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THE CAUCHY PROBLEM FOR DOUGLIS-NIRENBERG

ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS(i)

BY

RICHARD J. KRAMER

ABSTRACT. Several partial answers are given to the question: Suppose U is a

solution of the Douglis-Nirenberg elliptic system LU = F where F is analytic and

L has analytic coefficients. If  U = 0 in some appropriate sense on a hyperplane (or

any analytic hypersurface) must  U vanish identically?

One answer follows from introducing a so-called formal Cauchy problem for

Douglis-Nirenberg elliptic systems and establishing existence and uniqueness

theorems.

A second Cauchy problem, in some sense a more natural one, is discussed for

an important subclass of the Douglis-Nirenberg elliptic systems. The results in

this case give a second partial answer to the original question.

The methods of proof employed are largely algebraic. The systems are reduced

to systems to which the Cauchy-Kowalewski theorem applies.

1. Introduction. We formulate and solve several Cauchy problems for systems

of partial differential equations which are elliptic in the sense of Douglis and

Nirenberg [4, pp. 504ff.]. These Cauchy problems arise from attempts to answer

the following question about solutions of the elliptic systems of Douglis-Nirenberg.

Question. Must a solution U of the homogeneous generalized elliptic system

LU = 0 which vanishes identically (to some appropriate order) on a hyperplane be

identically zero?

For a single elliptic operator with analytic coefficients the answer is given

in the affirmative by the Cauchy-Kowálewski theorem and the Holmgren uniqueness

theorem. The result extends immediately to standard elliptic systems but not to

Douglis-Nirenberg elliptic systems. To see this and to fix ideas, one should keep

in mind the following example. Write the Laplacian D2 u + D2 u = 0, where  D   =

d/dx,  D   = d/dy as a first order system by introducing new unknown functions

u , u2, k3 and setting u = ul, D   u = u2, D   u = a3 to obtain
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D  u2 + D  z/.3 =0,
X y '

(1.1) Dx"'-"2 =°.

Du1 -Z23 = 0.
y

The principal symbol of (l.l) is singular. Hence this system is not elliptic

under the standard definition. However the system is elliptic in the generalized

sense of Douglis-Nirenberg.

Now recall that if y = 0  is an arbitrary but fixed hyperplane in real (xj, — ,

x  , y)-space then any standard elliptic system of order m can be written in the form

n

(1.2) F = LU = ADmU + Y B Dm U + lower order terms,
y *-^ IX. '

<=1 ' p-      ■ p.-       ■

where DmU, Dm U denote the vectors whose  ;th components are D   W1   D   ' W
y    '    x j ' r y x ¡

respectively, m = max. p. and where A  is nonsingular in some neighborhood of

y = 0. Assume that the coefficient matrices A, B . are analytic in a neighborhood

of y = 0. Then solving (l.2) for the highest order normal derivatives  DmU one can

use the Cauchy-Kowalewski theorem to obtain an analytic solution  U of (1.2)

with prescribed analytic Cauchy data

DyV-^\=o=°.       /,.-0,...,i.f.-l,

where the A1 ate analytic near y = 0. Since (l.2) is linear the Holmgren theorem

guarantees uniqueness among all solutions.

A glance at the Laplacian system in two variables mentioned above shows

that writing the system (l.l) in the form (1.2), where m = 1, yields a singular ma-

trix A. That is, for Douglis-Nirenberg elliptic systems one cannot always solve

for the highest (at least in the most naive sense) order normal derivatives in the

system. In fact it will often happen that, for a particular system elliptic in our

sense, every hyperplane is characteristic according to the standard definition of

characteristic.

However, uniqueness and even existence for the usual Cauchy or initial value

problem requires that the initial hyperplane be noncharacteristic. The alternative

to having a free initial surface is to restrict the initial data by some compatibility

conditions determined by the system. We formulate such conditions in §4. These

conditions are replaced in §6 for a special subclass of our elliptic systems by a

new condition which in some sense guarantees that every hyperplane is free with

respect to the given system.

