ON GREEN'S FUNCTION OF AN n-POINT BOUNDARY VALUE PROBLEM

BY

K. M. DAS AND A. S. VATSALA

ABSTRACT. The Green's function $g_n(x, s)$ for an *n*-point boundary value problem, $y^{(n)}(x)=0$, $y(a_1)=y(a_2)=\cdots=y(a_n)=0$ is explicitly given. As a tool for discussing $\operatorname{sgn} g_n(x, s)$ on the square $[a_1, a_n] \times [a_1, a_n]$, some results about polynomials with coefficients as symmetric functions of a's are obtained. It is shown that

$$\int_{a_1}^{a_n} |g_n(x, s)| \, ds$$

is a suitable polynomial in x. Applications to n-point boundary value problems and lower bounds for a_m $(m \ge n)$ are included.

1. Introduction. Beesack [1] considered the boundary value problem

(1.1)
$$y(a_i) = 0,$$

$$y(a_i) = y'(a_i) = \cdots = y^{(k_i)}(a_i) = 0 \qquad (1 \le i \le r),$$

where $a_1 < a_2 < \cdots < a_r$, $0 \le k_i$, $k_1 + k_2 + \cdots + k_r = n - r$. For the Green's function $g_n(x, s)$ he proved that

$$|g_n(x,s)| \leq \frac{\prod_{i=1}^r |x-a_i|^{k_i+1}}{(n-1)!(a_n-a_1)}.$$

In [2] Nehari gave a short proof of the same when r = n. Since in relation to multipoint boundary value problem as in [1], $\int_{a_1}^{a_r} |g_n(x, s)| ds$ appears (see 3.5 there), the natural question is to consider alternately this function.

In this paper, we consider (1.1) when r = n first. In §2, we give the Green's function $g_n(x, s)$ explicitly and alternately exhibit it in a form which yields conclusions as to the sign of $g_n(x, s)$. In §3, the results about $\operatorname{sgn} g_n(x, s)$ and the identity

Received by the editors March 17, 1972 and, in revised form, December 11, 1972.

AMS (MOS) subject classifications (1970). Primary 34B10; Secondary 12D10, 26A82.

Key words and phrases. Green's function, multipoint boundary value problem, zeros of solutions.

Copyright © 1973, American Mathematical Society

(1.3)
$$\int_{a_1}^{a_n} |g_n(x, s)| ds = \frac{1}{n!} (x - a_1)(a_n - x) \prod_{i=2}^{n-1} |x - a_i|$$

are obtained. (There are a few auxiliary results given as lemmas which may be of some independent interest!) Applications to *n*-point boundary value problems and lower bounds for the *m*th zero of solutions form the contents of §4.

2. The Green's function. Throughout, n denotes a fixed natural number greater than 2. Let k be a natural number such that $2 \le k \le n$. Consider the boundary value problem

(2.1)
$$y^{(k)}(x) = 0, \\ y(a_1) = y(a_2) = \cdots = y(a_{k-1}) = y(a_n) = 0,$$

where $a_1 < a_2 < \dots < a_{k-1} < a_n$.

Theorem 2.1. The Green's function $g_k(x, s)$ for (2.1) is given by $(k-1)!g_k(x, s)$

$$= \left(\prod_{i=1}^{k-1} \frac{x - a_i}{a_n - a_i}\right) (a_n - s)^{k-1}, \quad x \le s, \ a_{k-1} \le s;$$

$$= \left(\prod_{i=1}^{k-1} \frac{x - a_i}{a_n - a_i}\right) (a_n - s)^{k-1}$$

$$+ \sum_{j=2}^{r+1} (-1)^j \left(\prod_{i=1}^{k-1} \frac{x - a_i}{|a_{k-j+1} - a_i|}\right) \frac{a_n - x}{a_n - a_{k-j+1}} (a_{k-j+1} - s)^{k-1}$$

$$(2.2) \quad (\equiv g_k^r(x, s)), \quad x \le s, \ a_{k-r-1} \le s \le a_{k-r} \ (r = 1, \dots, k-3);$$

$$= \left(\prod_{i=2}^{k-1} \frac{x - a_i}{a_i - a_1}\right) \frac{a_n - x}{a_n - a_1} (s - a_1)^{k-1} + (-1)^{k-1} (s - x)^{k-1}, \quad x \le s, \ s \le a_2;$$

$$= \left(\prod_{i=1}^{k-1} \frac{x - a_i}{a_n - a_i}\right) (a_n - s)^{k-1} - (x - s)^{k-1}, \quad a_{k-1} \le s \le x;$$

$$= g_k^r(x, s) - (x - s)^{k-1}, \quad s \le x, \ a_{k-r-1} \le s \le a_{k-r} \ (r = 1, \dots, k-3);$$

$$= \left(\prod_{i=2}^{k-1} \frac{x - a_i}{a_i - a_1}\right) \frac{a_n - x}{a_n - a_1} (s - a_1)^{k-1}, \quad s \le x, \ s \le a_2;$$

where a product for empty set of indices is interpreted as 1.

