rather technical. It can be applied, among other things,

to give necessary and sufficient conditions for embedding naturally quasisemi-

latticed semigroups in inverse semigroups.

Lemma 4.3.   Let 5 = 5    be a semigroup and define an equivalence   t on

S x S by  (a, b) T ic, d) if and only if there exist finite sets xQ, ■ • • ,x , yQ, • • • , y

Z72  5 with a = x -, c = x   , è = y A,   d - y     and x .   ,y .    , X. x y .    , 5\ x y ., 1 < i < n.
o ti        .  J o J n 1—l-*i—1 vi— 1        vi      —    —

Let b = ua = cv,   e = pd = fq and suppose there exist x, y, a, ß, y, 8 in S such that

and

Then

iu, a) t ixp, dy) t (a, ß)    with a/3 = xpß, aa = ady

ic, v) t ixj, qy) r (y, o)    with  c8 = x/o,   yv - yqy.

ab~   c < de~  f in the free inverse semigroup  IÍS)  on 5.

Proof.  Let ff be defined on 5 x 5 by (a, b) o ic, d) it and only if

a"  abb'    - c~  cdd~    in /(5).   Then o obeys (1) and a X. c,   b ÍR d implies  (a, b) ff

(c, d).   As in the proof of Theorem 3.7, this implies  r C ff.

In ¡(S):

ab~  c = aa~   u~  c = aa~   u~   uu~   c

= dyidy)-Xixp)-Xixp)ßß- Xu~ Xc    since  (a, a) r ixp, dy) T (a, ß)

= dyixpdy)-Xußiuß)-Xc = dyixfqy)-Xußiuß)-Xc

< dyíxfqy)-   c    since  uß(uß)~     is idempotent.

Now, since  (x/, qy) r (y, 8) and t C a,

ixf)-Xxfqyiqy)-X =y-Xy88-ï

so that

ixf)-Xxfqyiqy)-X = ixf)~ Xxfy~ Xy88~ Xqyiqy)' l

which implies xfqy = xfy~  y88~  qy.    Thus
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ab~Xc< dyixfy- Xy88-Xqy)-Xc = dyixf88~ Xy~ Xyqy)-Xc

= dyic88~Xy~   yqy)~   c - dyy~   q~   y~   y88~   c~   c

= dyy~Xq~ Xixf)~ X xfqyiqyY     since  ic, v) T ixf, qy) r (y, 8) and T Co

= dyy~   q~   ixf)~  xf = aryy"   ifq)~  x~  xf

< de~  f    since  e = fq.

Theorem 4.4.  Let 5 = 5    be a naturally quasisemilatticed semigroup and let

p: S —» ÜÍS x S)/t ) be the shift representation of S associated with r .   Then

the inverse hull of Sp in S((5 x S)/t ) is isomorphic to the quotient  £(5)  of /(5)

modulo the relations

aa-Xbb-X = ia Arb)ia Arb)~X,       a~ X ab~ Xb = (a A, b)~ Xia  A, b)

for all a, b £ 5.

Proof.  The proof of Lemma 4.2 shows that, for a, b £  S,

PaP'a^bP'b1 = ?(«   Arbf(a\rb)>        P~a 'pVÏ '^'b = tf A, by0\a   A, b)

so that the inverse hull T of Sp is a quotient of EÍS).   Mote precisely, there is

a unique homomorphism  </z: EÍS) —>T  such that p = pdj where  p denotes the

canonical homomorphism 5 —► £(5).

Let b = ua = czz,   e = pd = fq and suppose that p p"  p   < P^t9"  P/-   Then

since, for example,  Apap~  pc = \ixu, ay)r : x, y £ S\, there exist x, y £ 5  such

that  (zz, a) r  ixp, dy) and  (zz, a) r papT p   = ixp, dy) r  p,p~   p.;  that is

(c, f ) T   ixf, qy).   The first and third of these relations are precisely those in

Lemma 4.3.   Hence, in  /(5), ab~  c <de~ f.   Since  £(5)  is a quotient of IÍS),  we

have there apbp~  cp < dpep~ fp.   Therefore iapbp~ cp)tp = idpep~ dp)xp implies

apbp~  cp =dpep~ fp and so ib is one-to-one; thus an isomorphism.