In addition, A. Plis [9, p. 600] has discovered (Cohen independently found

similar examples [3]) surprising examples of elliptic differential operators  L in

R"+    with C     coefficients for which uniqueness for the Cauchy problem does not

hold for C     Cauchy data. Hence we restrict our attention to the case of analytic

data and analytic coefficients.

We will proceed as follows:
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In §2 we fix notation and introduce the generalized notion of ellipticity due to

Douglis and Nirenberg. Examples are used to show the diversity of this class of

systems.

In §3 we review some standard facts. In particular we note that all of out el-

liptic systems can be reduced to an equivalent system of first order which is also

elliptic and that ellipticity is preserved under orthogonal changes of the indepen-

dent variables.

In §4 we formulate a "formal" Cauchy problem for our systems and introduce

necessary and sufficient compatibility conditions for this problem to have a unique

analytic solution. Here we are guided by Leray's work [6] on hyperbolic systems.

Existence and uniqueness for the formal Cauchy problem is proved in Theo-

rems 1 and 2 respectively of §5. The proof of existence uses techniques intro-

duced by Morrey and Nirenberg [7, p. 280] for strongly elliptic systems. Unique-

ness is shown to follow easily from existence.

In §6 a second Cauchy problem is formulated for an important subclass of

constant coefficient elliptic systems. This Cauchy problem in some sense elimi-

nates the need for compatibility conditions and will occasionally be referred to as

the "naive" Cauchy problem. Existence and uniqueness for this naive Cauchy

problem are stated in Theorem 3. The proof makes use of Theorems 1 and 2.

We make several remarks in §7. Most importantly we note that the systems

considered in §6 include all standard elliptic systems with constant coefficients.

The obstacles to extending this theorem to a wider class of elliptic systems ate

briefly discussed.

The writer wishes to express his gratitude to Ptofessor Jerry L. Kazdan for

suggesting the central question of this papet and for his consistent encouragement

and advice.

2.  The systems to be considered. We will be concerned with functions u(p)

defined in domains in R"     , where p = (x  , • • • , x     x     ,). Denote x     ,   by y
1 n'    «+1 «+1     '   J

and (x  , •• •, x ) by x, so that p = (x, y). We use the notation D . = d/dx., D =

(Dl' •••'Dn+l)- If a=(ai> ••••an + i) weset Dl' ••* D°nV\l =°a- when we

distinguish y as the normal direction to a hyperplane we write  D     in place of

Dn+V li a= (ap •• • , a„, 0) we write D* rather than Da to emphasize that the

operator involves only "tangential derivatives".

We treat systems of partial differential equations of the form

N

(2-1) Z lAp. D)uKp) m f{p),       i = 1.N,
z = l

where the  A(p, D) are polynomials in D with coefficients depending analytically

on p over some domain 3) in Rn+1. Following Douglis-Nirenberg we assume that

two sets oí integer weights s j, • • •, sN;  t , • • •, í     are associated with the
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equations and the dependent variables  z/7 respectively and that

(2.2) deg Lip.O < s. + t.,

where deg refers to the degree of /.. as a polynomial in £ If s. + t. < 0, then it

is understood that /.. = 0.

Subtracting the constant s = max s. from the system of weights Sj, •••, *N

and adding the same constant to the system t v • • •, tN one obtains new integer

weights s.,••', sN; i,,'",lN also satisfying (2.2) but for which

(2.3) s. < 0; max s. = 0,       iml,...,N.
i

Since for each fixed ;' not all /.. vanish identically, we conclude that for some

z, s . + z. > 0. This together with (2.3) gives

(2.4) 0<t.,       ;=1,...,N.

Definition. A system of the form (2.1) is elliptic in the sense of Douglis-

Nirenberg if and only if

(2.5) Up. ¿fi h det (/;. .(p, £)) ¿ 0       for real Ç ¿ 0,

where /. .(p, Ç) consists of the terms in /•■(/>, <f) of exactly order s. + t..