Remark. Here, as well as in the following, r ranging over a vacuous set of indices means the collapse of regions of the form $x \le s$ $(x \ge s)$, $a_{k-r-1} \le s \le a_{k-r}$.

Proof. Starting with the Green's function for y''(x) = 0, $y(a_1) = y(a_2) = 0$, namely

$$g_2(x, s) = \begin{cases} (x - a_1)(a_n - s)/(a_n - a_1), & x \le s; \\ (a_n - x)(s - a_1)/(a_n - a_1), & s \le x; \end{cases}$$

and the relation in [1],

$$(2.3) g_{m+1}(x, s) = \frac{1}{m} \left\{ (x-s)g_m(x, s) - (a_m-s)g_m(a_m, s) \left(\prod_{i=1}^{m-1} \frac{x-a_i}{a_m-a_i} \right) \frac{a_n-x}{a_n-a_m} \right\},$$

it is easily checked that

$$2!g_{3}(x, s) = \begin{cases} \frac{(x - a_{1})(x - a_{2})}{(a_{n} - a_{1})(a_{n} - a_{2})} (a_{n} - s)^{2}, & x \leq s, \ a_{2} \leq s; \\ \frac{(x - a_{2})(a_{n} - x)}{(a_{2} - a_{1})(a_{n} - a_{1})} (s - a_{1})^{2} + (s - x)^{2}, & x \leq s, \ s \leq a_{2}; \\ \frac{(x - a_{1})(x - a_{2})}{(a_{n} - a_{1})(a_{n} - a_{2})} (a_{n} - s)^{2} - (x - s)^{2}, & s \leq x, \ a_{2} \leq s; \\ \frac{(x - a_{2})(a_{n} - x)}{(a_{2} - a_{1})(a_{n} - a_{1})} (s - a_{1})^{2}, & s \leq x, \ s \leq a_{2}. \end{cases}$$

Thus (2.2) is valid for k = 3. Again, assuming that (2.2) holds when k = m, if $x \le s$, $a_m \le s$, then (2.3) gives

$$m! g_{m+1}(x, s) = \left(\prod_{i=1}^{m-1} \frac{x - a_i}{a_n - a_i}\right) \left\{ (x - s) - (a_m - s) \frac{a_n - x}{a_n - a_m} \right\} (a_n - s)^{m-1}$$

$$= \left(\prod_{i=1}^{m} \frac{x - a_i}{a_n - a_i}\right) (a_n - s)^m.$$

Similarly, if $x \le s$, $a_{m-r} \le s \le a_{m-r+1}$, where r = 2, ..., (m+1) = 3, (2.3) yields

$$\begin{split} &m! g_{m+1}(x, s) \\ &= \left((x-s) - (a_m - s) \frac{a_n - x}{a_n - a_m} \right) \left(\prod_{i=1}^{m-1} \frac{x - a_i}{a_n - a_i} \right) (a_n - s)^{m-1} + \left(\prod_{i=1}^{m-1} \frac{x - a_i}{a_m - a_i} \right) \frac{a_n - x}{a_n - a_m} (a_m - s)^m \\ &+ \sum_{j=2}^r (-1)^j \left(\prod_{\substack{i=1 \ (i \neq m-j+1)}}^{m-1} \frac{x - a_i}{|a_{m-j+1} - a_i|} \right) \frac{a_n - x}{a_n - a_{m-j+1}} \\ &\cdot (a_{m-j+1} - s)^{m-1} \left((x - s) - (a_m - s) \frac{x - a_{m-j+1}}{a_m - a_{m-j+1}} \right) \\ &= \left(\prod_{i=1}^m \frac{x - a_i}{a_n - a_i} \right) (a_n - s)^m + \sum_{j=1}^r (-1)^{j+1} \left(\prod_{\substack{i=1 \ (i \neq m-j+1)}}^{m} \frac{x - a_i}{|a_{m-j+1} - a_i|} \right) \frac{a_n - x}{a_n - a_{m-j+1}} (a_{m-j+1} - s)^m. \end{split}$$

