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COMPLETELY SEMINORMAL OPERATORS

WITH BOUNDARY EIGENVALUES

BY

KEVIN CLANCEY

ABSTRACT.   For   /fi  (£)  we consider the singular integral operator

TEf(s) = sf(s) + 77~ AEf(t)(t - s)~   dt.  These singular integral operators

are a special case of operators acting on a Hubert space with one dimen-

sional self-commutator.  We discover generalized eigenfunctions of the

equation   Tpf= 0 and, for p < 2, we will give an LP(E)  solution of the

equation   Tp f = x p-   The main result of the paper is an example of a non-

zero   L  (£)  solution of   Tp /= 0, with X = 0 a boundary point of the spec-

trum of  Tp.

Let  R be the real line and  E a bounded Lebesgue measurable subset of  R.

For any   p,   1 < p < °o, the notation   LpiE) will denote the usual Lebesgue space

over  E.  Fix a function  cp in   L°°iE). The operators of interest are defined for

f£LpÍE), p>l, by

(1) T^fis) = s fis) + n- Xcbis)jE it - s)~ lclit)lit)dt.

The singular integral is interpreted as a Cauchy principal value. The operators

Tj, defined by (1) are bounded linear operators on  LpiE), tot p > 1.

In the case where  p = 2 the operators defined by (1) are of special interest.

Indeed, they are the prototype of an  operator   T acting on a Hilbert space  H,

where T*T - TT* is one dimensional (see, for example, Pincus [7] or Putnam [8]).

The spectrum of the operator  T ±  defined by (1) on   L  ÍE) is described in

[3] and Putnam   [9].   Recently, the author, in   [2], determined the essential spec-

trum of  T 1   on   L   ÍE). In this paper we initiate an attack on the problem of deter-

mining the eigenvalues of  T(t).  The only case where the point spectrum of T¿,

has been computed is when E is an interval and cS is a smooth function (see Putnam [9]).

We will be concerned mainly with the special case where the function  cb in

(1) is the characteristic function  Xe °^ E-  *n tnis case we wüi write  TE  tot the

operator  Tx   .  In   §3 we will determine explicitly some generalized solutions of
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134 KEVIN CLANCEY

the equation   T£ / = yE. These solutions will permit us to write down some gen-

eralized eigenfunctions of the equation  TP / = 0. In  §4, with severe restrictions

on  E, we will give some examples of  L  (E) solutions of  TE / = 0, where  A = 0

is a boundary point of the spectrum of  TR on  L  (E).

The relation between the operatots   T ±  given by (1) on  L  (E) and the

theory of nonnormal operators on a Hilbert space has already been noted.  More

generally, an operator T on a Hilbert space  H is called seminormal in case its

self-commutator  T*T - TT* is semidefinite. Clearly, every operator  T for which

T*T — TT* is one dimensional is seminormal.  A seminormal operator T is said

to be completely seminormal in case there are no nontrivial reducing subspaces

for T on which  T is a normal operator. An easy argument establishes that T j,

defined by (1) is completely seminormal if and only if <p(f) 4- 0 a.e. on E.

An eigenvalue  A of an operator  T on a Hilbert space H is called a normal

eigenvalue in case  (T - A)xQ = 0 for xQ in  H if and only if (T* - A)xQ = 0. It

is obvious that a completely seminormal operator can have no normal eigenvalues.

The following theorem of Putnam  [10] and Stampfli  [ll] establishes that a bound-

ary eigenvalue of a seminormal operator is often a normal eigenvalue.

Theorem.  Suppose An  zs a boundary eigenvalue of a seminormal operator T.

If Aq  is accessible from the resolvent set of T, in the sense that there exists a

sequence  A    —► AQ  satisfying   \X   - XQ\/dTiX ) —► 1   (here,  d^iX) denotes the

distance from X to the spectrum), then AQ   is a normal eigenvalue.

