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COMPLETELY SEMINORMAL OPERATORS
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ABSTRACT. For f€ LXE) we consider the sin gular integral operator
Tef(s) =sf(s) + @~ le fle)e — $)"lds. These singular integral operators
are a special case of operators acting on a Hilbert space with one dimen-
sional self-commutator. We discover generalized eigenfunctions of the
equation T f= 0 and, for p <2, we will give an LP(E) solution of the
equation TEf= X The main result of the paper is an example of a non-
zero LE) solution of TEf= 0, with A = 0 a boundary point of the spec-

trum of TE'

Let R be the real line and E a bounded Lebesgue measurable subset of R.
For any p, 1 < p < =, the notation L?(E) will denote the usual Lebesgue space
over E. Fix a function ¢ in L®(E). The operators of interest are defined for
IGLP(E), p>1, by
1 T, f(s) = sfis) + 7= (o) [ (& — )7 1B0)fte)d.

The singular integral is interpreted as a Cauchy principal value. The operators
Ty defined by (1) are bounded linear operators on LP(E), for p > 1.

In the case where p =2 the operators defined by (1) are of special interest.
Indeed, they are the prototype of an operator T acting on a Hilbert space H,
where T*T —~ TT* is one dimensional (see, for example, Pincus [7] or Putnam {sh.

The spectrum of the operator T4 defined by (1) on L2(E) is described in
[3] and Putnam [9]. Recently, the author, in [2], determined the essential spec-
trum of Ty on L2(E). In this paper we initiate an attack on the problem of deter-
mining the eigenvalues of T4. The only case where the point spectrum of T,
has been computed is when E is an interval and ¢ is a smooth function (see Putnam [9]).

We will be concerned mainly with the special case where the function ¢ in
(1) is the characteristic function Xg of E. In this case we will write T for the

operator T"E’ In $3 we will determine explicitly some generalized solutions of

Presented to the Society, January 25, 1973 under the title Boundary eigenvalues of
hyponormal operators; received by the editors May 9, 1972.
AMS (MOS) subject classifications (1970). Primary 47B35; Secondary 45E05.
Key words and phrases. Singular integral operator, seminormal operator.
Copyright © 1973, American Mathematical Society

133



134 KEVIN CLANCEY

the equation T f= xg. These solutions will permit us to write down some gen-
eralized eigenfunctions of the equation Tgf=0. In §4, with severe restrictions
on E, we will give some examples of L%(E) solutions of Tg (=0, where A=0
is a boundary point of the spectrum of Ty on LZ(E).

The relation between the operators T 4 given by (1) on L?(E) and the
theory of nonnormal operators on a Hilbert space has already been noted. More
generally, an operator T on a Hilbert space H is called seminormal in case its
self-commutator T*T — TT* is semidefinite. Clearly, every operator T for which
T*T -~ TT* is one dimensional is seminormal. A seminormal operator T is said
to be completely seminormal in case there are no nontrivial reducing subspaces
for T on which T is a normal operator. An easy argument establishes that Ty
defined by (1) is completely seminormal if and only if ¢(t) £0 a.e. on E.

An eigenvalue A of an operator T on a Hilbert space H is called a normal
eigenvalue in case (T - A)x, =0 for x, in H if and only if (T* - X)x; =0. It
is obvious that a completely seminormal operator can have no normal eigenvalues.
The following theorem of Putnam [10] and Stampfli [11] establishes that a bound-

ary eigenvalue of a seminormal operator is often a normal eigenvalue.

Theorem. Suppose A is a boundary eigenvalue of a seminormal operator T.
If Ay is accessible from the resolvent set of T, in the sense that there exists a
sequence A — A satisfying A, = Agl/dr(A) — 1 (bere, d(X) denotes the
distance from A to the spectrum), then A, is a normal eigenvalue.

It is apparent from this theorem that boundary eigenvalues of completely semi-
normal operators are ‘‘hidden’’ in the boundary. This makes the construction of
our examples in $4 nontrivial.

Brennan [1] has given examples of seminormal (actually cosubnormal) oper-
ators with boundary eigenvalues. If X is a compact set in the plane, let R3(X)
denote the L?(dxdy) closure of the set of rational functions with poles off X.
Brennan proves that if X is nowhere dense, either R2(X) equals L? or the adjoint
of multiplication by z on R*(X) has a boundary eigenvalue. These examples do
not have the property that the self-commutator is one dimensional.

It is hoped that this paper will lead to additional results on the fine structure
of the spectrum of the operators defined by (1).