Condition (2.5) is equivalent to requiring that det(/..(p, £>)) be a standard el-

liptic operator of order  2; _Q(s   + t.).

The above definition of ellipticity is somewhat unsatisfactory in that it is

not at all obvious how to determine whether for a given system an appropriate set

of integer weights can be found. Volevich [10, pp. 155ff.] introduced an easily

verifiable definition of ellipticity which he showed to be equivalent to that given

by Douglis-Nirenberg. He considers systems of the form (21). The determinant A(p, çf) =

det(/..(p, f)) consists of sums and differences of terms of the form /, .  ■••/», .  •
'i l,ii       Nt'N

Let R be the maximal degree of such terms and let r be the degree of A(p, çf), so

that in general r < R. Then the system (2.l) is elliptic if and only if r = R and

A (p, çf) ^ 0 for real cf / 0, where A'(p, cf) is the principal part of the polynomial

A(p, 0, that is the part of degree r.

Remark 1. As Douglis-Nirenberg point out [4, p. 505] ellipticity as defined

above may be destroyed by nonsingular transformations of the equations or of the

dependent variables. Hence, strictly speaking, a system is elliptic if and only if

there are nonsingular transformations of the equations and the dependent variables

which transform the system to one which is elliptic in the sense defined above.

Remark 2. Every standard elliptic system (1.2) is elliptic in the generalized

sense just defined under the choice of integer weights s. = 0, z = 1, • • •, N; t.=

p., where p. are as in (1.2).

The following examples from [4] and [l] give some indication of the diversity

of the systems included under our definition of ellipticity.
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Example 1. Recalling the first order system for the Laplacian (l.l) we note

that according to the standard definition the characteristic determinant of (l.l) is

fl      ¿2

0

0

0.

-el + e2

Hence this system is not elliptic in the standard sense. However, with the weights

s. = 0,  s2 = s, = - 1  assigned to the first, second and third equations of (l.l)

respectively and the weights  t. « 2,   t2 - 1 = t, assigned to u , u , u° respec-

tively, the characteristic determinant according to our definition becomes

0     f,    fa
íj   -i   o

Z2   o    -i

Consequently the system is elliptic in our generalized sense.

Example 2.

Du1 -D2u2 = f,,
x y ' I

(D2 + aD )ul + (D5 + D    )u2 = f^.
y y x xy '2

Taking Sj = 0, s2 = 1, /, = 1 and r2 = 2, the characteristic determinant has the form

f22 *5
-fl+íí.

Hence the system is elliptic in our sense, although not in the standard sense.

Note. Henceforth elliptic means Douglis-Nirenberg elliptic.

3.   Some elementary lemmas. For elliptic systems of the form (2.1), conditions

(2.3) and (2.4) can be shown [4, p. 506, Remark 2], to be no more general than

(3.1) 0<t.,    for 7 = 1, • • • , /V;       0 = s = max s .
' i

Consequently systems of integer weights associated with our elliptic system will

always be assumed to satisfy (3-l)-

Recall that in Example 1 of §2 an elliptic system containing derivatives of

order greater than 1 is reduced to an equivalent elliptic system which contains

derivatives of at most order one. This is a special case of

Lemma 3.1 [l, p. 40]. Every elliptic system of the form (2.l) can be reduced

to an equivalent elliptic system in which no derivatives of order greater than one

appear.

The proof of Lemma 3-1 is given in [lJ. We do not repeat it. However a rather

detailed example of such a reduction is carried out in the proof of Theorem 1.

Remark. A generalized elliptic system of first order, that is one containing
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no derivatives of order greater than one, may have attached to it a system of

weights {s .\, [t.\ for which s.   + /.   > 1  for some indices  i , j . Example 1 of

§2 illustrates this since there s   + t   = 2.