It is apparent from this theorem that boundary eigenvalues of completely semi-

normal operators are   "hidden"   in the boundary.  This makes the construction of

our examples in   §4 nontrivial.

Brennan   [l ] has given examples of seminormal  (actually cosubnormal) oper-

ators with boundary eigenvalues. If X is a compact set in the plane, let  R  ÍX)

denote the  L2(dxdy) closure of the set of rational functions with poles off  X.

Brennan proves that if X is nowhere dense, either  R (X) equals  L    or the adjoint

of multiplication by  z on   R  (X) has a boundary eigenvalue.  These examples do

not have the property that the self-commutator is one dimensional.

It is hoped that this paper will lead to additional results on the fine structure

of the spectrum of the operators defined by  (1).

2. This section is concerned with preliminaries and develops some techniques

for solving finite singular integral equations.  The available literature on this

problem (for measurable coefficients) is limited.  Our main references are the

book of Tricomi   [12] and a paper of Widom  [13l.

If / belongs to  Lp, then we will denote the Hilbert transform of / by / (x) =

n~ ffU)U - x)~   dt; here, the singular integral is a Cauchy principal value. It is
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a well-known theorem of M. Riesz that, for p > 1, / —» /   is a bounded linear oper-

ator on  Lp. The Cauchy integral of a function f £ Lp, for p > 1, is the function

Cf, which is separately holomorphic in the upper half-plane  n+ and lower half-

plane  Z7_, defined by  Cfiz) = n~ Xffit)it - z)~ x dt. It f £ Lp, then the limits

Cf (x) = Lim [ryCfix + iy)  and  Cf  ix) = Lim   ,n Cfix - iy) exist a.e. and satisfy

the barrier relations

(2) C/+-C/- = 2z/,       Cf+ + Cf- = 2Ï.

The notation Hp+ will be used for the Hardy space of the upper half-plane. To

be more precise, for p > 0, we define

Hp+ = <0: 0 is analytic in zr+,   sup f |0(x + z'y^rix < ooi.
V y>o J )

The usual Hardy space of the disc will be denoted by Hp.

The following theorem appears in Hille and Tamarkin   [6].

Theorem 1.   Let p > 1  and 0 £ Hp+, then 0 (x) = Lim  10©(x + iy) exists a.e.

and belongs to Lp.   The boundary function 0    satisfies

(3) Re 0+ = (Im ©V.

We next describe a technique for solving finite singular integral equations.

Let 8 be an essentially bounded real function with compact support. We define

the function

(4) e(z) = exp[ir_1 f 8it)it - z)~ X dt] - 1,        Imz^O.

Clearly, the limit function 0 ix) = Lim   i08U + iy) exists; in fact, using (1) we

obtain

(5) 0+=exp[0 +id]-l.

When the function 0 defined by  (4) is in W+, for some  p > 1, then from

Theorem 1

(6) cos 8 exp 8 - 1 = [(sin 0 exp 8)f.

In  §3 we will show how some judicious choices of 8 turn (6) into the identity

TEf = X£.

Our first task is to obtain conditions sufficient for 0 defined by (4) to be in

r7$, for some p > 1. In fact we will prove, in Lemma 2, that if 0    given by (5) is

in  Lp, tot some  p > 1, then  0 defined by (4) is in //£. The reader is reminded

that there exist functions analytic in  n+ which have  Lp limit functions on the

x-axis but fail to be in H^.  The function 0U) = e-!Z/U - iz) behaves in this

manner.

The next lemma is preparatory for Lemma 2.  It is similar to a lemma of

Gabriel  [5]. First we introduce some notation.
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For each  y > 0,   T    will denote the circular arc in the unit disc which is the

image of the line segment   jx + z'y: - a < x < a j under the map C = (z - z)/(z + z);

here, a > 0 is fixed.

Lemma 1.  Suppose f e Hp', for some p > 1, then there exists for each y0 > 0

sup r \fiz)\pd\z\ <

a constant M    , such that

-ysy0
yo

Proof.  If / e tf*\ then

\f^<i:j-^[^^ATät.

