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GENERALIZED SEMIGROUPS OF QUOTIENTS
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C. V. HINKLE, JR.

ABSTRACT. For S a semigroup with 0 and  W„ a right S-set, certain classes

of sub  S-sets called right quotient filters are defined. A study of these right quo-

tient filters is made and examples are given including the classes of intersection

large and dense sub S-sets respectively. The general semigroup of right quotients

Q corresponding to a right quotient filter on a semigroup  S is developed and basic

properties of this semigroup are noted. A nonzero regular semigroup  S  is called

primitive dependent if each nonzero right ideal of S  contains a 0-minimal right

ideal of  S. The theory developed in the paper enables us to characterize all primi-

tive dependent semigroups having singular congruence the identity in terms of sub-

direct products of column monomial matrix semigroups over groups.

1. Introduction. The classical ring of quotients of a ring  R and its generali-

zations have been topics of major interest in ring theory over the past twenty years

with much of the basic ground work laid by Asano [l], Johnson L9], and Utumi

[l5J- Each type of right quotient ring over  R  is developed from a given type of

filter of right ideals in the ring R and the same general technique is applied in

each case.

In this paper generalizations of these concepts are developed for semigroups

and S-sets and an attempt is made to unify the theory as much as possible by con-

sidering certain classes of sub S-sets called right quotient filters. §3 is devoted

to a study of these right quotient filters. Several examples which are analogues of

concepts in ring theory are given including those of intersection large, dense, and

strongly dense. We also consider a certain S-set extension (semigroup extension)

of a semigroup S, called a  J-quotient set (semigroup) where  / isa right quotient

filter on S, and we show how J   induces a right quotient filter on such an exten-

sion. In certain cases the induced filter is of the same type as that of the original

filter.

In ^4 a generalization of the singular congruence and the torsion relation in-

troduced by Feller and Gantos [6] is given. This generalization, which we call the

J-torsion congruence on an  S-set  M, is defined in terms of an arbitrary right quo-
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tient filter S on  S, and we are particularly interested in the case where  AI ¡s   "-

torsion free, i.e., where the J -torsion congruence on M is the identity.

§5 is devoted to the study of the general semigroup of right quotients corres-

ponding to a right quotient filter J   on an S-set. We begin by giving the basic con-

struction of this semigroup. The main theorems of this section point out the fact

that whenever S  is  J-torsion free, then  QyiS) is a maximal   /-torsion free   "•

quotient semigroup over S which contains an isomorphic copy over S  of every

such semigroup extension of S. Furthermore, whenever J   is a special filter on S

we find that the corresponding quotient semigroup of 2  with respect to the induced

filter on  Q  is itself.

As an application of this theory we note that whenever 5 is J,-torsion free,

then Q¡(Si is the injective hull of S and is furthermore self-injective. We also

restate the well-known theorems concerning the classical semigroup of quotients

in terms of the theory developed herein.

In §6, we consider semigroups which are 0-direct unions of semigroups. If a

right quotient filter is given on each of the component semigroups of S  it is shown

that a corresponding right quotient filter is induced on S in a natural way. Here we

see that the semigroup of quotients of S is isomorphic to the direct product of the

semigroups of quotients on the individual component semigroups. Furthermore, it

is shown that every ./-torsion free  J-quotient semigroup over S is isomorphic to

some subdirect product of J-torsion free  J-quotient semigroups over the individ-

ual components.

A nonzero regular semigroup  S  is called primitive dependent  if each nonzero

idempotent of S lies above a primitive idempotent of S under the natural partial

ordering on the idempotents of S. The main purpose of §7 is to characterize all

primitive dependent semigroups for which the singular congruence is the identity.

To this end we first consider completely 0-simple semigroups. A characterization

of the singular congruence on a completely 0-simple semigroup expressed as a

regular Rees matrix semigroup is given and it is noted that the semigroup of quo-

tients of such a semigroup is isomorphic to a semigroup of column monomial ma-

trices over a group with 0. The completely 0-simple semigroups for which the sin-

gular congruence is the identity are then characterized as certain subsemigroups,

called H-semigroups, of these semigroups of column monomial matrices. The sec-

tion is concluded by characterizing the primitive dependent semigroups for which

the singular congruence is the identity as certain subdirect products of column

monomial matrix semigroups over groups with 0.