One further preliminary is quite useful. As pointed out in the introduction we

wish to study ptoperties of solutions   U oí elliptic systems of the form (2.1) sat-

isfying certain initial conditions on some hyperplane or more generally on some

analytic hypetsurface in  Rn+1. It will be convenient to introduce new coordinates

w ,, w,,'••> w     ,   in  P"       which depend analytically on x    • • •    x     ,   and fot
1'      2 '     n+1 r ' ' 1' '    n+1

which the initial hypersurface becomes the hyperplane  w     . ~ 0- One can show

that the new system obtained by rewriting (2.1) in terms of these new coordinates

is itself elliptic. To be precise one has

Proposition 3.2. Given a system of the form (2.1) elliptic in a neighborhood

Q, in R"+1 and a point p   e (0 O M), where  M  is an analytic hypersurface in

Rn+ ,  then there is an analytic diffeomorphism S transforming OHM into the

hyperplane x        = 0,   transforming  p     to the origin and transforming the given

system to another elliptic system of the form (2.1). Furthermore, if the original

system has analytic coefficients, then the transformed system also has analytic

coefficients.

Proof of Proposition 3.2. The proof is routine but lengthy. We omit it.

In §§4 and 5 we make use of Proposition 3.2 to reduce the study of analytic

Cauchy data on analytic hypersurfaces to the study of such data on hyperplanes.

4.  The formal Cauchy problem. In this section we describe a "formal" Cauchy

problem for elliptic systems of the form (2.1) which is a somewhat modified ex-

tension of the Cauchy problem discussed by Morrey and Nirenberg [7, p. 284] for

strongly elliptic systems. In order to insure existence fot this formal Cauchy

problem we also introduce necessary compatibility requirements . (Morrey-Niren-

berg [7] were not concerned with questions  of existence and consequently com-

patibility conditions are not imposed there.) In formulating our compatibility con-

ditions we were guided by those imposed by Leray [6, pp. 206ff.] for his gener-

alized Cauchy problem for generalized hyperbolic systems.

We shall seek solutions of (2.1) on domains of the form GR u aR  where GR

is the open hemiball

GR = \(x, y) £ Rn + 1\x] + - - - + x2n 4- y2 < R,   y > Oj

and

°R = \(x, y) £ Rn + 1\x] + ... +x2n<R,  y = 0|.
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Recall that for an elliptic system of the form (2.1) the highest order derivatives of

zz; which appear are of order < /.. This leads us to make the following

Definition. U is a solution of the formal Cauchy problem fot (2.1) in

G   Uc7R  with formal Cauchy data 0 = {A11, where $ is analytic in GR u aR  if

U is a solution of (2.1) in GR U aR  and satisfies

(4.1) Dk'\u'-A')\y=0 = 0,       0<k.<t.-l, y=l, ...,/V.

Remark. This definition is not canonical since it is tied to the particular

system of weights chosen and, as pointed out in [lO], for a system of the form

(2.1) there may be many systems of integer weights satisfying (2.2) and (3.1).

For arbitrary $(p), analytic near the origin, the formal Cauchy problem for

(2.1) need not have a solution as is seen by returning to Example 1 of §2. We

seek a solution of Example 1 satisfying the formal Cauchy conditions

z^-rA^O,        Dy(ul -ç6I) = 0,

-on y = 0.

zz2-rA2 = 0,        zz3-03 = O,

Thus, for example, if D A   - Ai / 0 on y = 0 the problem has no solution. To

guarantee existence it is necessary to introduce the following compatibility con-

ditions.

Definition. If <£(/>) is analytic near the origin and if

(4.2)
K   ( N \

Dy '( Z I if P. D)AKp) - fip) J = 0;       0 < K. < - s. - 1, / - 1, •. -, N,

on y = 0, where Q..(p, D)) is as iri (2.1), then $ is said to satisfy the formal

compatibility conditions for Cauchy data for (2.1). In case   (— s. — l) < 0, no as-

sumption is made concerning the zth equation in (2.1).