A similar computation using the first expression of (2.2) with k=m gives the result for $x \le s$, $a_{m-1} \le s \le a_m$. Moreover, if $x \le s \le a_2$, then

$$m! g_{m+1}(x, s)$$

$$= (-1)^m (s-x)^m + \left(\prod_{i=2}^{m-1} \frac{x-a_i}{a_i-a_1}\right) \frac{a_n-x}{a_n-a_1} (s-a_1)^{m-1} \left((x-s)-(a_m-s)\frac{x-a_1}{a_m-a_1}\right)$$

$$= \left(\prod_{i=2}^m \frac{x-a_i}{a_i-a_i}\right) \frac{a_n-x}{a_n-a_1} (s-a_1)^m + (-1)^m (s-x)^m.$$

This completes the induction argument for the triangle $x \le s$. On the same lines the region $a_1 \le s \le x \le a_n$ can be handled. Hence the conclusion.

Corollary 2.2. Alternatively, if $s \le x$ and $a_{k-r-1} \le s \le a_{k-r}$ where $r = 1, \dots, k-3$, we have

Proof. First observe that $(x - a_i)(a_m - s) = (a_m - a_i)(x - s) + (s - a_i)(a_m - x)$, $i \neq m$. Applying this first with i = 1 and m = n or k - j + 1—note that m is always different from 1 - 1, we get

$$\begin{split} g_k^r(x,s) - (x-s)^{k-1} &= (a_n - x) \left[\left(\prod_{i=2}^{k-1} (x-a_i) \right) (s-a_1) \right. \\ & \cdot \left. \left\{ \frac{(a_n - s)^{k-2}}{\prod_{i=1}^{k-1} (a_n - a_i)} + \sum_{j=2}^{r+1} (-1)^{j+1} \frac{(a_{k-j+1} - s)^{k-2}}{\prod_{i=1}^{k-1} (i \neq k-j+1)} \frac{1}{a_n - a_{k-j+1}} \right\} \right] \\ & + (x-s) \left[\left(\prod_{i=2}^{k-1} \frac{x-a_i}{a_n - a_i} \right) (a_n - s)^{k-2} - (x-s)^{k-2} \right. \\ & + \sum_{j=2}^{r+1} (-1)^j \left(\prod_{i=2}^{k-1} \frac{x-a_i}{|a_{k-j+1} - a_i|} \right) \frac{a_n - x}{a_n - a_{k-j+1}} (a_{k-j+1} - s)^{k-2} \right]. \end{split}$$

Repeating the above with $i=2, \dots, k-r-1$ and m=n or k-j+1 (once again $i \neq m$ always) on the last term each time, we finally obtain

$$\begin{split} g_k^r(x,\,s) - (x-s)^{k-1} &= (a_n-x) \sum_{l=0}^{k-r-2} (x-s)^l \left(\prod_{i=l+2}^{k-1} (x-a_i) \right) (s-a_{l+1}) \\ & \cdot \left\{ \frac{(a_n-s)^{k-l-2}}{\prod_{i=1}^{k-1} (a_n-a_i)} + \sum_{j=2}^{r+1} (-1)^{j+1} \frac{(a_{k-j+1}-s)^{k-l-2}}{\prod_{i=l+1}^{k-1} (i\neq k-j+1)} \frac{1}{a_n-a_{k-j+1}} \right\} \\ & + (x-s)^{k-r-1} \left[\left(\prod_{i=k-r}^{k-1} \frac{x-a_i}{a_n-a_i} \right) (a_n-s)^r - (x-s)^r + \sum_{j=2}^{r+1} (-1)^j \left(\prod_{\substack{i=k-r \\ (i\neq k-j+1)}}^{k-1} \frac{x-a_i}{|a_{k-j+1}-a_i|} \right) \frac{a_n-x}{a_n-a_{k-j+1}} (a_{k-j+1}-s)^r \right]. \end{split}$$

Now (2.4) follows from the above in view of the fact that the factor multiplying $(x-s)^{k-r-1}$ is a polynomial of degree r in x and takes the value zero at a_{k-r}, \dots, a_{k-1} and a_n .