This result appears in Duren  [4, p. 28]. Therefore,

Lwm\<s:n\fL^i ¿Re
>¿< + ¿;

-4
rf^iáí.

Clearly,

J    f !->r., 2r;ry 277
d\C\<A, ¿-[íf ¿ICI*       *'V-1,

where  C    is the circle that is the image of Im z = y under C = ii - z)/ii + z). If

a    is the center of  C    (obviously, for y > 0, — 1 < a   <0) and if r    is.the radius

of  C , then when  e'   /■ — 1, the mean value theorem for the harmonic function

Re [ie" + C)/ielt - C)] permits one to conclude

JCy   277 [*"-£_

27

1 -  a

It follows that

0<y<yn

This completes the proof of the lemma

<v<vn      fy 1 - \a.
yo'

Lemma 2.  Lei Ö èe real valued, essentially bounded and have compact sup-

port.   Define 0(z), for Im z > 0, f3y  (4).   // 0     zs z'tz  Lp, for some  p > 1, i/berz 0

belongs to 7/J.

Proof.  Choose a > ¿> > 1 such that  0 = 0 off [- b, b]. The presence of the

factor - 1   in the definition of 0 permits an easy power series expansion to prove

that for every  p > 1 and y0 > 0, there exists an  M    such that

(7) sup   f |0(x + iy)\pdx < zVL,
y>0
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and

(8) sup f"    |0(x + iy)\pdx <zVL.
J — a P

ysyo

For Im z ¡¿ 0, we define

(9) ^.^i/Älltti*.

We have introduced the function  0Q because it transfers over to a function on the

unit disk in a simpler manner than does the function 0.  From the observation

I + tz        __1_|_

(l + t2)(t-z)     t-z      A+l'

it is clear that 0 + 1 and 0Q differ only by a multiplicative constant. Hence,

there is an N    such that

(10) sup    f"    |0(x + iy)\pdx <N
°<y<yü

if and only if there is a  Q    such that

AZj'-°ie°u + ,y)l°^t^<Q>-

Also, the hypothesis that 0    is in  Lp, tot some  p > 1, implies that the

function

(12) 0!(x) = expíl f M- L+J¡Ldt + zö(x)l
0 |_»tJ / -x    i +t2 J

is in  Lpidt/it2 + I)). The function 0* is the limit of 0Q(x + iy) as  yi.0.

We next transform our functions to the disc.  For  |£| < 1, we define *P(<0 =

0O(/(1 - CVH + O) and, for - 77 < t < n, we define gieil) = ö(tan t/2) =

fl(«(l - e¿í)/(l + elt)).

The conformai map z = z(l - <^)/(l + z^) of 77+ to the disc carries the lines

x = constant to circles orthogonal to the unit circle. It follows that

(13) W(ezi) = Lim VireU) = expLgVO + igie'A];
r— 1

here, we have set g(<?") = (2z7)" 1fT_jf giets)ctiis - t)/2)ds.  The function g   is

called the conjugate of g.  The hypothesis on 0Q implies that W(er') is in  Lp

on the unit circle.

From the representation

it is clear that ^irelt) = exp [- g ir, t) + igír, t)], where gír, t)' is the harmonic

function   fn_nÍ27r)-lRe[íeis + reil)/(eis - reit)]g(e's)ds  and  g   is its harmonic con-

jugate. It follows from a result of Zygmund [15, p. 164, Exercise 3] that there is

an A    > 0 such that
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(15) SUP f"„ exP ̂ Is^' A\dt<Aq,
Osr<l

whenever  a < z7/2||g||oo; here, Hgl]^ is the essential supremum of g over the unit

circle.

Therefore, ^* belongs to Hq of the disc for some a > 0 (in fact, any q <

77'/2||g||00 will do). The remark that the boundary function of W belongs to Lp

implies that V belongs to Hp.