For Example 1 of § 2 considered above the compatibility requirement is that,

on y = 0, $ satisfies

DxA1~A2 = 0,       DrAI-(7j3 = 0,    on y = 0.

Lemma 4.1. It suffices in solving the formal Cauchy problem for elliptic sys-

tems of the form (2.1) to consider only first order elliptic systems of the form

(2.1).

Proof of lemma.   Reduce the original elliptic system of the form (2.1) to a

first order system via Lemma 3.1. The formal Cauchy data of the original system

is then naturally reduced to formal Cauchy data for the equivalent first order sys-
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tem. This "reduced" formal Cauchy data can be seen to satisfy the formal com-

patibility conditions associated with the new first order system.    Q.E.D.

5.  Existence and uniqueness for the formal Cauchy problem. In this section

we prove an existence theorem for the formal Cauchy problem discussed in §4.

Uniqueness then follows easily.

Theorem 1 (existence for the formal Cauchy problem). Let $ be an analytic

¡unction of p defined in some neighborhood fl of the origin in R"      and satisfy-

ing the compatibility conditions (4.2) with respect to the system (2.1). Let (2.1)

be elliptic in GR Uct„ C 0. Then there exists a solution  U of (2.1) analytic in a

neighborhood of the origin, GR, U aRl, and satisfying on y = 0 the formal Cauchy

conditions (4.1).

Proof of Theorem 1. As pointed out in Lemma 4.1 it suffices to consider the

case in which (2.1) is of first order. The basic idea of the proof is to replace (2.1)

by a system which can be solved explicitly for the normal derivatives D 'u1, j =

1, • • •, N. The proof consists of four steps, Steps 1 and 2 making use of techniques

introduced in [7, p. 280] for the case of strongly elliptic systems.

Step 1. Differentiate the z'th equation in (2.1) (- s.) times in the normal or y-

direction. This gives the system of partial differential equations

N

(5.1) £ \/p. °)"'(p) = Dy   'ftp),       i=l,..-,N,

where

(5.2) \Ap, D) = D~S'lAp, D).

From (5.2) it follows that

(5.3) degA..(p, £><*,+ t.-s.= t..

Step 2. Solve the system of equations (5.1) for the normal derivatives D ;«7.

To do so, first note that all solutions of (2.1) in GR are known to be analytic in

GR   (cf. [7, §5]). Hence in GR  we may simplify (5.1) by interchanging the order

of differentiation. This observation together with (5.3) and the fact that (2.1) is

assumed to be of first order permit us to replace (5.1) for p £ GR  by

(5.4) AipHD4'!/*) + Ç   ,       ßaßD^Da'A) = dp).
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where A, Bag ate N x N matrices whose entries are real analytic functions of

p and where  G = (D   s'f.).
f y     ' i

To complete Step 2 we require

Lemma 5.1. For p£GR u oR, det A(p) ¿ 0.

Proof of Lemma 5.1. The lemma is a direct consequence of (5.2) and the el-

lipticity of (5.1).    Q.E.D.

Consequently for p £ GR U  oR  one can solve (5.4) and after simplifying obtain

N a

(5.5) 0V=g.(f)+Z   I^JL.,   bap)DxDyU''        l= l' •••' N'

where g. and í>a. Áp) ate real analytic functions of p, p€ GR U <7R.

Szep 3. Solve (5.5) for  U by reducing (5-5) to a first order system to which

the Cauchy-Kowalewski theorem applies. To do so introduce the new unknown

functions zz ' '  defined by

(5.6) z/''=DV,    for ¿.= 0, •••, t.- 1, /= 1, •••, N.

In this notation u' = u'• . If we set gz' = g. and gl,s = 0 for s > 0, then by re-

placing the normal derivatives in (5.5) by the corresponding zz ' ; we obtain the

first order system of equations

d/*'-/*'+£ z: z *íái>v'-*';
(5.7) ;

i, j= 1, ■■ ., N,   k.= 0, • •., /.- 1,

where again g '   !  and  Z>. ,     o are real analytic functions of p. Also in the new

notation the Cauchy conditions (4.1) for (2.1) become

(5.8) U;'*'-D^cS')|y=0 = 0;       ,= 1, ...,N, *.= 0, ...,tr 1.