If 5 = 5    is a semigroup whose principal left and right ideals form chains

then the relations

aa~ Xbb~ X = ia Af b)ia Ar b)~ X,        a~ Xab-Xb = ia A, b)~Xia A, b)

hold in IÍS).   Hence we have

Theorem 4.5. Let 5=5 be a semigroup whose principal left and right ideals

form chains under inclusion and let p be the shift representation of 5 associated

with  t .   Then IÍS) is isomorphic to the inverse hull of Sp in §ÍÍS x S)/r ).

As a consequence of its description as a subsemigroup of 9((5 x S)/r ), the

semigroup £(5) admits several natural coordinatisations.   Before giving these,
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we show how F(5) can be used to give necessary and sufficient conditions for

embedding a naturally quasisemilatticed semigroup in an inverse semigroup.

Theorem 4.6. Let 5=5    be a naturally quasisemilatticed semigroup.   Then

5 can be embedded in an inverse semigroup if and only if the canonical homomor-

phism p: S —* F(5) is one-to-one.

Proof.  Let 77 be the canonical homomorphism 5 —> IÍS).   Then, since p can

be factored through  77,  77 o r¡~    C p o p~   _   On the other hand, ap = bp implies

apap~  ap = bpbp~ bp in EÍS) and so, by Lemma 4.2, aa~  a = bb~  b  in /(5).

Thus ap = bp implies a77 = £77.   Hence  77 o n~    = p ° p~  .

Theorem 4,7.  Let S = S    be a naturally quasisemilatticed semigroup and let

U be the set of all A-tuples  (a, v, u, c) of elements of S with ua = cv.   Define

a binary operation on  V by

(a, v, u, c)id, q, p, /) = iaiv *r d),  qid *r v), (p *¡ c)u, (c *, p)f).

Further define

(a, v, u, c) ~ id, q, p, f) <=» there exist x, y, z, w £ S

such that iu, a) t ixp, dy), (c, v) r ixf, qy), (p, d) r izu, aw), if,   q) t izc, vw).

Then ~ is a congruence on  U and t//~ is isomorphic to F(5).

Proof.   First of all, it is easy to see that the multiplication described above

is, in fact, a binary operation on U.   Define ip: U —> F(5) by (a, v, u, c)ip =

p pZ  p    where b = ua = cv; since EÍS) is, by Theorem 3.2, an inverse semi-

group of strong quotients of Sp, ip is onto.   Further, easy calculation shows that

Apap~Xp   = Kxa, ay)r*: x, y £ S\, ^PaPl  pc = Kxc, vy)r : x, y £ 5) and thus,

because  r   obeys (3), that

APa?b lPcPd!>e' XPf = ^P *l C)"'   a{<V *r dWT*:   X,  y € 5i,

^ P aP'b1 P CP dP~el P Í " i(x(c *[ Py-   ^d *r vh">T*'■   *.  V  e ^*

Thus, because of the action of pap~  PcPdP~ P, we lm&

PaP'b XPcPdP~e lPf = P(P ,   c)uP(p t[ c)ua(v % df(c ^ P)f

= [(a, v, u, c)id, q, p, f)]ip-

Hence  ip is a homomorphism.

Finally, the proof of Theorem 4.4 shows that pap~ Xpc = pj>~ Xpf if and only

if (a, v, u, c) ~ id, q, p, f).   Hence  -^ is the congruence of "A and so U/^ is

isomorphic to F(5).
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Theorem 4.8.  Let 5 = 5    be a naturally quasisemilatticed semigroup and let

V  be the set of all triples  ia, b, c) of elements of S with  b £ Sa C\ cS.    Define

a binary operation on  V by

ia, b, Aid, e, f) » iaib *r cd), ie *   cd)cdicd *r b), icd *; e)f)

and a relation -n. on  V by

ia, b, c) ~ id, e, j) <=> b - ua = cv, e = pd = fq and there exist x, y, z, w £ S

such that  iu, a) r  ixp, dy), ic, v) r   ixf, qy), ip, d) T   izu, aw), if, q) r   (zc, vw).