2. This section is concerned with preliminaries and develops some techniques
for solving finite singular integral equations. The available literature on this
problem (for measurable coefficients) is limited. Our main references are the
book of Tricomi [12] and a pﬁper of Widom [13]. -

If / belongs to L?, then we will denote the Hilbert transform of [ by f (x) =
7~ [f ()t - x)~ 1 dt; here, the singular integral is a Cauchy principal value. It is
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a well-known theorem of M. Riesz that, for p>1, f— f is a bounded linear oper-
ator on L?. The Cauchy integral of a function f € L?, for p > 1, is the function
Cf, which is separately holomorphic in the upper half-plane 7, and lower half-
plane 7_, defined by Cf(z) = n~1[f(t)¢ - z)~'dt. If f€ LP, then the limits
Citx) = Lim |,Cf(x + iy) and Cf “(x) = Lim_, Cf(x - iy) exist a.e. and satisfy
the barrier relations
(2) Cf*-cCf~=2f, cfr+cf =2f.

The notation H% will be used for the Hardy space of the upper half-plane. To
be more precise, for p >0, we define

H® ={®: © is analytic in 7, Supfl@(x +iy)|Pdx < oo}.
' y>0

The usual Hardy space of the disc will be denoted by H?,

The following theorem appears in Hille and Tamarkin [6].

Theorem 1. Let p > 1 and © € H8, then ®*(x) = Lim ) ,®(x + iy) exists a.e.
and belongs to LP. The boundary function ®% satisfies

3) Re @ = (Im )",

We next describe a technique for solving finite singular integral equations.
Let 0 be an essentially bounded real function with compact support. We define
the function

(4) 8G) = exp[r~! [ 6N -2)"1d]-1, Imz 4o

Clearly, the limit function ®*(x) = Lim_ ,®(x + iy) exists; in fact, using (1) we
obtain

(5) 0* = explf +i6] - 1.

When the function ® defined by (4) is in H%, for some p >1, then from
Theorem 1

~ ~N o N
6) cos Bexp @ — 1 =[(sin G exp 6)] .
In §3 we will show how some judicious choices of 6 turn (6) into the identity
TE/ = Xg-

Our first task is to obtain conditions sufficient for ® defined by (4) to be in
H%, for some p > 1. In fact we will prove, in Lemma 2, that if 0 given by (5) is
in L?, for some p > 1, then @ defined by (4) is in H2. The reader is reminded
that there exist functions analytic in 7, which have L? limit functions on the
x-axis but fail to be in H5. The function ©(z) = e”#%/(l - iz) behaves in this
manner.

The next lemma is preparatory for Lemma 2. It is similar to a lemma of
Gabriel [5]. First we introduce some notation.
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For each y >0, l_'y will denote the circular arc in the unit disc which is the
image of the line segment {x + iy: — @ < x < a} under the map { = (i - 2)/(i + 2);
here, a > 0 is fixed.

Lemma 1. Suppose f€HP, for some p > 1, then there exists for each y, >0

a constant Myo' such that

sup |/z)Pd|z| <M
0<ysyq fry o

Proof. If /€ H?, then
™ ety ¢ ;
l/(é)lp Sf_ﬂ 5%7- Re [:‘T-——_Z] l/(eu)|pdt.
This result appears in Duren [4, p. 28]. Therefore,
it
p moeine [ L Re|%tS | a1
Ji, woraict < 7 e f ke [ =L ae

Clearly,

elt )
fl‘y%ﬁRe[ei‘ié]dlas-fC 21” Re[ +<j|d|€| et 4£-1,

where C_ is the circle that is the image of Im z = y under C=(G-2)/(i+2).If

a, is the center of C (obviously, for y >0, -1 <a <0) and if 7, is.the radius
of C , then when eit ;é —~ 1, the mean value theorem for the harmomc function
Re [(e" + ¢)/(ett - )] permits one to conclude

fc = Re[ g]dlﬁl_

(zt)pd
swp [ QNP < f-"" i

O<y<yp - I |

a|

- I y
It follows that

This completes the proof of the lemma.

Lemma 2. Let 0 be real valued, essentially bounded and have compact sup-
port. Define O(z), for Im z >0, by (4). If @* is in LP, for some p>1, then ©
belongs to HE.