It is easy to finish the proof of Lemma 2.  There is a Q    such that (11) holds

if and only if there is an 5    such that

(16) -P    i>«<V
0<ysyrj       y

The existence of 5    follows from Lemma 1 and this completes the proof of

Lemma 2.

3.  Let E be a measurable subset of reals and  Xe its characteristic function.

The notation  mEiy) will be used for the distribution of   |z7XE|. Therefore, 772£(y) =

measure [t: Ixg^l >>!• Similarly, pEiy) is  the distribution   pEiy) =

measure [t e E: |x£(i)| > y|.

The following lemma appears in Zygmund  [14, p. 15l-

Lemma 3.  Let E be a bounded measurable subset of reals, then, for y > 0,

77zE(y) = 2|E|/sinh y  and ppiy) = 2|E|/(ey + 1); here,   \E\  denotes the measure

of E.

We now introduce three functions which will be used to obtain generalized

solutions of TEf = 0. We define

dxit) = [tg~xt - (77/2) sgn t]xEit),

(11) d2it) = [tg-xt + n/2]xEit),    and

d7)it) = [tg-Xt-n/2]XEit);

here, - 77/2 < tg~1l < n/2.  Obviously, if E C [O, ~) or  EC (- 00, 0], then these

three functions will not be distinct.

Our next theorem permits us to use the techniques of  §2 for the functions

0j,   d2,   dy

Theorem 2.   Let 0.(z) = exp [n~ lfdiit) it - z)~ X dt] - 1, where 0.  are defined

by (17), for i = 1,2,3.   Then 0¿ e Hp+, for some p>l   and i = 1,2, 3.  In fact,

0j eHp+, for any  p<2.
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Proof.  We have already noted in equation  (4) that 0- = exp [d. + id.]- 1. Let

a, b be real numbers such that  b > a > 1 and  E C [- a, a].

For  |x| > b, 0.(x) = 0 and hence,   10*001 < exp |0.(x)| - 1.

Another easy power series argument can be used to establish that 0.   e

LpiR ~ [- b, b]), for any  p > 1 and  i = 1, 2, 3.

It suffices to prove that the functions exp d. are in  Lpi- b, b), for some

p > 1. Using the fact that  |0g~  x - tg~  t)ix - t)~   |  is bounded, it follows that

(18) exp 6. < A exp |0fxE|,       '' = 1, 2, 3,

where A is some constant. The argument to obtain (18) when  i = 1 requires con-

sidering separately the cases where x > 0 and  x < 0.

Clearly, for  i = 1, 2, 3, there is a  y < 1 such that   |t7~  0.(x)| < y on  [- b, b];

moreover, |t7~  0jOO| < V2. Therefore,

exp 0. <A exp y|z7x£|.

Now,

j_b exp py\nxE\dt =-J ~ exp pyydmbiy),

where mbiy) = measure [t e [- b, b]: \irXEit)\ > y!. Let y0 > 0 be such that

I^X/fO^I ^Vr,' f°r ' 7^ [- ¿. b]. Then using Lemma 3 we obtain

~/o° exp pyydmhiy) = -Jq    exp pyyaVzz^y) -J °° exp pyydmEiy)

-J0    exppyyarafc(y) + 4|E|J     exp(pyy) ey + e_y 2 ¿y.
'yo [e^-e-y]2

These last two integrals both converge if  p < 1/y. Observe that we have

demonstrated that 0    is in  Lp for any  p < 2. An application of Lemma 2 com-

pletes the proof.

When  dx,d2, d-  are used for  d in equation  (6) we obtain   TEf. = XE,

z = 1, 2, 3, where, for x e E,

, ,     sgnxexp0,(x) . , exp 0,(x) exp 0,00

(19)   I'"'\kJ •i>m"7?7ÎV "* '&■+&&■
The following theorem results:

Theorem 3.   Ler 0j, 02 and 0,  èe defined by (17),  ¿Aew ièe function f2 - f-,

where f2 and f-  are defined by (19), zs a generalized eigenfunction of the equation

TEf = 0.   The function fv defined by (19), is an LP(E) solution of T'Ef = xE< for

every  p < 2.