Then "^ is a congruence on  V and V/-^ is isomorphic to £(5).

Proof.   First

ie *, cd)cdicd *   b) = ie *, cd)bib *   cd) = ie *, cd)uaib *   cd) £ Saib *   cd)
I r I r I r r

while

(e *. cd)cdicd *r b) = icd *; eleicd *r b)  = icd */ elfqicd *r b) £ icd *( e)fS

so that the multiplication is a binary operation on  V.

Define ip: FÍS) by (a, b, c)ib = pap~ 1p .   Then, by Theorem 3.2, if/ is onto

and further, from the proof of that theorem,  i/( is a homomorphism.   Finally, as in

the proof of Theorem 4.7, -\- is the congruence of if) so that £(5) *fc V/~.

The coordinatisation given in Theorem 4.8 reduces to that given by Eberhart

and Seiden when 5 is a subsemigroup of the positive reals < 1 [5].   It has, how-

ever, the drawback that, when restricted to a Brandt 5-class of £(5) it does not

give the usual Brandt multiplication.   The latter can be recovered if we give £(5)

the coordinates described in the next theorem.

Theorem 4.9.  Let S = 5    be a naturally quasisemilatticed semigroup and let

W  be the set of all triples  ia, b, c) of elements of S with b £ Sa O Se.    Define a

binary operation on W by

ia, b, Aid, e, f) = iaic *r d),  bic *r d)  A, eid *r c), fid *r c))

and a relation  ~ by

ia, b, c) ~ id, e, f) «=> b = ua = vc, e = pd = qf and there exist x, y, z, w £ S

such that  iu, a) t  ixp, dy), iv, c) T   ixq, fy), ip, d) r   izu, aw), iqf) r   izv, cw).

Then ~ is a congruence on W and E(5) ^¡ W/^.

Proof.  Since

bic *   d)  A, eid*   c) = \bic*   d) *. eid *   c)}qfid *   c)
r l r r I r       " r

= \eid *   c) *i bic *   d)\uaic *   d)
T l t r
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where b = ua = vc, e = pd = #/, the multiplication described is, in fact, a binary

operation on W.

Define (a, b, c)ip = apibp)~ vp if è = izc. Then, firstly, t/z is well defined.

For, if b = vc = a^c,   then

apibp)~   vp = apivpcp)~  vp = apcp~  vp~   vp

= apcp~  vp~  vpcpcp~       since indempotents commute

= apivc)p~  ivc)pcp~    = apiwc)p~  iwc)pcp~    = apibp)~  wp.

Next we show that ip is a homomorphism of W onto F(5);  the ontoness is obvious.

Since  (a, b, c)ipid, e, f)ip = iapibp)~  vp)idpiep)~  qp), it follows from the

multiplication in 9((5 x S)/r ) that

(a, b, c)ipid, e, f)ip = [aie *r d)\p\ip A, v)id AT c)\p~X\iv *, p)q\p.

On the other hand, from the multiplication in  W,

i(a, b, Aid, e, f)\ip

= ia(c *r d)\p[bic *r d) A, eid *r c)\p~ Xi\bic *r d) *, eid *r q)\q)p.

Since 5  is naturally quasisemilatticed,

(p A, v)id AT A £ [pid Ar c) A, vid ArA\=eid *r c) A/ bic *r d)

so there exist x, z £ S  such that

(p A, v)id Ar c) = x|è(c *f d)  A/ eid *r c)i,

zl(pA,f)(^A   c)\=bic*   d)   A. eid *   c).

Hence, working with x alone,

((p A, v)id AT c), 1) r* ixlbic *r ¿)  A, eid *r c)S, l)

so that, since  T    is a shift and

(p A; vXa" Ar c) = (/> *, v)uaic *r d) = (z; *; p)qfid *r c),

bic *   d) A, eid *   c) = leía7 *   c) *, bic *   d)\uaic *   d)
r l r r l r r

= [bic *r d) *; eid *r c)\qfid *r c),

we get

Up *, v)u, aie *   d))r*íx\eíd*   c) *, bic *   d)\u,  aie*   al i,1 Z 7 7 17 7

((v *¿ p)a,  fid *t c)) t* ix\bic *r d) *t eid *r c)\q, fid *r c)\.