Proof. Choose a > b >1 such that 0 = 0 off [- b, b]. The presence of the
factor — 1 in the definition of ® permits an easy power series expansion to prove
that for every p>1 and y, > 0, there exists an MP such that

(7 sup

|O(x + iy)|Pdx < My,
y>0

R~(—-a,a)
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and
(8) sup Ija 1O + iy)|Pdx < M.
yzyQ
For Im z £ 0, we define
@) 1
| ®,() = exp 1 Litz g,
©) f -2z 14 1?

We have introduced the function @)0 because it transfers over to a function on the
unit disk in a simpler manner than does the function ®. From the observation
1+¢2 1 t

(l+22)(t—z) t-z 42,1’

it is clear that @ + 1 and @, differ only by a multiplicative constant. Hence,
there is an Np such that

(10) sup f |®(x + iy)|Pdx < N
O<y<yy

if and only if there is a Q such that

0, )P
an 0<Sy‘;l;0f | vy I 2y (1 +y)?

<Qp

Also, the hypothesis that ®" is in L?, for some p > 1, implies that the
function

12) (¢] (x) = exP[ f 00 1+ex s dt + zO(x)]

t—x 1442

is in L?(dt/(¢? + 1)). The function ®0 is the limit of @ (x + iy) as ylo.

We next transform our functions to the disc. For |{| <1, we define W({) =
0,1 - )/ +{)) and, for - 7 <t < m, we define gle'’) = O(tan t/2) =
8G:(1 - ei)/(1 + e't)).

The conformal map z = i(l1 = {)/(1 + {) of =, to the disc carries the lines
x = constant to circles orthogonal to the unit circle. It follows that

(13) Y(e®) = Lim Y(e'*) = exp[gle’)) + igle™)];

r—1
here, we have set g(e'!) = 2n)~ lfzﬂ gle’)ct((s = 1)/2)ds. The function g is
called the conjugate of g. The hypothesis on @)g implies that W(e’?) js in L?
on the unit circle.

From the representation

(14) W) = (7 el

() = exp[2 f n T é_g(e )dt|,
it is clear that W(re™) = exp[- g(r, £) + ig(r, 1)], where glr, ¢) is the harmonic
function [ _(2m~Re[(e’s + re/(e's - reit)|g(e?)ds and g is its harmonic con-
jugate. It follows from a result of Zygmund [15, p. 164, Exercise 3] that there is
an Aq > 0 such that
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(15) sup f_’; exp qlglr, t)|dt < A
Osr<l

whenever ¢ < n/2||g||_; here, |lgll,, is the essential supremum of g over the unit
circle.

Therefore, ¥ belongs to H? of the disc for some ¢ >0 (in fact, any ¢ <
7/2||gll,, will do). The remark that the boundary function of ¥ belongs to L?
implies that ¥ belongs to H?.

It is easy to finish the proof of Lemma 2. There is a Qp such that (11) holds
if and only if there is an Sp such that

b
(16) ooyryo Ty ||l <5,

The existence of Sp follows from Lemma 1 and this completes the proof of

Lemma 2.

3. Let E be a measurable subset of reals and xg its characteristic function.
The notation mg(y) will be used for the distribution of l’&E' Therefore, mg(y) =
measure {t: &E(‘)' > y}. Similarly, pg(y) is the distribution pg(y) =
measure {t € E: I;E(I)l >yl

The following lemma appears in Zygmund (14, p. 15].

Lemma 3. Let E be a bounded measurable subset of reals, then, for y >0,
mgp(y) = 2|E|/sinh y and pgy) = 2|E[/(e” + 1); here, |E| denotes the measure
of E.

We now introduce three functions which will be used to obtain generalized
solutions of Tgf =0. We define

6,(0) =lzg~ Y — (n/2) sgn tlxg(),
(17) Oz(t) = [tg'lt + ﬂ/Z]xE(t), and
0,() = lzg~ - 7/ 2xg);

here, — /2 < tg~ 't < /2. Obviously, if E C [0, «) or E C (- =, 0], then these
three functions will not be distinct.

Our next theorem permits us to use the techniques of $2 for the functions

6,,6,,06,.

Theorem 2. Let @ (z) = exp [#~ If@l.(t) (t = 2)~Ydil -1, where 0, are defined
by (17), for i=1,2,3. Then @, € H}, for some p>1 and i=1,2,3. In fact,
®, €HY, forany p<2.
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Proof. We have already noted in equation (4) that @: = exp [31. +10,] - 1. Let
a, b be real numbers such that 6>a >1and E C[- a, al.

For |x| > b, 6,(x) =0 and hence, |0(x)] < exp|®,(x)| - 1.