3. We first give some auxiliary results in the form of lemmas.

Lemma 3.1. For each $r = 1, \dots, k-3$ if ρ , a natural number, does not exceed r; then

$$\frac{(a_n-s)^{\rho-1}}{\prod_{i=k-r}^{k-1}(a_n-a_i)} + \sum_{j=2}^{r+1} (-1)^{j+1} \frac{(a_{k-j+1}-s)^{\rho-1}}{\prod_{i=k-r}^{k-1}(i\neq k-j+1)} |a_{k-j+1}-a_i|} \frac{1}{a_n-a_{k-j+1}} \equiv 0$$

and hence
$$(\equiv A_{r,\rho}^{(k)}(s))$$

$$(3.2) \frac{(a_{n}-s)^{\rho}}{\prod_{i=k-r-1}^{k-1}(a_{n}-a_{i})} + \sum_{j=2}^{r+1} (-1)^{j+1} \frac{(a_{k-j+1}-s)^{\rho}}{\prod_{i=k-r-1}^{k-1}(i\neq k-j+1)} \frac{1}{|a_{k-j+1}-a_{i}|} \frac{1}{a_{n}-a_{k-j+1}}$$

$$(\equiv B_{r,\rho}^{(k)}(s))$$
is divisible by $(a_{k-r-1}-s)^{\rho}$.

Proof. That (3.2) has $(a_{k-r-1} - s)^{\rho}$ as a factor is immediate when relations (3.1) are known to be true as seen from the identity

$$B_{r,\rho}^{(k)}(s) = (a_{k-r-1} - s)^{\rho} B_{r,0}^{(k)} + \sum_{\sigma=0}^{\rho-1} (a_{k-r-1} - s)^{\sigma} A_{r,\rho-\sigma}^{(k)}(s)$$

obtained by successive use of

$$B_{r,\rho-\sigma}^{(k)}(s) = (a_{k-r-1} - s)B_{r,\rho-\sigma-1}^{(k)} + A_{r,\rho-\sigma}^{(k)}(s), \quad \sigma = 0, 1, \dots, \rho-1.$$

To establish (3.1) for arbitrary $r \leq k-3$ and $\rho=1$, it is sufficient to observe that the polynomial

$$1 + \sum_{j=2}^{r+1} (-1)^{j+1} \left(\prod_{\substack{i=k-r\\(i\neq k-j+1)}}^{k-1} \frac{t-a_i}{|a_{k-j+1}-a_i|} \right)$$

(of degree r-1) vanishes at a_{k-r} , ..., a_{k-1} and hence identically. (This proves (3.1) when r=1.) Now assume that (3.1) holds when r (> 1) is replaced by r-1 and for $\rho=1,\ldots,\sigma$ (< r). Then, if $\rho=\sigma+1$, (3.1) follows from the identity

$$A_{r,\sigma+1}^{(k)}(s) = A_{r-1,\sigma}^{(k)}(s) + (a_{k-r} - s)A_{r,\sigma}^{(k)}(s), \quad 2 \le r \le k-3, \ 1 \le \sigma < r.$$

This completes the proof by induction.

Remark. In the special case when $\rho = r$, (3.2) is a polynomial of degree r. In view of the above result, we shall write this polynomial as $C_r^{(k)}(a_{k-r-1}-s)^r$, where k is fixed and $C_r^{(k)}$ are constants for $r=1,\ldots,k-3$. In fact, $C_r^{(k)}=B_{r,0}^{(k)}$ as can be easily checked.

Lemma 3.2. For each r = 1, ..., k-3, $C_r^{(k)}(a_{k-r-1} - s)^r$ is positive on (a_{k-r-1}, a_{k-r}) .

Proof. It is easy to check that for r = 1.

$$C_1^{(k)}(a_{k-2}-s) \equiv \frac{(s-a_{k-2})}{(a_n-a_{k-2})(a_{k-1}-a_{k-2})}$$

and thus, in addition to the conclusion, we have $C_1^{(k)} < 0$.

Now assume that for $r = \sigma - 1$, the conclusion is true and sgn $C_{\sigma - 1}^{(k)} = (-1)^{\sigma - 1}$. Then, if $r = \sigma$, we have

$$C_{\sigma}^{(k)}(a_{k-\sigma-1}-s)^{\sigma} \equiv (a_{k-\sigma-1}-s)^{\sigma-1} \\ \cdot \left\{ \frac{a_n-s}{\prod_{i=k-\sigma-1}^{k-1}(a_n-a_i)} + \sum_{j=2}^{\sigma+1} (-1)^{j+1} \frac{a_{k-j+1}-s}{\prod_{i=k-\sigma-1}^{k-1}(i\neq k-j+1)|a_{k-j+1}-a_i|} \frac{1}{a_n-a_{k-j+1}} \right\} \\ \quad (\equiv (a_{k-\sigma-1}-s)^{\sigma-1}H(s)),$$

in view of

$$B_{\sigma,\sigma}^{(k)}(s) = (a_{k-\sigma-1} - s)^{\sigma-1}B_{\sigma,1}^{(k)}(s).$$