Hence, by Lemma 4.3,

(a, b, c) ip id, e, f)ip < [(a, b, c)id, e, f)]ip.
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Operating with z  gives the reverse inqeuality so that ip is a homomorphism.

Finally, if b = ua = vc,   e = pd = qj, Lemma 4.3 and the definition of p shows that

ia, b, c)ib = id, e, f)ib «=> (a, b, c) ~ (a1, e, f).

Hence £(5) % lf/~.

The congruences in Theorems 4.7, 4.8, 4.9, and thus the coordinatisations for

£(5), undergo considerable simplification in two cases: (i) 5  is cancellative; the

results for this case are stated in Theorem 6.2.   (ii) L is trivial on 5; in this

case   t = t   = r    is a semilattice congruence on 5 x 5  and the congruences reduce to

(a, tz, zz, c) ~ id, q, p, /)  in  (/ « iu, a) rQ ip, d), ic, v) rQ if, q),

ia, b, c) ~ id, e, f) in  V <=> (zz, a) rQ ip, d), ic, v) rQ if, q)

where   b = ua = cv,   e = pd = /a,

(a, b, c) ~ U, e, /)  in W <=»   (zz, a) rQ (p, d), iv, c) rQ (a, /)

where   b = ua = vc,  c = pd = qf.

To end this section, we give an example to show how the coordinatisation in

Theorem 4.9 gives rise to the Brandt multiplication in Brandt 5-classes of £(5).

Suppose that 5x5    is a naturally quasisemilatticed cancellative semigroup on

which 5  is trivial.   Then it follows from Theorem 5.2 that, in £(5) = W/^,

]b = \ia, b, c):  b £ Sa D 5ci

is a 5-class for each b £ S: in this case  ~  is, in fact, the identity congruence.

By Theorem 4.9,

ia, b, Aid, b, f) = iaic *   d), bic *   d) A. bid *    c), fid *   A).
; r r l r ' r

This belongs to /,   if and only if b = bic * d) A   bid * c).   But the latter implies

b £ Sbic * d)S CSbS and b e Sbid * c)5 CSbS  whence, since 5  is trivial and 5

is cancellative, (c * d) = 1 = id * c); thus c = d.   Hence, modulo the ideal gen-

erated by / ,,

lia, b, f)    if c- d,
ia, b, Aid, b, /) = <

'0 otherwise.

This is just the multiplication in the Brandt semigroup

1\l°i\l\; X, X, A)    where  X = \x £ 5: b £ Sx}.

5.  Green's relations and congruences on £(5).   In this section 5=5    denotes

a naturally quasisemilatticed semigroup and EÍS) denotes the quotient of /(5),

modulo the relations

a a Xbb~X = (a Ar b)ia Ar b)~X,       a-Xab~Xb = ia  A¡ b)~Xia A, b)
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for ail a, b £ S,   regarded as a subsemigroup of á((5 x S)/r ).   The results are

easily translated into the coordinatised forms of EÍS).

Lemma 5.1.  Let p p~  p    £ EÍS) where b - ua - cv.   Then
r ar b   r c .

Ü)   (PaP~blPc)~l{PaP~bXPc) = Pc~   PcPvP~vX>

«D (pX 1pc*pj>1 lpe)~ ' = P~u lpupap~a l ■

Theorem 5.2.  Let  PapT  p  , PJ>~  Pi e EÍS) where b = aa = cv,   e = pd = jq.

(i) PaP~b lPc ^ PdP'e lPf ~ (c' v) T ̂ ' ^*

(») PaP~b lPc ^ ?X V/ ~ (". «) r (p. d).

(iu)  PaPfc Vc W pdp~ lpf «=> («. a) T ip, d), ic, v) r if, a),

(iv) pap7ilpc$piiP;1j>f~b'£e.