The Cauchy-Kowalewski theorem (cf. for example [5, pp. 28ff.]) applies to

the system (5.7) with analytic initial data (5.8) to give a uniquely determined

real analytic solution \v ' ]\ of (5.7)—(5.8) in a neighborhood GR, u a   , of the

origin. The Cauchy-Kowalewski theorem does not rule out the existence of non-

analytic solutions. However, as we shall see later, none exist.

Step 4. The final step of the proof we state as

Lemma 5.2. Let  V = \v'\ « \v''   \. Then  V satisfies (2.1) on G_, u oRt and

the Cauchy conditions (4.1) on oRi.
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Proof of Lemma 5.2. Since \v ' '\ satisfies (5-7)-(5.8) on GR, U a   , it fol-

lows that  V satisfies (5.5) on GR, U oR,  and (4.1) on aRl. From the derivation

of (5.5) one sees that V satisfies (5.5) on GR, if and only if V satisfies (5.1) on

GRi. Since  V satisfies (4.1) on aR, and since $ satisfies (4.2) one obtains   V

satisfies (5.1) on  aR $ U GR , .    Q.E.D.

To complete the proof of the theorem recall that the z'th equation of (5.1) can

be written as

N

(5.9) D~S>  £   IAp, D)uKp) = D~Sif.(p).
/=»

Integrating (5.9) with respect to y and using the Cauchy data (4.1) and the com-

patibility conditions (4.2) to evaluate the resulting constants of integration, one

sees that  V is a solution of (2.1). To verify this assertion it suffices to consider

the first step in such an evaluation.

Assume for some i,  1 < z' < /V, that - s. > 0. Then for y sufficiently small

and for p £ GR, U aRi,

N

Cy=tD~Si   Z   I Ap, D)vKp)dy=  (V=tD~Sif[p)dy.
J y=o   y      ~í   î7 J y=o   y     l

Consequently

-s -\    N -s -1

Dv   '       Z   lAp, D)v'{p) = D     '     ftp) + q(xv..-, x).
,=1

Evaluate q(x) by substituting \(f>,\ from (4.l) for if7! on y = 0 and recalling that

(4.2) requires

1       N !■S   —1    _^ —S.— l

D     ''       Z  lAp, D)cf>> = D     '     f.    on y= 0.y ..   *t y '

This gives q(xx, •••, xn) = 0 and hence

1     N -s -1
D~S'~'   L   l-Lp. D)vf.m D     l    fip).

y '—'     i, r y '

7=1

Successive integration and evaluation of the constant of integration yields the

desired result.

This completes the proof of Lemma 5.2 and of Theorem 1.     Q.E.D.
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We can now easily resolve the question of uniqueness for the systems of

Theorem 1. It follows from the derivation of (5.7) that any solution of (2.1) with

the Cauchy data (4.1) satisfies (5.7) with the initial conditions (5.8). Consequent-

ly the existence of two distinct solutions of (2.1)—(4.1) would imply the existence

of two distinct solutions of (5.7)-(5.8). This makes clear

Theorem 2 (uniqueness for the formal Cauchy problem). The formal Cauchy

problem (2.1)—(4.1) has a unique solution U £ C . This solution is analytic in a

neighborhood of the origin.

Proof of Theorem 2. The Holmgren uniqueness theorem (cf., e.g., [5]) applies

directly to (5.7)—(5.8) to give uniqueness for (2.1)—(4.1).     Q.E.D.

We can now give a partial answer to the question in the Introduction.

Corollary 5.3. Suppose   U £ C1   is a solution of the elliptic system (2.1) sat-

isfying (4.1) for 0 = 0.   Then  U = 0  in some neighborhood of the origin.