Proof.  It is clear that both of the functions f2 - f    and  /j are nonzero.  It

follows from Theorem 2 that f2 - f^ belongs to  LpiE), for some p > 1, and /}
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belongs to  LPÍE) for any  p < 2. Alternatively, one can use the distribution  pE

to obtain these conclusions.

These may be further choices of the function  8 which reduce equation (6) to

the identity   TEf = \E.  The three functions  d¡, 82 and  0, defined by (17) ex-

haust the author's list of functions where equation  (6) reads   TEf = xE with

f £ LP(E), foi p > 1.  It is easy to make choices of  E fot which the functions /j,

f2 and /j  are linearly independent. Also, if for example  E = [a, b], where

0 e (a, b), then one observes that /j  and /2 are linearly independent and that

/j - f2 is the unique nonzero  L (E) solution of  TEf = 0.  It is always true that

the dimension of the solution space of TEf = 0 in  L  ÍE) is less than or equal to

1. This follows from the fact that TE is completely seminormal and  TETE -

TETE  is the one dimensional operator — (2»t)    (   , Xgbig-

Further choices of E, for example  E = [- 1, - M] U [- \i, %~\ U [V2, l], show

that our technique sometimes fails to give the L  (E) solution of  TE( = 0.  The

existence of this solution follows from the results on the essential spectra of  TE

in [2] or Putnam [9].

It is also obvious from our last example that the dimension of the solution

space of  TEf = 0 in  LpiE), where  1 < p < 2, may be greater than I.

4. Throughout this section it is assumed that

E = [a ., b .] u • • • U [a , b ] u • • • U [0, l];

(20)
here -1 = zz. <L <«, <¿, < ••• <0 and a    —0.

1 1 ¿ ¿ 77

The functions  /,, /, will continue to be the functions defined in (19).  It follows

from the previous section that  g = f \ - 12 IS a generalized eigenfunction of

TEf = 0. In fact, with very little work, one can show that g is in  LpiE), tot

p < 2.  In this section we obtain a set of conditions on  E sufficient for g to

belong to  L 2(E).

Set  E" = E n [- 1, 0], E+ = E n (0, 1] and  Ep = [av b{] U • • • U [a     bp].

It follows that

P   \x~bk\
exp x    ,(x) = |x|-   |l-x|  and exp 77-xVU) =   []  ,-f

E P k=l\x~ak\

Computations similar to those performed in  §3 show that /j and f2 are in
+   ~

L  (E) if  gl =exp(y n,XE+) • exp (y  ""Xg-^ and «2 " exP ^ "'Xg) belong

L  (E), respectively; here, we have set y   = 2(77""  )tg     (x) ± 1.

to

Lemma 4.   The function gj   is in  L  (0, 1). // g2  is in  L  (E  ), then gj   is

in LXiE~).
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Proof.  For x > 0,  exp (y+(x)zr XE~(x)) < 1. Therefore, g/x) <(x/(l -x))ly   I

and since   \y  (1 )| = K, it follows that  gj   is in   L  (0,1).  For  x < 0, gj(x) < g2(x)

and this observation completes the proof of the lemma.

The task of finding conditions sufficient for g2 to be in  L  (E) is more dif-

ficult.

For x > 0,  exp ((¡"g"  xx   -(x))) < 1.  This observation along with the observa-

tion   that  expUg-   xx   +(x)) = \x~  (1 - x)!^     tg     x is bounded on  (0, 1)  implies

that g2  is in  L  (0, 1) if exp Z7XE is in  L  (0, 1).

