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ON GREEN’S FUNCTION OF
AN »-POINT BOUNDARY VALUE PROBLEM

BY

K. M. DAS AND A. S. VATSALA

ABSTRACT. The Green's function &n (x, s) for an n-point boundary value
problem, (")(x) 0, y@a) =y(a)) =-.. = y(a ) =0 is explicitly given. As a
tool for discussing sgng, (%, s) on the square [a . ]x [al, a ] some results
about polynomials with coeff1c1ents as symmetric funcuons of a s are obtained.
It is shown that

a
e e o)lds

is a suitable polynomial in x. Applications to n-point boundary value problems
and lower bounds for @ (m 2 n) are included.

1. Introduction. Beesack [1] considered the boundary value problem

y(")(x) -0,
(1.1) .
ya) =y'a)=---=y*a)=0 Q<ign,

where a (<a,<...<a, O<k k +k2+-.-+k =n ~r1. For the Green’s func-
tion g_ (x s) he proved that

k.+1

x:ll l '
‘(1-2) l (x S)' S (_n—_l)'(a—rjl-l).
In [2] Nehari gave a short proof of the same when r = n. Since in relation to
multipoint boundary value problem as in [1], f:'l |gn(x. s)|ds appears (see 3.5
there), the natural question is to consider alternately this function.

In this paper, we consider (1.1) when 7 = n first. In $2, we give the Green’s
function g (%, s) explicitly and alternately exhibit it in a form which yields con-
clusions as to the sign of g _(x, s). In $3, the results about sgng,(x, s) and
the identity
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n-1

(1.3) f lg, (=, s)|ds-—-—(x-al)(a -x) I lx -4,

i=2
are obtained. (There are a few auxiliary results given as lemmas which may be of
some independent interest!) Applications to n-point boundary value problems and

lower bounds for the mth zero of solutions form the contents of §4.

2. The Green’s function. Throughout, » denotes a fixed natural number greater
than 2. Let & be a natural number such that 2 <k <n. Consider the boundary
value problem

(k)(x)=o
(2.1) y )

y(al)= y(a2)= e = y(ak- l) = y(a") = 0,
where a, <a,<... <a,_, <an.

Theorem 2.1. The Green's function g, (x, s) for (2.1) is given by
(k- 1)g,(x, s)

’lx—ai k-1
qa . (a”—s) , x<s,a,_;<s;
i=1 “n =%
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(2.2) g s), x<s a <s<a,_ (r=1,.-, k=3)

k=r-1—=

k=1 _g, o —x
= Ha — ) (s—a Yol (1F-Us -2l x<s, s<ay
i=2% %1/ %n~

blx-a 1 k=1
=(I1 )(an-S)l" ~G-slY, 4 _ <s<x

i=1 %0 %

=g (% s) = (x - skl s<x, a_,_1<s<a_ , =1, cee  k=3)
k=17y_a.\ a -x

.—_<H 1) L (s-a)fl, s<x s<ay
2 9;-ay) a, -a

where a product for empty set of indices is interpreted as 1.
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Remark. Here, as well as in the following, 7 ranging over a vacuous set of

indices means the collapse of regions of the form x <s (x>s), a, __, <s<

k=r"*
Proof. Starting with the Green’s function for y“(x) = 0, yla)) = yla )=0,

namely

(x-a)a, -s)a,-a), =x<s;
g,x, s) = {

(@a,-x)s-a))la,-a;), s<x

and the relation in [1],

1 m-1 x _ a; a -x
(2.3) gm“(x, s)= =4 - s)gm(x, s) - (am —-s)gm(am, s)( rI ) E )

m . a -—-a.
=l "m i

it is easily checked that
(x - a,)x - a,)

an-s)z, x<s,a,<s;
(an - al)(an - aZ)

(x - a,)a_-x)

(s-a1)2+(s-x)2, x<s, s<ay;
(aZ - al)(an - al)
2!g3(x, s)= <

(x - a))x - a,) (@ -s5)-(x-5)?% s<x,a,<s;

(@, -a)a, -a) "

(x-aNa_ - x)
z_n (s—al)z, s<x,s<a,.