<v>  PaP'b'Pc^i  PdPelPf~b<j   e-

Proof,  (i)

PaP'b lPC L PdP'e XP/ ~ {PaP~b lPc]~ 1{PaP'b 1Pc) - (PdP~e 1P,)~l{PdPe~ V/>

~ P¡ VCPVP: ' = Pj XppqP~q 1 - ^ v) r if, a)

since, by Theorem 3.8 and Lemma 3.4,  (5 x 5)/r is the semilattice of idempotents

of E(5).

(ii) is dual to (i) while (iii) is immediate from (i) and (ii).

(iv) If PaP~h lpc 3) PdP~ lpf then p j>Z Xpc £ pxp~ Xpz ft pdp~ 1p/ for some

x, y, z £ S with y = rx = zs. By (i) and (ii), these imply ic, v) r (z, s), ir, x) r

ip, d).   Hence, from the definition of r, b = cv i> zs = rx L pd = e.

Conversely, if b '£ e then, for some t £ S,  b X t % e.   Hence there exist

a, ß, y, 8 £ S such that

b = at,   t = ßb = ey,  e = t8;

thus e = ßb8.   Let g = ßu,  x = a8 and set y = gx, z = /;  so y = e = zq.    Then

aa = b £ t = /3aa = ga,   f ÍR e = /8 = ßaaö = gx.    That is,  ua X. ga % gx which

implies    (a, a) r (g, x).   Hence, by (i), (ii),

PaP~bXPc% PxP~yXPf£ Pj'PfqP'*1 £ PdP'e'Pf

Thus pap-bXpc'S)pdp-eXpr

If  ?X XPc 6 E(-S)PdPe 1P/E{S)  then   PaP'b   Pc % PXPy   P*   a"d  -Vy    Pz €

EiS)p,p~Xp   for some x, y, z e 5 with y = rx = zs.   Since (5 x S)/t is the semi-

lattice of idempotents   EiS),   these relations imply (a, a) r ir, x)   and

(z, s) r (z   A, /. s   Ar a).   Hence  ¿ = aa '£ rx = y  and y = zs iß (z   A, /)(s   Ar a) =

(z *; f)fqiq * s) which implies  b £ SfqS = 5e5.
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Conversely, if b £ SeS,   p,  £ EÍS)p EÍS) and so, since p p~ p   1> p    and

PdPVpfVpe*   PaPllPc<}PdP~eXPr

Corollary 5.3.  Let I be an ideal of S and set I* = \p p~ p    £ EÍS): b £ I}.

Then I    is an ideal of £(5) and each ideal of E(5) has this form.

Corollary 5.4.  // 5 has a kernel, so has EÍS); the kernel of EÍS) is bisimple

if the kernel of S  is a li-class of S ieven if Ker 5 is not bisimple).

An equivalence relation  ß on the set E  of idempotents of an inverse semi-

group  T  is called a normal partition if there is a congruence  p  on T such that

ß = p C\iE x E).   Reilly and Scheiblich [14] have shown that an equivalence ß

on E  is a normal partition if and only if

(i) (a, b) £ ß, ic, d) £ ß implies (a Ac, b Ad) £ ß,

(ii) (a, b) £ ß implies ix~ ax, x~  bx) £ ß tot all a, b, c, d £ E,  x £ 5.

It is shown in [14] that the mapping ®: o —> a O (E x E) is a complete

lattice homomorphism of the complete lattice  A of congruences on T onto the

complete lattice of normal partitions on E.   Thus each ©-class is a complete sub-

lattice of A; in particular, it has a greatest and a least element; if ß is a normal

partition on E we shall denote the greatest and least elements of ß®~     by ß

and ß    respectively.

Theorem 5.5.  The lattice of %-classes  of congruences of E(5) is isomorphic

to the lattice of semilattice congruences on S x S which obey (1).

// ß is the normal partition corresponding to the semilattice congruence o on

S x S then E(S)/ß is isomorphic to the inverse hull of Sp in í((5 x S)/o), where

p is the shift representation of S associated with a.