Note that

$$H(a_{k-\sigma-1}) = A_{\sigma,1}^{(k)}(a_{k-\sigma-1}) = 0.$$

Moreover, the sign of H(s) is constant on $(a_{k-\sigma-1}, a_{k-\sigma})$ and is that of $H(a_{k-\sigma})$, namely

$$\left(\prod_{\substack{i=k-\sigma-1\\(i\neq k-\sigma)}}^{k-1}(a_n-a_i)\right)^{-1} + \sum_{j=2}^{\sigma}(-1)^{j+1}\left(\prod_{\substack{i=k-\sigma-1\\(i\neq k-j+1,\,k-\sigma)}}^{k-1}|a_{k-j+1}-a_i|\right)^{-1}(a_n-a_{k-j+1})^{-1}$$

which is $sgn q(a_n)$, where

$$q(t) = 1 + \sum_{j=2}^{\sigma} (-1)^{j+1} \frac{t - a_{k-\sigma-1}}{a_{k-j+1} - a_{k-\sigma-1}} \left(\prod_{\substack{i=k-\sigma+1\\(i \neq k-i+1)}}^{k-1} \frac{t - a_i}{|a_{k-j+1} - a_i|} \right).$$

Also, sgn $C_{\sigma-1}^{(k)} = \operatorname{sgn} p(a_n)$, where

$$p(t) = 1 + \sum_{j=2}^{\sigma} (-1)^{j+1} \prod_{\substack{i=k-\sigma\\(i\neq k-j+1)}}^{k-1} \frac{t-a_i}{|a_{k-j+1}-a_i|}.$$

In view of the facts that both polynomials p(t) and q(t) are of degree $\sigma-1$, have the same zeros $a_{k-\sigma+l}$ $(l=1,\,2,\,\cdots,\,\sigma-1)$, and $p(a_{k-\sigma})=q(a_{k-\sigma-1})=1$, it follows that $\operatorname{sgn} H(a_{k-\sigma})=\operatorname{sgn} C_{\sigma-1}^{(k)}$. Thus, $C_{\sigma}^{(k)}(a_{k-\sigma-1}-s)^{\sigma}$ is positive in $(a_{k-\sigma-1},\,a_{k-\sigma})$ and $\operatorname{sgn} C_{\sigma}^{(k)}=(-1)^{\sigma}$. This completes the proof.

Lemma 3.3. For all integers k, r, m such that $4 \le k$ (< n), $1 \le r \le k - 3$, and $r \le m \le k - 2$,

(3.3)
$$A(k, r, m, s) = \frac{(a_n - s)^m}{\prod_{i=k-m-1}^{k-1} (a_n - a_i)} + \sum_{j=2}^{r+1} (-1)^{j+1} \frac{(a_{k-j+1} - s)^m}{\prod_{i=k-m-1}^{k-1} (i \neq k-j+1)^{|a_{k-j+1} - a_i|}} \frac{1}{a_n - a_{k-j+1}}$$

is nonnegative on $[a_{k-r-1}, a_{k-r}]$.

Proof. First observe that the assertion follows from Lemma 3.2 if m = r and k arbitrary, admissible. Also, if r = 1 and m, k admissible, then the identity

$$\left(\frac{a_{n}-s}{a_{n}-a_{k-m-2}} - \frac{a_{k-1}-s}{a_{k-1}-a_{k-m-2}}\right) \frac{(a_{n}-s)^{m}}{\prod_{i=k-m-1}^{k-1} (a_{n}-a_{i})}$$

$$\equiv \frac{(a_{n}-s)^{m}}{\prod_{i=k-m-2}^{k-2} (a_{n}-a_{i})} \frac{s-a_{k-m-2}}{a_{k-1}-a_{k-m-2}},$$

in view of $a_{k-1} \ge s \ge a_{k-2} > a_{k-m-2}$, implies

$$\frac{(a_n-s)^{m+1}}{\prod_{i=k-m-2}^{k-1}(a_n-a_i)} \ge \frac{a_{k-1}-s}{a_{k-1}-a_{k-m-2}} \frac{(a_n-s)^m}{\prod_{i=k-m-1}^{k-1}(a_n-a_i)}.$$

Thus A(k, 1, m, s) is nonnegative by using induction on m.