(a2 - al)(an - al)

Thus (2.2) is valid for k = 3. Again, assuming that (2.2) holds when & = m, if

x<s, a_ <s,then (2.3) gives

a —a
n m

izl "n i
m x -—a.
_ (n ' >(a"—s)”'.

where r=2, -+, (m+1) =3, (2.3) yields

m-1 x _gq. an_x -1
mlg, 415 $) = <II : >;(x -s)-(a, ~5) (a, - s)"

Similarly, if x<s, a _ <s<a_ _ .,
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m!gm+l(x. S)

a, -x m=1 x_gq. 1 m’lx—ai a,
=((x—s)-(am—s)a )(H ,>(a - sy +<Ha Y PRy (a -sy"

= %m i=l a,-¢a i=z1 “m
r 4 m=l1 x-a, a -x
+> (I -
j=2 . epia-al Ja,-a,
(imm=j+1)
x—-a_ .
me=j+l
°(m —j+l —sm ((X-S)-(am—S)T>

m m=j+1

A )e-smeper I 25 ,} Lty -9"
“m—i+

izl an ai j=1 i=1 m-1+l
(i-tm—i+l)

A similar computation using the first expression of (2.2) with k = m gives the
result for x <s, a__, <s <a_. Moreover, if x <s <a,, then

mlg, 1z, s)

m-lx—a'. a, -x . -a,
=(=1)"(s - x)™ + <n ) (s—a,)"" ((x s)-(a -s)a

i=2%-%/ %% m ~ %1

m x-a)\ a
={II (s ay" + (= 1s - 2™,
2 4-ay)a, ~-a
This completes the induction argument for the triangle x <s. On the same lines
the region a) <s <x <a_ can be handled. Hence the conclusion.

Corollary 2.2. Alternatively, if s <x and a,  _, <s<a,_ where 1=
1, ..., k=3, we bhave

k=r=2
(k- 1)ig,(x, s) = (a, - x) Yy - s)l<n (x - a)>(s- a,,)

1=0 =142
(2.4) 2
-]=2 AT 2
N +’£( 1y+! (a""*l > -
&1 - k- —a, .
e, -a) = L m (z#k-ﬁl)l k-j+1~ ala -a,_in

Proof. First observe that (x —a)(a_-s)=(a - a)(x - s)+(s -a)la, -x),
i £ m. Applying this first with i =1 and m =7 or k —j + l—note that m is always

different from 1 —, we get
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k-1
glx ) -G-sht=(a, - x)[( IT&- “i)>($ -a)

=2
@, ¥ 'f( 1)i+! k—z+l's)k- 1 }]
. ———+ -
-1 k-1 _
“fsl @,-a) j= T (kmi sl je1 — %l %0~ G
k-1 x_ga.
+ =9 T1 L TR oL P
*ha —-a. )] "
i=2 n i
7+l k=1 X-a. a —-x
: 1 n k2
+ I ” ) P @_j =7
j=2 i=2 k=j+1 k~j+1
(ink=j+1)

Repeating the above with i =2, ..., k~7—-1and m=n or k- +1 (once again
i £ m always) on the last term each time, we finally obtain

k=12 k=1
g% s)—(x—s)"‘l=(an-x) h> (x—s)l< II (x-ai))(s—a“l)

1=0 i=l42
-1=2 1 k—1-2
;a —s)" +’i 1y lz-i+1 -s) 1
k-1 -1 - A
“z:l (“ —a) =2 nlk-lfl (x#k-)ﬂ)lak-yﬂ | %n a"-HI
k-1 x-a,
+(x = sye=r=1 n (a -5V -(x=-s)
icker =9

j=2 isher T =l [ 4 ma 0
(imk=j +1)

T+l k-1 x-a. a -x
+):<-w'< I - .'> - (R4

Now (2.4) follows from the above in view of the fact that the factor multiplying
(x —s)*=7=1 js a polynomial of degree 7 in x and takes the value zero at
PP T and a.

3. We first give some auxiliary results in the form of lemmas.

Lemma 3.1. Foreach r (=1, ..., k= 3) if p, a natural number, does not
exceed r; then

—s)P-1 +1 _qP-1
@, - s) . 'Z 1Y+ @ ;19 1 -0
k-1 ‘ rm — =
GD L @, -a) o I; k-r(.;ek-;ml il ~ %l Pn T Toj
_ Alk)
and bhence = Ar. P(S»
_s)? o
(@, ~s) . ,tl 1y (ak—i+1 -s) 1
(3.2) *-1! —a) = k-1 —
Hi=k-'-1(a" al) i=2 “z-k—r-l(i#le—iq»l)lak—iﬂ-ail %~ %=jn

(= B (s))
. ) p m p
is divisible by (a,___ | - s).
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Proof. That (3.2) has (a,___, - s)” as a factor is immediate when relations

(3.1) are known to be true as seen from the identity

p-1
(k) - pPR(k)
B, y(s)=(a,_ _~-s)B ) + Y (e, - s)aAilfjo-a(s)
=0

obtained by successive use of

B&) (S)=(ak-r-l _s)B®) AR (s), =01, ... ,p-1.