Another easy power series argument can be used to establish that @: €
L?(R ~ [~ b, b)), forany p>1and i=1,2, 3. “

It suffices to prove that the functions exp 6, are in L?(~ b, b), for some
p > 1. Using the fact that |(tg~'x — g~ 1) (x = 1)~ !| is bounded, it follows that

(18) exp 6, <A exp 0Xpl, i=1,23

where A is some constant. The argument to obtain (18) when i =1 requires con-
sidering separately the cases where x >0 and x <O0.

Clearly, for i =1, 2, 3, there is a y <1 such that |7~ lei(x)| <yon [-b, bl;
moreover, |7~ lol(x)| < %. Therefore,

exp 0, <A exp y|nXg|.
Now,

b ~, oo
f_ exp pylnXg|dt = —fo exp pyydm,(y),

where m,(y) = measure {t¢€ [- &, b IﬂxE(t)l >y}. Let y, >0 be such that
|ﬂxE(t)[ <yq for t¢ [~ b, b]. Then using Lemma 3 we obtain

00 Yo 0
-fo exp pyydm,(y) = —fo exp pyydm,(y) _fyo exp pyydmg(y)

Yo o0 e’ +e””
= -fo exp pyydm,(y) + 4|E|fy0 exp (pyy)[—;-——_—yj? dy.

These last two integrals both converge if p <1/y. Observe that we have
demonstrated that ®" is in L? for any p < 2. An application of Lemma 2 com-
pletes the proof.

When 6,, 02, 03 are used for 0 in equation (6) we obtain TE/i = Xg»
i=1, 2,3, where, for x€ E,

sgn x exp ] L&) exp 0. ,) L P ] 40

- = , d =
A9 (W)= =y 29 = @ 0 =

The following theorem results:

Theorem 3. Let 6,0, and 0, be defined by (17), then the function f, - {3
where [, and [, are defined by (19), is a generalized eigenfunction of the equation
Tgf=0. The function [,, defined by (19), is an L?(E) solution of Tgf = Xg» for
every p <2.

Proof. It is clear that both of the functions f, - f5 and [, are nonzero. It
follows from Theorem 2 that [, - /3 belongs to LP(E), for some p >1, and /1
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belongs to L?(E) for any p < 2. Alternatively, one can use the distribution kg
to obtain these conclusions.

These may be further choices of the function 6 which reduce equation (6) to
the identity Tgf= Xg. The three functions 6, 6, and 0, defined by (17) ex-
haust the author’s list of functions where equation (6) reads T.f = xg with
f€ LP(E), for p > 1. It is easy to make choices of E for which the functions fis
f, and [; are linearly independent. Also, if for example E = la, b], where
0 € (a, b), then one observes that f, and f, are linearly independent and that
f1 = [, is the unique nonzero L%E) solution of Tgf=0. It is always true that
the dimension of the solution space of Tgf=0 in L2(E) is less than or equal to
1. This follows from the fact that T is completely seminormal and T{Tp —
TT% is the one dimensional operator —(22)~X , Xxg)xg-

Further choices of E, for example E = [- 1, - Bl U - Y%, %] U4, 1], show
that our technique sometimes fails to give the L°(E) solution of T/ = 0. The
existence of this solution follows from the results on the essential spectra of T
in [2] or Putnam [9].

It is also obvious from our last example that the dimension of the solution
space of Tgf=0 in LP(E), where 1< p <2, may be greater than 1.

4. Throughout this section it is assumed that

E=[a,,bJu---ula,blu---ulo, 1]
(20) 1771 n n
here —l=al<bl<a2<b2<u-<0 and an—-'O.

The functions f,, f, will continue to be the functions defined in (19). It follows
from the previous section that g = f; — f, is a generalized eigenfunction of
Tgf=0. In fact, with very little work, one can show that g is in L?(E), for
p <2. In this section we obtain a set of conditions on E sufficient for g to
belong to L *(E).
Set ET=EN[-1,0], E*=EN(0,1] and E, =lay, b, U... Ula, b,].
It follows that
p
exp ¥, _,x) = || 711 - x| and exp n')\'(E )= I1 lx_-b.lfl
E P kot 12—y
Computations similar to those performed in $3 show that fy and f, are in
LXE) if & =exp(y.17’)\éE+) . exp (y+ﬂ§E-) and g, = exp (y+ﬂ§5) belong to
LY(E), respectively; here, we have set y *= 2(r~ g™ 1(x) t 1.