Proof of Corollary 5.3. One can easily show that í> = 0 satisfies (4.2). Hence

we can apply Theorems 1 and 2 to conclude that   U is the unique analytic solu-

tion of (2.1) satisfying (4.1) for $ = 0. But from (5.5) in the proof of Theorem 1 it

is cleat that all the Taylor coefficients of U must vanish on y - 0. Since  U is

analytic, U = 0 in a neighborhood of the origin.     Q.E.D.

6.  The "naive" Cauchy problem. In this section we restrict our attention to

first order constant coefficient elliptic systems satisfying a further condition

which is described below. For these systems data will be specified only on hy-

perplanes and not on more general hypersurfaces. The main result is stated in

Theorem 3. In §7 it is shown that the systems considered in this section include

the standard elliptic systems.

We consider a constant coefficient elliptic system of first order of the form

(2.1) with weights  s ., t. satisfying the usual conditions (3-1). Since (2.1) is as-

sumed to be of first order it can be written as

(6.1) (aD    +  ¿ BJ).+ C\l7= F,

where  F = (fAp), • • •, fN(p)) and A,B. and C and NxN matrices with real con-

stant entries. The constant coefficient elliptic systems of the form (6.1) with

which we are concerned in this section satisfy the further condition

N

(6.2) Rank of A = £ (s  + t) s ¡i.
¿=1
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Remark. It is clear from (5.7) and (6.1) that in general rank of A > p.

We replace (6.1) by a more tractable system in

Proposition 6.1. There exists a nonsingular N x N constant matrix  T such

that if V = T~   U then  U satisfies (6.1) if and only if V satisfies the system of

equations

(6.3) DyV = H(D)V + F,

(6.3)

(6.3)"1 V1= G(Dx)V + I,

where  V = (v , • • •, f ),  V = (v ̂ + , • • • ,v   ), H and G are p. x p and (N — p) x p

dimensional matrices respectively whose entries are polynomials, possibly of de-

gree greater than one, in the tangential derivatives D  , and where  I(p) is an ap-

propriate real analytic function of p.

The proof of Proposition 6.1 is given at the end of this section immediately

following the proof of Corollary 6.3.

We can now make the following

Definition. U is a solution of the "naive" Cauchy problem for (6.1) with

Cauchy data V on y = 0 if V satisfies (6.3) and if {V - $) |   =Q = 0, where ¥ -

T<D and $ = (A1,. • •, Añ.

The next lemma shows that all the Taylor coefficients on y = 0 of a solution

of (6.1) are uniquely determined by its naive Cauchy data.

Lemma 6.2. // V = 4> on y = 0 and if

(6.4) î»1= G(Dx)$ + /    on y = 0,

where 0 is an arbitrary real function of p analytic near the origin, $ = (f/>/i+ , • • • ,A )

and G, I are from (6.3) , then

(6.5) DaV = Da$     on y = 0,  for all a.

Proof of Lemma 6.2. First, since $ = V on y = 0 one obtains that Dx $ =

D^V for all jS. If Da= D^zA"1-1   it follows from (6.3) by induction on  \a       I  that
x " x    y ' '    n +1 '

on y = 0, Da<I) = Da V for all a. Similarly one obtains from (6.4) by induction on

|<x     j| that D1«1- DaV-Lon y = 0, for all a.    Q.E.D.

The main result of this section is

Theorem 3. Let $ be as in Lemma 6.2. // (6.1) satisfies condition (6.2) then

in some neighborhood of the origin there exists a unique (among all C   ¡unctions)

analytic solution  U of (6.1) satisfying  U = V on y - 0 where *P s 7$,  T as in

Proposition 6.1.
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Proof of Theorem 3. Use Lemma 6.2 to verify that, for (6.1) rewritten in the

form (2.1), W satisfies the compatibility conditions (4.2). The theorem then fol-

lows from Theorems 1 and 2.    Q.E.D.