7, p=0C rp==1" " perr

To establish (3.1) for arbitrary 7 (< k& — 3) and p = 1, it is sufficient to
observe that the polynomial

r+l ) k=1 t—a.
1+ ) 1)+t Il —_t
j=2 izk-r |“1e-j+1 - a,]
(i%k~j+1)

(of degree r — 1) vanishesat @, _, .-+, a,_, and hence identically. (This
proves (3.1) when 7 = 1.) Now assume that (3.1) holds when r (> 1) is replaced
by r—1 and for p=1,.-+,0 (< 7). Then, if p=0+ 1, (3.1) follows from the

identity
AR (5)=4a®) 6 +(a,_ - 94K, 2<r<k-3,1<0<r,

This completes the proof by induction.

Remark. In the special case when p =, (3.2) is a polynomial of degree 7.
In view of the above result, we shall write this polynomial as Cf")(ak_r_1 -s),
where k is fixed and Cik) are constants for 7 =1, ..., & = 3. In fact, Ci") =
Bf"‘z, as can be easily checked.

Lemma 3.2, Foreach r (=1, --., k= 3), C:k)(ak-r-l - s) is positive on

).

(ak—r-l’ ak-r
Proof. It is easy to check that for 7 = 1.

(s-a,_,)

C*Ng, .-5s)=
1 Y%
(@,-a,_Nay_, - a,_,)

and thus, in addition to the conclusion, we have C(lk) <o0.
. . k
Now assume that for 7 = 0 — 1, the conclusion is true and sgn C(c,._)l =

(- 1)9-!, Then, if r = 0, we have
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Cg‘)(ak_a_] -5 =la,___ - syt
D e Sek El (-1y#! Te-in = F 1 }
“k.ll.,_ﬁ“ -a) =2 “’:*-a-l(xa-,m"‘k-,u -ala,-a,_ i,
(= (ak_c’_l - 5)o=1H(s)),
in view of
®) (<) _ )o-lgpk)
By (s)=(a,_ _,=s)"" "B (s)
Note that
(k)
H(ak-a— )= A (ak-cr l) 0.

Moreover, the sign of H(s) is constant on (4, ,_;, @, _,) and is that of H(a,_,),

namely
k-1 -1 o k-1 -1
_ 1)+l _ _ -1
[ (@-a)) +ZD I1 2 -l ) @, - ;)
izh~g=-1 j=2 izk=o~1
(izk=0o) (izk-j+l,k=0)

which is sgn qla_), where

k-1 t—a.
1 ak—a--l i
0 - 1+z(.1)7+—-—- 0o ——
=2 le-1+l U g=1\ izk-o+1 Iak-i+1-a
(i®k=74+1)
Also, sgn C(:.)l = sgn p(an), where
o k-1 t-a.
y 1
=1+ € ] ——.
j=2 ishmo 1%l
(imk—=j+1)

In view of the facts that both polynomials p(¢) and g(t) are of degree o - 1, have

the same zeros a, _ U=1,2, -.,o—l) and p(a )..q(a 1)=l,it
follows that sgn H(a ) =sgn C® | Thus, C(k)(a - s)‘7 is positive in
(ak-o-l’ ak-a) and sgn Cﬁf) = (- l) Thxs completes the proof.

Lemma 3.3. For all integers k, r, m such that 4 <k (<n),1 <r<k-3,and
r<m<k-2,

@ - sy
Alk, 1, m, s) = -
nk-k-m l(a _a)
(3.3)
r+1 (a . - s)m
+ Z (~1y+! kil !
=2 k-t . ooa, .. —al| a —a, _.
1= izk=m=1(izk=j+1)" " k=j+1 i n k=j+1
is nonnegative on la, ___,, a,_ 1.
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Proof. First observe that the assertion follows from Lemma 3.2 if m = r and
k arbitrary, admissible. Also, if 7 =1 and m, & admissible, then the identity

< a -s a,_,-s > (@, -s)"
b= %em-2 %ol %em-2/ S @ -a)
G4 . (an ~ sy s-a,_._,
= ,
H?:kz-m-Z(an -a) G 1~y

inviewof a, _, >s>a, ,> a4y _m_o» implies

+1 m
(@, - sy § a_,-s (a, - s)
-1 = k-1 ’
nki=k—m—2(an -a) a_y-a_._, L _ @, -a)

Thus A(k, 1, m, s) is nonnegative by using induction on m.