Now we may assume $r \ge 2$ and thus admissible $k \ge 5$. Let the conclusion be true about A(k, r, m, s) for admissible r, k. Note that in addition to (3.4) we have the identities

$$\frac{\left(\frac{a_{k-1}-s}{a_{k-1}-a_{k-m-2}} - \frac{a_{k-j+1}-s}{a_{k-j+1}-a_{k-m-2}}\right) \frac{(a_{k-j+1}-s)^m}{\prod_{i=k-m-1}^{k-1} (i \neq k-j+1) |a_{k-j+1}-a_i|} }{\prod_{i=k-m-2}^{k-1} (i \neq k-j+1) |a_{k-j+1}-a_i|} \frac{s-a_{k-m-2}}{a_{k-1}-a_{k-m-2}},$$

$$\frac{(a_{k-j+1}-s)^m}{\prod_{i=k-m-2}^{k-2} (i \neq k-j+1) |a_{k-j+1}-a_i|} \frac{s-a_{k-m-2}}{a_{k-1}-a_{k-m-2}},$$

$$j = 3, \dots, r+1$$

Multiplying each (3.5_i) by $(-1)^j (a_n - a_{k-j+1})^{-1}$ and adding all to (3.4) we get

$$A(k, r, m+1, s) = \frac{a_{k-1}-s}{a_{k-1}-a_{k-m-2}} A(k, r, m, s) + \frac{s-a_{k-m-2}}{a_{k-1}-a_{k-m-2}} B,$$

$$B = A(k-1, r-1, m, s).$$

By induction hypothesis A(k, r, m, s) as well as A(k-1, r-1, m, s) are non-negative on $[a_{k-r-1}, a_{k-r}]$ in view of the admissibility of k-1 and r-1 in addition to that of k and r.

The following theorem is the main result which leads to (1.3).

Theorem 3.4. For $g_k(x, s)$ the following holds:

$$\operatorname{sgn} g_{k}(x, s) = \begin{cases} 1, & (x, s) \in [a_{k-1}, a_{n}] \times [a_{1}, a_{n}], \\ \\ (-1)^{r}, & (x, s) \in [a_{k-r-1}, a_{k-r}] \times [a_{1}, a_{n}], & r = 1, \dots, k-2. \end{cases}$$

Proof. First we consider the triangle $a_1 \le s \le x \le a_n$. The conclusion about $\operatorname{sgn} g_k(x,s)$ in this triangle is obvious from (2.2) when $s \le a_2$, and immediate when $a_{k-1} \le s \le a_n$ since $(x-a_i)(a_n-s) \ge (a_n-a_i)(x-s)$ for $i=1,\cdots,k-1$. Also, if for $r=1,\cdots,k-3$, $s \in [a_{k-r-1},a_{k-r}]$, then the assertion about $\operatorname{sgn} g_k(x,s)$ follows from (2.4) in view of Lemma 3.3, noting that l+1=k-m-1 and that

$$\operatorname{sgn}\left(\prod_{i=k-m}^{k-1}(x-a_i)\right) = \begin{cases} 1, & x \in [a_{k-1}, a_n], \\ \\ (-1)^r, & x \in [a_{k-r-1}, a_{k-r}]. \end{cases}$$

To discuss the triangle $a_1 \le x \le s \le a_n$, we begin by observing that if $s \ge a_{k-1}$, then (2.2) at once gives the conclusion. For $s \le a_{k-1}$, we use induction. First note that $g_3(x,s)$ has the asserted signs. Now assume that $g_m(x,s)$ has the asserted signs. Then (2.3) shows that if $x \in [a_{m-1}, a_m]$, $-\operatorname{sgn} g_{m+1}(x,s) \ge 0$. Also, noting that if $x \in [a_{m-r}, a_{m-r+1}]$ where $r = 2, \cdots, m-1$, then $\operatorname{sgn} g_m(x,s) = \operatorname{sgn} \left(\prod_{i=1}^{m-1} (x-a_i)\right)$, we have the desired conclusion for k=m+1. This completes the proof.