Proof.  Since every homomorphic image of EÍS) is separated over 5,  it is

immediate from Theorem 3-6 and Lemma 3.4 that the normal partitions on EÍS) ate

precisely the shift semilattice congruences on 5x5.    Further, from its definition,

E(S)/ß    is, up to isomorphism, the only fundamental homomorphic image of EÍS)

with normal partition  ß.   Hence the rest of the theorem follows from Theorem 3.6.

As a consequence of Theorem 5.5, we can regard the normal partitions ß of

E(5), and the corresponding semigroups EiS)/ß  , as known.   Although Theorem

3.8 gives a method for constructing   all shift semilattice congruences on 5 x 5

from equivalences on 5,   it does not give a unique method of construction.   Hence

the situation is not entirely satisfactory.   However, in the case when 5 is the

positive cone of an archimedean ordered group, it is easy to see that congruences

on 5 which obey the conditions of Theorem 3.8 are the Rees factor congruences

on 5.    This, together with the fact that a semigroup, with a left and right zero,

has a zero, gives Theorem 4.4 of [5].
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6. The cancellative case.  If the semigroup S x S    is cancellative, the theory

in the previous two sections undergoes considerable simplification.

Lemma 6.1.  Let 5=5    be a cancellative naturally quasisemilatticed semi-

group.   Then ia, b) T (c, d) «=» a = gc, b = dh for some units g, h £ S while  t*

is the identity on 5x5.

Hence the results in Theorems 4.7, 4.8, 4.9 reduce to the results in Theorem 6.2.

Theorem 6.2.  Lez;   S =S    be a cancellative naturally quasisemilatticed semi-

group.

(i) Le t  U = \ia, v, u, c) £ S x S x S x S: ua = cv}; define

ia, v, u, Aid, q, p, f) = íaív *r d),  qid *r v), ip *{ Au,   ic *, p)f)

and

ia, v, u, c) ~ id, q, p, f) <=> u = gp,  c - gf,  a = dh,   v - qh

for some units g, h £ S.

Then ~ ls a congruence on  U and EÍS) ^ í//~.

(ii) Let V = lia, b, c) e S x S x S: b £ Sa n c5}; define

ia, b, c)(d, e, f) = iaib *r cd), ie *{ cd)cdicd *r b), icd *z e)/)

and

(a, b, c) ~ id, e, f) «=» a = dh,   b = geh,   c = gf    for some units g, h £ S.

Then ~ is a congruence on  V and £(5) *fc V/~ •

(iii) Let W = ¡(a, b, c) £ S x S x S: b £ Sa n 5c¡; define

ia, b, clid, e, f) = iaic *r d), bic *r d) A, eid *r c), fid *f c))

and

ia, b, c) ~ id, e, f) <=> a - dh,   b = geh,   c = fh    for some units g, h £ S.

Then ~ is a congruence on W and EÍS) % W/~.

Definition.  An inverse semigroup T is an inverse semigroup of quotients of

a subsemigroup S = S    if each element of T is of the form ab~ c  with a, b, c £ 5.

If 5 = 51  is a cancellative semigroup in which the sets of principal left and

right ideals form chains under inclusion then  it follows from Theorem 4.5 that

/(5) is a semigroup of quotients of 5.   In fact the converse is also true.   To prove

this, we consider a type of representation which generalises the shift representa-

tion considered earlier.

A subset H  of a semigroup 5 = 51  is called right consistent if ab £ H
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implies a £ H.   Suppose that H  is a right consistent subset of a cancellative

semigroup 5=5    and for each a e 5,  define

(6.1) xpa = xa    for each x £ H such that xa £ H.

Then the proof of the following lemma is straightforward.

Lemma 6.3. Let 5 = 5 be a cancellative semigroup and let H be a right

consistent subset of S. Then the mapping p: a —> p is a representation of S

by one-to-one partial transformations of H.

Lemma 6.4.  Let 5=5    be a cancellative semigroup and let to be the shift

representation S defined by  ix, ay)co   = (xa, y) for all x, y £ S.   Then

Aco~  a> co,co~    = Sa x bS.
a       abb

Theorem 6.5.  Let 5=5    be a cancellative semigroup.   Then the following

statements are equivalent.