Now we may assume r > 2 and thus admissible & > 5. Let the conclusion
be true about A(k, 7, m, s) for admissible , k. Note that in addition to (3.4) we
have the identities

- sy

a,_,-s Gy is1 =S (ak-j+l
a,_.—a a -a k-t |a -a]
k-1 k=m-2 k—-j4+1 k=m=2 izkem=1 (ixk=j+1) "k=j+1 i

. . - m -
3-3;) _ @ =) S m-2
T k-2 ’
izh=m=—2 (i#k—j+l)|ak-;’+l -al a_1-a_,._,

Muleiplying each (3.5;) by (- 1y (a,-a, i, )1 and adding all to (3.4) we get

a,_.,-s S=9 m-2
_#__A(k, r, m, s)+——-’£——B,

Ak, r, m+1, s)=
Y1 ™ Yem-2

el ™ %gem=2

B=Ak-1,r-1,ms).
By induction hypothesis A(k, r, m, s) as well as A(k -1, r -1, m, s) are non-
negative on [ak_'_ v ak_'] in view of the admissibility of £ —1 and 7 -1 in addi-

tion to that of k and 7.
The following theorem is the main result which leads to (1.3).

Theorem 3.4. For g, (x, s) the following holds:
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1, &, s)ela,_y, alxlay, a],
sgn gk(x, S) =

1y, (xs)e [ak-r-l' ak_rl X [al, an], r=1,..., k=2,

Proof. First we consider the triangle a; <s <x < a . The conclusion about
sgn gk(x, s) in this triangle is obvious from (2.2) when s < a,, and immediate
when a, _, <s<a_since (x-a)(a, -s)>(a, ~a)x-s)fori=1,..., k-1
Also, if for r=1,... , k=3, s€ [ak-r-l' ak_r], then the assertion about
sgn gk(x, s) follows from (2.4) in view of Lemma 3.3, noting that / + 1 = k- m-1

and that
I, x€la,_j.al,

k-1
n < n (X'— al)> =
izk=m 1y, xelay_ _,, a,_]

To discuss the triangle a, <x <s <a_, we begin by observing that if s >
a,_,then (2.2) at once gives the conclusion. For s <a,_,, we use induction.
First note that g,(x, s) has the asserted signs. Now assume that g, (x, s) has
the asserted signs. Then (2.3) shows that if x € [am_ » 4.}, — sgn 8 y1'%r $)20.
Also, noting that if x € [a a

m=-1r" m-r+l

] where r=2,...,m~ 1, then sgn gm(x, s)
= sgn (ﬂ""1 (x - a)), we have the desired conclusion for k=m + 1.

Thns completes the proof.
Theorem 3.5. For any k (< n) the following holds:

a, k=1
(3.6) J Mgy, s)lds—-(x a)a, - [] lx-a)
1 i=2
Proof. In view of Theorem 3.4,
a’l an
3.7) fallgk(x, s)|ds = falgk(x, s)ds|.

The value of the integral on the right-hand side by (2.2) is

1 k-1 x-a,\ a -x k-1 x-a, . o
+ (H wma )7 s (@,-a)+ <n - >(a"—a2) + =Dk Na, - 2
° i=2 i n 1

izl “n i

s r+l . k-1 x_ai an—x 1
_ 1)y R
e f 2 T ! S ey ) P S (o
r=1 Tk=r=1 j=2 i=1 k=j+1 i n~ “k=jsl
(izk~j41)
x€la, a,);
1 k-1 x-a. \ a -x . k-1 x-~a . .
— (@, -—a,)*+ @ —-a)t-(x-a.)
k! na.-a a -a, 2 1 na-a, n 2 2
=2 1 1 n 1 il "n i
k-r r+1 . k—l x _a'_ a" -X 1
l)' f LI |a ~alla -a @ - it
T-r=1 j=2 i=1 k=j+1 " 5 ] a7 Fkejal

(ik=j+1)

xe[ak_l, a"] or xe[ak_l_], ”lz—I]‘ 1=1, ..., k=3,
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Thus, whatever x € [al, an],

a
n
fal g k(x, s)ds

k-1 —a. _ k-1 —-a.
_L (Hx al)an Jc(az—“!)k’L<rI — >(an"“z)k“("‘“2)k

3 8)k! je2 @4y )a, - =2 4,4
k-2 ) k-1 x-a; a —x ®
cne T ) e
j=2 i=1 =i+l T %4 | T T Th=j+l
(ik—j+1)

It is easily seen that the expression in (3.8) is a polynomial (in x) of degree &
which has zeros a,, ---, a,_, and a_. Moreover, the coefficient of x* is
—~ 1/k, hence the conclusion in (3.6).