Much of the basic notation and definitions used throughout the paper are given

in §2. We assume that the reader is familiar with the basic terminology and results

on algebraic semigroups employed herein, as presented in Clifford and Preston

[4] and [5l
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2. Preliminaries. Throughout this paper each semigroup will contain a zero

(O) unless otherwise specified. Let S be a semigroup. A (centered right) S-set  Ms

is a set M, with an associative scalar operation on M by elements of S, which

contains an element (necessarily unique) 6 such that  6 = ds = mO for all  m € M

and for all s € S. The symbol 6 will be called the zero of M. Since the distinction

between the zero of M and the zero of S is clear from the context, we shall de-

note both by the same symbol 0. Note that if R  is a right ideal of S then  R  be-

comes an S-set  Rç  under ordinary multiplication. Also, if S is contained in a

semigroup T and if M,_ is a  T-set then M becomes an S-set Ms by restricting

the scalar multiplication to the elements of S. A sub S-set  Ns  of an S-set Ms

is a subset  N of M such that  NS C N. If m, n€ Ms and if ECS we shall say

that mE is pointwise equal to nE when ms = ns for each s e E. This will be

denoted as  mE = n£.

Let Mj and AÍ- be S-sets. A function /: M^ —' A/^ is an S-homomorphism

if, for each to e M and s£S, /(ms) = f\m)s. The collection of all such S-homo-

morphisms will be denoted by Homs (M, Ai). If there exists f & Hom^ (M, A/) such

/ is 1-1 and onto then we say AL  is S-isomorphic to Ns and write  M<¡ ̂ s Ns. If

Ms and Ns are S-sets each containing As as a sub S-set and if there exists an

S-isomorphism cf>: Ms —» Ns such that the restriction <fi\A  of 0 to A  is the

identity map on A  then we say that "(f) is an S-isomorphism over As" or  "M^ and

Ns are S-isomorphic over As'\ Corresponding terminology will be used for semi-

groups and semigroup isomorphisms. All homomorphisms between semigroups will

be considered as semigroup homomorphisms unless S-homomorphism is clearly in-

dicated. If the semigroups S and  T are isomorphic as semigroups we shall write

S *»T.

If / is an S-homomorphism the domain of / will be denoted by D    and the

range of / by  R ,. The zero map from  Ms  will be denoted by 0 and the identity map

on  M by 1M. If f: Ms — Ns and if A$ C N$ then /-1U) = \m 6 M; f(m)e A\. The

S-homomorphism /  is called  ^-restricted if /      (o) = 0.

An S-congrue nee r on Ms is an equivalence relation on M such that (ms,

ns) 6 t whenever (m, n) e r for all s £ S. The S-congruence T is said to be  (¡-re-

stricted if (a, 6) e r implies a = 0. If Ns  is a sub S-set of Ms and if p is an S-

congruence on Ms then p\ N = p n (N x A/) is an S-congruence on /Vs.

If S has an identity 1 the S-set Ms is said to be unital when ml = m for

each m e M. For each semigroup S we shall define S1 by S1 = S Ujlj where 1 is

a symbol not in S and where multiplication on S  is extended to S1   by defining

lx = xl = x for each x e S  . With the operation so defined, S1  is a semigroup.

Note that this definition for S    differs from the standard one. However, with the

definition given here each S-set Ms becomes a unital S'-set by defining ml = m

for each m e M,
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The following definitions and theorems are taken from the paper by Berthiaume

[3]. A sub S-set Ns of Ai„  is said to be  large {essential) in M„  if for each fe

Hom(A1  , K )  such that /1 N is 1-1 then / is 1-1. In this case A1~  is called an

essential extension of N_.

Lemma 2.1. N~  is large in AL  iff for every S-congruence p on Mç such that

P ¿ ím  we have p\N ¿ iN.

An S-set Ms  is  infective  if for each A. C B„  and for each fe Hom^ (A, M)

there exists /' e Hom^lß, Ai) such that /   | A = /. If Ms C Ns and if Ns  is injec-

tive then N„  is called an infective extension of AL. The following theorem due

to Berthiaume guarantees the existence of a minimal injective extension which is

unique up to S-isomorphism.

Theorem 2.2. The  S-set AL  is a maximal essential extension of N„ iff M

is a minimal infective extension of N~. Every S-set N?  has such an extension

which is unique up to S-isomorphism over N,-..

The minimal injective extension of  N,,  given in the above theorem is called

the infective hull of /V~. Note that Ms is the injective hull of Ns iff N-  is es-

sential in Ms  and Ms  is injective.

A semigroup S will be called self-infective if Ss  is injective.

3. Right quotient filters. The general theory developed throughout this paper

is largely dependent on a certain type of filter of sub S-sets which will be called

a right quotient filter. Several examples of these are given. These examples will

later provide applications to the general theory developed herein.

The following definitions are generalizations of corresponding concepts in

ring theory. Let N- C M-  where M„   is an S-set. Then  Ns   is said to be  intersec-

tion large   in Ms  if for each 0 ¿ m € M there exists s e S    such that 0 ^ ms e N.