Lemma 4. The function g, is in Lo, 1). If g, is in LYE"), then gy is
in LMED).
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Proof. For x >0, exply (X)ﬂx -(x)) < 1. Therefore, g,(x) <(x/(1- x))‘y |
and since |y (1)] = %, it follows that gy isin L (0 1). For x <0, g,(x) < g,(x)
and this observation completes the proof of the lemma.

The task of finding conditions sufficient for g, to be in LY(E) is more dif-
ficule.

For x>0, exp ((tg xxE-(x))) <1. This observauon along with the observa-
tion that exp (tg xx Hx)) = {x la- x)}"-l’g is bounded on (0, 1) implies
that g, is in L Yo, 1) 1f exp an isin L0, 1).

Our next lemma describes a class of sets of the form (20) for which exp "XE
belongs to L 10, 1). Clearly, the question of when exp ﬂxE isin LY0, 1) de-
pends only on @, and b for large n. Moreover, if E and F are two sets of the
form (20) with E CF, then when exp an is in L0, 1), it follows that
exp an isin L1(0, 1).

Lemma 5. Fix a >\2. Suppose, that for n > Ny a, =~ a~ " and b =a "a,

Then expn%E is in LY, 1).

Proof. For x >0, let k_=min{k: |6,| < x}. Then

~ ) kx x4 16|
exp ”XE(x) <Cx~ " exp n’%Ekx(x) < Cx~! n ;_:.l.;_’_i_
i=Ng i

bxo b, by —ky(ky=1)/2
SCx-l I'I 2_7_ SC”x-lz xa‘ x(ky—1) ;
i=Ng 1%;

here, C, C" are constants. For x small, k. is large and we can assume
(k,_-1)/2 > 4. Using the fact that @ > V2 we obtain, for small x,
exp 7Y (x) <C"x ! 2y
The fact that Ibk | =a" "Iakxl < x implies that a** > -l log, x. There-
fore, for x small, exp an(x) < 4C" x"l(log x)~?% and this completes the proof.
Finally, we give conditions sufficient for g, to belongto L YE.

Lemma 6. Let E be a set of the form (20), then the conditions

00

la,-a, |l
(21) ) DAL LD
p-No 1%-1- 7,

Y

* |o,_,-a
(22) y 2l 2 .
pNo 195 1= 4yl la, ]
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are sufficient to imply that g, is in L'(E”); bere, Ny > 2.

Proof. The following estimate holds for a, <x <b,:

1-#)" RO e
+ . *X Y <¢ '
g,\x) <exply ﬂXEp_l) exply X[ap,o]) ; Ix| % - yt
[bp-x]
x—b y+ a —b y+(bp)
Al e ™
=0 ) -a, 77 4y -a, P ’

where C is a positive constant.
Using the inequality (1+¢)* <14 ¢% for t>1 and 0 < a <1, we obtain, for

ap<x§ap+(ap-—bp_l),
a, -b *(by)
23) g,00) < R PR A LY S
(a -a ))’ (bp) x-ap
p p—1
and, for a, +(a, - b, |)<x<b,,
(24) g,x) < 2C

(ap N ap-l)y+(bp)

In these last estimates if a, +\a, - bp-l) > bp, then the estimate (23) is used
for all x in (ap, bp)-

It now follows by direct integration from (23) and (24) and use of the fact

that Ibpl'ltg"l|bp| — 1 that

b a, -a, (a,-b,_) &
(25) f p gz(x)dx <c"” pel b 2 B-l ,
ap -1 (ap —ap_l)lbpl.

a —a
4

where C" is a positive constant.
The conditions (21) and (22) follow easily from (25).
The result of Lemmas 4, 5, and 6 is the following theorem.

Theorem. There exist sets E of the form (20) with nonzero. L*(E) solutions
of Tgf=0. The point A=0 is a boundary eigenvalue of Tg on L2(E).

Proof. If a>+/2 and, for n >N, a, =- a=4", then (21) converges. If now,
for n>Ny+1, b, _, is chosen such that a _, < a'("'l)a"_l <b,_,<a, and
close enough to @, so that (22) converges, then g = f; — [, defined by (19) is
a nonzero L2(E) solution of Tgf=0. The fact that A = 0 is a boundary point of
the spectrum of T follows from [3].

Added in proof (July 1973): In a recent announcement R. W. Carey and J. D.
Pincus, On an invariant for certain operator algebras, obtain necessary and suffi-

cient conditions for zero to be an eigenvalue of the operator defined in equation (1).
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