4. Applications. In this section k = n. Thus, consider the ordinary differen-

tial equation
(4.1) y(")+/(x, y,y',.,, ’y(n—l))=0,

where [ is continuous on [al, a"] x R™ and satisfies

(4.2) 1y, y's e,y ) <Klyl.

(The above hypothesis is evidently no more restrictive than that of Beesack—see
(3.2) in [1].)
The following lemma gives a bound which is better than (2.13) of [1] in sit-

uations which are not ‘‘highly pathological’’ (see Remark below).

Lemma 4.1. Let x € [a,, a"]. Then,

(4.3)

Ilx-a)st-0r(2),
i=1

where a; <a,<..-<a, d= maxZSisn(ai- al._l).-

Proof. Let x € (ar, a”l), where r (> 1) < [(» + 1)/2], the integral part of
(n + 1)/2. Then,
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i=r+l

n 1/n
E(n —2r+l)(x-al)¥(x-a2) ce (X—ar) n (ﬂi —x)]

<§1 (a,~a,) - Z(a _a)>

Blh—a

n=1
<Z (n-2r+i)a, —“i)+2("-i)(“.~+1-“,~)

i=1 i=r

=|._.

2
Sn -—n—2r(r—1)8,

2n

that is

Hl" a]< > 1(3 )n(nz—n—Zr(r—l))".
n-—4r + n

Similarly, if [(» + l)/2] <r<n, we have

Hlx al< m( ){n(n—l) 2 -1)n-r-1}"

It is easy to check that

[@) ={nln-1) = 2/c - DI/ (0 - 2r + 1)

is nonincreasing for (1<) r < [(» + 1)/2] and f(n - r) is nondecreasing for
(I» + 1)/21 <) r <n. The estimate (4.3) follows in view of f(1)=f(n 1) =
n"(n - 1)"~1,
Remark. The bound in (4.3) is better than Beesack’s if and only if
8 < 2(an —a,)/n.

If » >3, this is always the case when the a s are equally spaced. In general,

however, (2.13) of [1] gives a sort of best possible bound.

Theorem 4.2. Let the boundary value problem (4.1) and

(4.4) Ha)=...=ya)=0, a <a,<...<a,

bave a solution. Then,

(n—l)n-l<§>n’ i/3<f?(a"—a1),
n! -
4.5) K-l<

(n_l)n—l (an—al)"

, otherwise,

!
n” n:

where K and & are as above.
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Proof. (4.5) follows from the fact that y(x) satisfies the integral equation

(4.6) ylx) = I:’:gn(x, (s, y(s), -,y s)ds, xe la,, a ],

and thus identifying x with a point where |y(x)| attains its maximum, we have

aﬂ
(4.7) 1< Kfa lg, (%, $)|ds,
1

in view of (4.2).

Remark. The above result is an improvement on Beesack’s necessary con-
dition whenever the function h(x) in his (3.2) is constant (of course, multiple
zeros are not allowed). Apart from the case h(x) = K, the two results are not com-
parable.

Next turning to the question of obtaining a lower bound for the mth zero of

solutions of the linear differential equation
(4.8) )'(") + plx)y =0,
we state the following result:

Theorem 4.3. Let p(x) in (4.8) be continuous and bounded on [a, ). If
a, (>a) < a,<...<a_ are consecutive simple zeros of a solution of (4.8),

then for m > n

(m - 1)n! n-1\1/n
(4.9) am>al+<m ';<+ <n’:1> ) R

where |p(x)| < K.

We omit the proof which is a straightforward adaptation of the above proof
and of the proof of (3.15) in [1].
Remark. As in [1], if m > 27 - 1, in place of (4.9) we have the estimate

(4.10) a_>ay + (n/(n-1)(m=n)nt/K)}"
Acknowledgement. The authors thank the referee for helpful suggestions.
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