Theorem 3.5. For any $k \leq n$ the following holds:

(3.6)
$$\int_{a_1}^{a_n} |g_k(x, s)| ds = \frac{1}{k!} (x - a_1) (a_n - x) \left(\prod_{i=2}^{k-1} |x - a_i| \right).$$

Proof. In view of Theorem 3.4,

(3.7)
$$\int_{a_1}^{a_n} |g_k(x, s)| ds = \left| \int_{a_1}^{a_n} g_k(x, s) ds \right|.$$

The value of the integral on the right-hand side by (2.2) is

$$\frac{1}{k!} \left[\left(\prod_{i=2}^{k-1} \frac{x - a_i}{a_i - a_1} \right) \frac{a_n - x}{a_n - a_1} (a_2 - a_1)^k + \left(\prod_{i=1}^{k-1} \frac{x - a_i}{a_n - a_i} \right) (a_n - a_2)^k + (-1)^{k-1} (a_2 - x)^k \right]$$

$$+ \frac{1}{(k-1)!} \sum_{r=1}^{k-3} \int_{a_{k-r-1}}^{a_{k-r}} \left\{ \sum_{j=2}^{r+1} (-1)^j \left(\prod_{\substack{i=1 \ (i \neq k-j+1)}}^{k-1} \frac{x - a_i}{|a_{k-j+1} - a_i|} \right) \frac{a_n - x}{a_n - a_{k-j+1}} (a_{k-j+1} - s)^{k-1} \right\} ds,$$

$$x \in [a_1, a_2];$$

$$\frac{1}{k!} \left[\left(\prod_{\substack{i=2 \ (i \neq k-j-1)}}^{k-1} \frac{x - a_i}{a_i - a_1} \right) \frac{a_n - x}{a_n - a_1} (a_2 - a_1)^k + \left(\prod_{\substack{i=1 \ (i \neq k-j+1)}}^{k-1} \frac{x - a_i}{a_n - a_i} \right) (a_n - a_2)^k - (x - a_2)^k \right]$$

$$+ \frac{1}{(k-1)!} \sum_{r=1}^{k-3} \int_{a_{k-r-1}}^{a_{k-r}} \left\{ \sum_{j=2}^{r+1} (-1)^j \left(\prod_{\substack{i=1 \ (i \neq k-j+1)}}^{k-1} \frac{x - a_i}{|a_{k-j+1} - a_i|} \right) \frac{a_n - x}{a_n - a_{k-j+1}} (a_{k-j+1} - s)^{k-1} \right\} ds,$$

$$x \in [a_{k-1}, a_n] \text{ or } x \in [a_{k-l-1}, a_{k-l}], \ l = 1, \dots, k-3.$$

Thus, whatever $x \in [a_1, a_n]$,

$$\int_{a_{1}}^{a_{n}} g_{k}(x, s) ds$$

$$= \frac{1}{k!} \left[\left(\prod_{i=2}^{k-1} \frac{x - a_{i}}{a_{i} - a_{1}} \right) \frac{a_{n} - x}{a_{n} - a_{1}} (a_{2} - a_{1})^{k} + \left(\prod_{i=2}^{k-1} \frac{x - a_{i}}{a_{n} - a_{i}} \right) (a_{n} - a_{2})^{k} - (x - a_{2})^{k} \right] + \sum_{j=2}^{k-2} (-1)^{j} \left(\prod_{\substack{i=1 \ (i \neq k-j+1)}}^{k-1} \frac{x - a_{i}}{|a_{k-j+1} - a_{i}|} \right) \frac{a_{n} - x}{a_{n} - a_{k-j+1}} (a_{k-j+1} - a_{2})^{k} \right].$$

It is easily seen that the expression in (3.8) is a polynomial (in x) of degree k which has zeros a_1, \dots, a_{k-1} and a_n . Moreover, the coefficient of x^k is -1/k, hence the conclusion in (3.6).

4. Applications. In this section k = n. Thus, consider the ordinary differential equation

(4.1)
$$y^{(n)} + f(x, y, y', \dots, y^{(n-1)}) = 0,$$

where f is continuous on $[a_1, a_n] \times \mathbb{R}^n$ and satisfies

$$(4.2) |f(x, y, y', \dots, y^{(n-1)})| < K|y|.$$

(The above hypothesis is evidently no more restrictive than that of Beesack-see (3.2) in [1].)

The following lemma gives a bound which is better than (2.13) of [1] in situations which are not "highly pathological" (see Remark below).

Lemma 4.1. Let $x \in [a_1, a_n]$. Then,

(4.3)
$$\prod_{i=1}^{n} |x - a_i| \le (n-1)^{n-1} \left(\frac{\delta}{2}\right)^n,$$

where $a_1 \leq a_2 \leq \cdots \leq a_n$, $\delta = \max_{2 \leq i \leq n} (a_i - a_{i-1})$.