(i) /(5) is an inverse semigroup of strong quotients of 5.

(ii) /(5) zs a?? inverse semigroup of quotients of 5.

(iii) The sets of principal left and right ideals of S form chains under inclusion.

(iv) 5 is naturally quasisemilatticed and l(S) is naturally isomorphic to EiS).

(v) 5 zs naturally quasisemilatticed and l(S) is separated over S.

(vi) for each a, b £ S there exist x, y £ S such that

aa~   bb~    = xx~  ,       a~  ab~   b = y"  y

/(5).

Proof.  Clearly (i) implies (ii) and (iii) implies (iv) implies (v) implies (vi) so

we need only show that (ii) implies (iii) and (vi) implies (i).

(ii) => (iii).   Let a, b £ S and set H = jx £ 5: a    e xS or ab e x5|.   Then

H  is easily seen to be right consistent; let p be the corresponding representation

of 5.   Then a e Ap p~    n Ap.p"     so that p p~  p,P7    is nonzero.   By hypoth-

esis,  PaP~alphP~hX =PxP~1Pz for some x< y> z e S-   Thus a e PaP~a   PhP~bX  implies

ax = ay  for some  u e H  and so ap p~  p   = uz.   Since  P P~  PiP~b     ls idempotent,

a = uz  and so ay = ax = azx whence, because 5 is cancellative, y = zx.

Now let co be the represenataion of 5  by one-to-one partial transformations

of 5 x 5 given in Lemma 6.4.   Since, in /(5), aa~  bb~    = xx~ z~ z,   we have

5 x (aS n bS) = At) co~ co,coZ    = Aoj~ <y co co~   = 5z x x5.
a   a       b    b z       z   x   x

Thus z is a unit in 5  and so, in /(5), z~ z = 1.   It follows that paP~  PyP~¡,    =

p p~     and so a e Ap  ; this implies a    e axS or ab € axS.   Hence a e xS =

a5 n bS or b e xS = aS C\ bS ;  that is a5 C bS  or bS C a5.   This shows that the
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set of principal right ideals of 5 is a chain under inclusion.   Dual arguments show

that the same is true for principal left ideals so (iii) is proven.

(vi) =» (i). Suppose aa~  bb~    =cc~     in /(5); then co uj~Xuj.oj~    = co co~ X
a   a       b    b c   c

and so, by Lemma 6.4, aS O bS = c5.   Hence the set of principal right ideals of

5 is a semilattice under inclusion and, in  /(5), aa~  bb~    = (a A   b)ia A   b)~X-,
r r

The dual clearly holds, so we may invoke Theorem 3.2 to conclude that /(5) is an

inverse semigroup of strong quotients of 5.

Theorem 6.5 can be applied to characterise the positive cones of right ordered

groups among semigroups.

Theorem 6.6.  Let 5=5    be a semigroup.   Then the following are equivalent.

(i) 5  is positive cone of a right ordered group.

(ii) each element of IÍS) has the form xy~ z ¡or a unique triple x, y, z £ S

with y £ Sx H zS.

Proof,  (i) =* (ii). Since 5  is cancellative and the sets of principal left and

right ideals of 5 are chains under inclusion, it follows from Theorem 6.5 that each

element of 1ÍS) has the form xy~ z where y £ 5x HzS.   Further, by Theorem 6.2,

xy~ z = ab~ c if and only if x = a, y = b,  z = c because 5 has trivial group of

units.   Hence (ii) holds.

(ii) —• (i).   Suppose that ux = uy  in 5  and define o on 5 x 5 by

ía, b) o ic, d) <=> b~ Xiab) = d~ Xicd)    in  /(5);

by Proposition 2.2, o obeys (1).   Then, by (1), iu, x) o iu, y) so that x~~  iux) =

y~  iuy) in /(5);  whence  iux)~  x = iuy)~  y.    By the uniqueness hypothesis in

(ii), this gives x = y.

The dual also holds, hence 5 is cancellative and so, by Theorem 6.5 and

Theorem 6.2, the sets of principal left and right ideals form chains under inclu-

sion and further 5 has trivial group of units.   Hence 5 is the positive cone of a

right ordered group.