Our next lemma describes a class of sets of the form (20) for which  exp nxE

belongs to   L  (0, 1). Clearly, the question of when   exp Z7X£  is in   L  (0, 1) de-

pends only on  a    and  b    tot large n.  Moreover, if  E and  F ate two sets of the

form (20) with  E    C F , then, when  exp rrxE  is in  L (0, 1), it follows that

exp77Xp is in  L (0, 1).

Lemma 5.   Fz'x a >\J2. Suppose, that for n > NQ, a   = - a'

Then expzrxg  is in  L  (0, 1).

Proof.  For x > 0, let  kx = min \k: \bk\ < x¡. Then

exp z7x£(x) < Cx~    exp 77XE     (x) < Cx

k*    X +\b.

■  \i   x +  a .

<Cx-1   n    2!y<CV'2S"*A"U/2-

,=zV0      K I

here, C, C   are constants.  For  x small, zs     is large and we can assume

ik   - l)/2 > 4.  Using the fact that a > \J2   we obtain, for small x,

expz7xE(x)<C"x-1fl-2'fe\

The fact that   \b,   | = a     x\a,      < x implies that  a x > -V2 log    x.  There-

fore, for x small, exp z7XE(x) < 4C"x~  (logQ x)~     and this completes the proof.

Finally, we give conditions sufficient for g2 to belong to  L (E  ).

Lemma 6.   Let  E  be a set of the form (20),   then the conditions

(21) X   LiL_£±iL < „,
i>=zV0   I%-1      V

(22) Z -. < 00

P=N0   \ap-l-apWap + l\
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are sufficient to imply that g2  is in  L  (E  ); here,   zVn > 2.

Proof.  The following estimate holds for a    < x < b  :

g2ix)<expiy + 7TXEp_) ■ exp(y+^ai)00 •
1-x

<C

exp(y + 77XE   )

_    P

[bp-*]>*

<C
x-bp-i»

x-aA

^-^-l)y

^<C

K-Vi1
yTïb^)

1 +
v-Viiy+(^3

x - a.

where  C is a positive constant.

Using the inequality (1 + 0    < 1 + t   , for f > 1 and 0 < a < 1, we obtain, for

a   < x < a   +ia   - b.   ,),
P        -   P P       P-i

(23) «2 (x)<

(a   - a     .)•
i>       P—i

^H^rP]
and, for a^ + (a^ - fc     .) < x < A  ,' i> P       P-1 i>

(24) *2°^
2C

y+ifcz,)

P       P-i

In these last estimates if a    + (a   - b.    A> b., then the estimate (23) is used
P P       P-1   —   P

for all x in  (a. ,  è  ).
P       P

It now follows by direct integration from (23) and (24) and use of the fact

-» 1 thatthat i*,i-v>

(25) [bp gAx)dx <C"
Ja*      l

ap + l-aP        |    (%-^-l}

ap-%-i   +    tap-ap_x)\bp\.A

where C   is a positive constant.

The conditions  (21) and (22) follow easily from (25).

The result of Lemmas 4, 5, and 6 is the following theorem.

Theorem.   There exist sets  E of the form (20) with nonzero L  (E) solutions

of TEf = 0.  The point A = 0 is a boundary eigenvalue of TE  on L  (E).

Proof.  If a > \j2   and, for n > N 0,   an= - a~a , then (21) converges. If now,

for « > zVn + 1,  b     .is chosen such that a     . < a-("~   'a      . < b     . < a    and
—        U » 72— 1 72—1 71 — I 72— 1 71

close enough to a    so that (22) converges, then g = /j - f2 defined by (19) is

a nonzero  L  (E) solution of  TEf = 0.  The fact that A = 0 is a boundary point of

the spectrum of TE follows from  [3].

Added in proof (July 1973): In a recent announcement R. W. Carey and J. D.

Pincus, Orz a« invariant for certain operator algebras, obtain necessary and suffi-

cient conditions for zero to be an eigenvalue of the operator defined in equation (1).
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