Proof. Let $x \in (a_r, a_{r+1})$, where $r \ge 1 < [(n+1)/2]$, the integral part of (n+1)/2. Then,

$$\left\{ \{(n-2r+1)(x-a_1)\}\{(x-a_2)\dots(x-a_r)\prod_{i=r+1}^n (a_i-x) \right\}^{1/n} \\
\leq \frac{1}{n} \left(\sum_{i=r+1}^n (a_i-a_1) - \sum_{i=1}^r (a_i-a_1) \right) \\
= \frac{1}{n} \left(\sum_{i=1}^{r-1} (n-2r+i)(a_{i+1}-a_i) + \sum_{i=r}^{n-1} (n-i)(a_{i+1}-a_i) \right) \\
\leq \frac{n^2-n-2r(r-1)}{2n} \delta,$$

that is

$$\prod_{i=1}^{n} |x-a_i| \leq \frac{1}{n-2r+1} \left(\frac{\delta}{2n}\right)^n (n^2-n-2r(r-1))^n.$$

Similarly, if $[(n + 1)/2] \le r < n$, we have

$$\prod_{i=1}^{n} |x-a_i| \leq \frac{1}{n-2(n-r)+1} \left(\frac{\delta}{2n}\right)^n \{n(n-1)-2(n-r)(n-r-1)\}^n.$$

It is easy to check that

$$f(r) = {n(n-1) - 2r(r-1)}^n/(n-2r+1)$$

is nonincreasing for $(1 \le) r < [(n+1)/2]$ and f(n-r) is nondecreasing for $([(n+1)/2] \le) r < n$. The estimate (4.3) follows in view of $f(1) = f(n-1) = n^n(n-1)^{n-1}$.

Remark. The bound in (4.3) is better than Beesack's if and only if

$$\delta < 2(a_n - a_1)/n$$
.

If $n \ge 3$, this is always the case when the a_i 's are equally spaced. In general, however, (2.13) of [1] gives a sort of best possible bound.

Theorem 4.2. Let the boundary value problem (4.1) and

(4.4)
$$y(a_1) = \cdots = y(a_n) = 0, \quad a_1 < a_2 < \cdots < a_n$$

bave a solution. Then,

(4.5)
$$K^{-1} < \begin{cases} \frac{(n-1)^{n-1}}{n!} \left(\frac{\delta}{2}\right)^n, & \text{if } \delta < \frac{2}{n} (a_n - a_1), \\ \frac{(n-1)^{n-1}}{n^n} \frac{(a_n - a_1)^n}{n!}, & \text{otherwise,} \end{cases}$$

where K and δ are as above.

Proof. (4.5) follows from the fact that y(x) satisfies the integral equation

(4.6)
$$y(x) = \int_{a_1}^{a_n} g_n(x, s) f(s, y(s), \dots, y^{(n-1)}(s)) ds, \quad x \in [a_1, a_n],$$

and thus identifying x with a point where |y(x)| attains its maximum, we have

(4.7)
$$1 < K \int_{a_1}^{a_n} |g_n(x, s)| ds,$$

in view of (4.2).

Remark. The above result is an improvement on Beesack's necessary condition whenever the function h(x) in his (3.2) is constant (of course, multiple zeros are not allowed). Apart from the case $h(x) \equiv K$, the two results are not comparable.

Next turning to the question of obtaining a lower bound for the mth zero of solutions of the linear differential equation

(4.8)
$$y^{(n)} + p(x)y = 0,$$

we state the following result:

Theorem 4.3. Let p(x) in (4.8) be continuous and bounded on $[a, \infty)$. If $a_1 \ (\ge a) < a_2 < \dots < a_m$ are consecutive simple zeros of a solution of (4.8), then for m > n

(4.9)
$$a_m > a_1 + \left(\frac{(m-n+1)n!}{K} \left(\frac{n}{n-1}\right)^{n-1}\right)^{1/n},$$

where $|p(x)| \leq K$.

We omit the proof which is a straightforward adaptation of the above proof and of the proof of (3.15) in [1].

Remark. As in [1], if m > 2n - 1, in place of (4.9) we have the estimate

$$(4.10) a_m > a_1 + (n/(n-1))((m-n)n!/K)^{1/n}.$$

Acknowledgement. The authors thank the referee for helpful suggestions.

REFERENCES

- 1. P. R. Beesack, On the Green's function of an N-point boundary value problem, Pacific J. Math. 12 (1962), 801-812. MR 26 #2672.
- 2. Z. Nehari, On an inequality of P. R. Beesack, Pacific J. Math. 14 (1964), 261-263. MR 28 #3192.
- 3. D. V. V. Wend, On the zeros of solutions of some linear complex differential equations, Pacific J. Math. 10 (1960), 713-722. MR 22 #9657.

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, MADRAS 600036, INDIA