Theorem 3 permits us to give another partial answer to the question of §1.

Corollary 6.3. // U £ Cl   is a solution of (6.1) and if U = 0 on y = 0, then

U = 0 in a neighborhood of the origin.

Proof of Corollary 6.3. To apply Theorem 3 verify that, for ¥ = 0, 0 = T"!W

satisfies (6.4).    Q.E.D.

It remains to give the

Proof of Proposition 6.1. Condition (6.2) implies that (6.1) can be written in

the form

(6.6) t,P V + Z  B.D.V + CV = F,
M   y

¿=1

where n    is defined by ^(«j, • • •, «N) ■ (av ' ' '. ap., 0, ••• ,0). To obtain (6.3)

separate the first p equations and the last (N - p) equations of (6.6) by writing

n n

(6.7)    D  V + £ r D V + £ riDiVL+ MV + MVX= F,
y       , = i     '   '        ¿=i

(6.7)

(6^ IEßpl + e\v + (z #,♦ A-1*

where the matrices ß{, ß., T., T., C, C , M, M   are defined schematically as

B .=

p  rows

N -p

rows

'p columns

r

0,

N - p  columns>

r1

tf

(6.8)

C =

p rows

N -p

rows

N - p columns

MJ

e1

B. and C as in (6.6).
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To complete the proof of Proposition 6.1 solve (6.7) for  V  in terms of tan-

gential derivatives of V and of F and substitute the result in (6.7). To do so,

however, requires

Lemma 6.5. In (6.7) , det(2"     /3. <f. + C ) = a / 0, where a  is a constant.

Proof of Lemma 6.5. The proof follows from the ellipticity of (6.1) and a te-

dious though routine computation of the required determinant. This completes the

proof of Lemma 6.5 and of Proposition 6.1.    Q.E.D.

7. Remarks. A. The systems of Theorem 3, that is, those of the form (6.1)

which satisfy (6.2) are quite a broad class. In particular every standard elliptic

system (described in §1) can be reduced to a first order system of the form (6.1)

satisfying (6.2).

The procedure is precisely that used in Lemma 3.1 except for the following

difference. We restrict attention to C    solutions where  K is the order of the

standard elliptic system under consideration. Then we may interchange the order

of differentiation in the system at will. In particular if a term of the form D   appears in

/..(D) we rewrite it as Da Dß,  |a'| + |j8| = |a|.
77 x      y

Otherwise the procedure is identical to that of Lemma 3.1. The resulting first

order system can be shown to be of the form (6.1) with rank A = 2._ As . + t.).

B. The writer knows of no nontrivial example of a system of the form (6.1)

which fails to satisfy (6.2). However, trivial examples such as the following

abound.

Du2 + D  zz3 = o
X y

(7.1)
D u1 - u2 =0

d y    - «3 = 0

D  zz2 + uA = 0
y

with the weights  Zj = 2, t2 = 1, ¿3 = 1, f4 = 0, Sj = 0, s2 = - 1, s   = - 1, s^ = 0.

If (7.1) is written in the form (6.1) it is seen that rank A = 3 ^ 2 = 2¿   .is. + t).

However, the unknown  u    can be eliminated in (7.1) and written explicitly in

terms of the other unknown functions  zz  , u  , u    and their derivatives, viz.,

u   = D u2. Now the reduced system consisting of the first three equations of (7.1)

does satisfy (6.2). Consequently Theorem 3 applies to these equations, that is,

specifying  V = |zz  , u   \ on y = 0 determines a unique analytic solution  U of

(7.1).

It would be of interest to find a nontrivial example of the type discussed and

to resolve Theorem 3 in this case.
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C. For analytic coefficient systems of the form (6.1) the proof of Theorem 3

breaks down at several points. In particular the analog of Lemma 6.5 does not

hold in this case. Thus it remains open as to whether Theorem 3 can be extended

to analytic systems of the form (6.1) which satisfy (6.2).
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