6.  Some examples.  1. Let 5 be the semigroup of all 2x2 real matrices of

the form ia,   °), a > 0, b > 0.   Then the sets of principal left and right ideals of

5 form chains under inclusion.   5 has group of units

".-{(I !>«>°.*-°}
and kernel

K-{G î}">0-,,>0}-

The kernel is not bisimple but is a X-class of 5.
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Hx >

Since 5 consists of a group of units and a kernel, it follows from Theorem

6.6 and Proposition 5.2 that the same is true of /(5).   In fact, since the kernel

of 5 is a .L-class of 5,  Proposition 5.2 shows that the kernel of /(5)   is a -L-class

of /(5) and thus, by [2, Example 2.3.6], is a bisimple inverse semigroup.

2. Let 5 be the semigroup of all 2 x 2 real matrices of the form (f  A, a, b > 0

or b = 0, a > 1.   Then the sets of principal left and right ideals of 5 form chains

under inclusion.   5 consists of the disjoint uinon

"-{(::> «4
which is isomorphic to the semigroup of reals >1 which was considered in [5], and

a kernel K

*.{(*   J)=*»>o}.

I  (    )s
I   \b  \l

I    «Í-

I
I--7

!   / r °)
i /    \b i/
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Since 5 has a kernel, so has /(5); in fact /(5) is the disjoint union of /(P)

and its kernel which is a simple, but not bisimple, inverse semigroup.   It follows,

from Theorem 5.2, that each X-class of Ker /(5) contains a unique element of 5.

Thus the -D-dasses of Ker /(5) have 5  as a transversal but no iD-class of Ker liS)

is a subsemigroup.   Thus Ker liS) is a different type of simple inverse semigroup

from those considered by Munn [ ll].

The semigroup 5 in this example is the positive cone of a right order on the

group of all  2x2 real matrices of the form (7   j), a > 0.   Similar examples can be

obtained by considering 5-classes in the positive cones of right ordered groups

which are not ordered.

3. Let 5 be the positive cone of the /-group.   Then, in 5, H = 5 and so, by

Proposition 5.2, h = 5 in E(5).   Regard E(5) as V/~ where V  is as in Theorem

6.2; then ~ is the identity so EiS) = V.   The idempotents in the 5 = -0-class

containing ib, b, b) ate the triples i(a, b, a): b = aa,.   Further, from Lemma 5.1,

(a, b, u) < ic, b, v) « a e Sv, a e cS.

Hence if this inequality holds, aa - vc = b,  a = xn,  a = cy for some x, y e S.

This implies, vc = ua = xtzçy and, since 5p = pS for each p e S,  vcy = y vc  for

some y   e 5,   so vc = xy tzc.   Since 5 is cancellative with trivial unit group this

gives x = y   = y = 1.   Hence the idempotents in each 5-class are trivially ordered.

Thus each 5-class is Brandt and so E(5) is completely semisimple.

4. Let S = S    be the cyclic monoid of index r and period m [2, p. 20]; thus

c      1 2 r— 1       r -7+771— 1 il
S = [a, a  , • • • a      ,  a , • • • a \ .

Then the sets of principal left and right ideals of 5 are chains under inclusion

so that Theorem 4.5 may be applied to describe /(5).

It is easy to calculate, using Theorem 3.7 that, on S x S,

iau, av) t iap, aq) *=» a = p,  v = a    on    a + v,  p + a > r

and thus that

ia", a?) t* iap, aq) » £z = p,   v = q     or    u + v,   p + q>r    and

eau = eap,  eav = eaq    where e   = e ¿ 1.

It follows from this that 1(5) can be identified with the set of triples

{(z, k, j): i, j <k <r - l\ together with the kernel [aT, • • • , ar m~   ! of 5.   Hence

liS) has order ttz + 2"! k   = m + rir + l)(2r + l)/6.   It is easy to see that any non-

trivial congruence on /(5) induces a nontrivial congruence on 5.   Hence, up to

isomorphism, liS) is the only inverse semigroup generated by 5.
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