Note that  N„  is intersection large in AL  iff the intersection of N with any non-

zero sub S-set of Al,,  is always nonzero. A second definition taken from Utumi's

paper [15] states that Ns  is dense  in Ms iff for each 0 ^ m, n£ M  there exists

s € S    such that ms ¿ 0 and ms £ N. We easily see that Ns  is intersection large

in Al,. whenever N„  is dense in AL. Less generally, Ns  will be called strongly

dense in M_  if for each m., m2, ne M where m.¿m2 there exists se S    such

that m.s ¿ mys  and ns e N. This latter definition was suggested to the author by

J. K. Luedeman for S-sets in general. In case AI = S  and S has an identity this

is equivalent to the definition of "dense" as given by F. R. McMorris in [lOj. The

fourth definition is a generalization of the vital ideal discussed by McMorris in

[ll]. Let C be any subsemigroup (possibly withour zero) of S. Then Ns C AI s

will be called  C-vital if for each 0 ^ m e M there exists c e C    such that
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0 ^ me e N. Clearly, each C-vital sub S-set is intersection large in Mc  and when

C = S these two definitions coincide.

The following  lemma shows that each of the four concepts given above has

the transitive property. In each case the proof follows from the corresponding de-

finition and will be omitted.

Lemma 3.1. Let   " < " denote any one of the terms "intersection large",

"dense", "strongly dense", or "C-vital". Then X. < L < Zc iff Xc < Z. where

XS - YS -zs-

Thus " < " is a partial order relation on the class of S-sets for each defini-

tion given above. In the special case where " < " represents "C-vital", the fol-

lowing theorem shows that " < " is preserved under inverse images of S-homomor-

phisms.

Lemma 3.2. Let M„ and Nr be S-sets and let cf> £ Hom~(M, N). If As is C-

vital in N c then <p"~  (A)  is C-vital in Mr.

Proof. Let 0 ^ m e M. If <f>{m) - 0 then ml = m € </>"  (A). So, suppose <f)(m) ¿

0. Then there exists c € C    such that 0 ¿ <f>(m)c = <f>{mc) € A. Hence 0/mce

<f>~  (A) and the result follows.

Note that if Nc is C-vital in M„ then m~ N = \s € S: ms € N\ is C-vital in

Sr for all m e M. In order to show this, define d> : S —> M by ó (s) = ms. Then

d>    eHomc(S, M) and d>~  (A/) = m~  N is  C-vital in Sc  by the lemma.

If we restrict ourselves to the class of sub S-sets of Mc a similar result is

valid for the remaining definitions given.

Lemma 3.3. Let  " < " denote any of the terms "'intersection large",

"dense", "strongly dense", or  "C-vital". Let Ac <M?   and Bc < AL  and let

(ß 6 Horn,, (A, M). Then (f,~l(B) < M$.

Proof. By Lemma 3.2 we need only consider "dense" and "strongly dense".

Let " < " denote "dense" and let 0/m, n£ M. Then there exists s   e S    such

that 0 ^ ms    and ns^e A  and there exists se S    such that 0 ^ ms .s 2  and

/(nsj) s2 e B. Therefore, 0 ^ m(sjs) and n(s{s2) e f~l(B)  and it follows that

/"  (ß) < M    in this case. The proof is similar when " < " denotes "strongly

dense".

Let ?, = 9,(MS),  9D = $D{MS),  9SD = fSD(Ms), and  9 cy = 9^) denote

the classes of intersection large, dense, strongly dense, and C-vital sub S-sets

of Mj respectively. In addition, J „ = J AMC) will denote the singleton class

\MS\. In case M  is the semigroup S, the subscript "S" will generally be omitted

in the notation above.
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In general, a nonempty class of sub S-sets of AL   is called a  right quotient

filter (R.Q.F.) of M$  if

(1) As e 9  and ^^CB^C Ms  imply Bs e 9, and

(2) As, Bse9 and fe Homs (A, Ai) imply /" l(B) 6 9.

It is easily seen from Lemma 3-1 and Lemma 3-3 that each of the classes

/'    D'    SD'   CV an<^     B  is a ciênt quotient filter on AL. These specific filters

will be called standard filters.

Lemma 3.4. A right quotient filter J   of AL  is closed under finite intersec-

tions.

Proof. Let As, Bs e 9 and let  i: A —> M be the identity map. Then A n B =

t~  (ß) e f by property (2) above.

Let  J   be a right quotient filter on AL. A nonempty subclass  j' oí J   is said

to be a  base for / if for each A e f there exists B e f such that B C A. Note

tha't a given class of sub S-sets of AL  can be a base for at most one right quo-

tient filter on AL. An arbitrary class  j    of sub S-sets will be called a right quo-

tient filter base  if it is a base for some right quotient filter J   on AL. In this case

it is easily seen that J    is a base for the right quotient filter J = {A_: A   C A C

Al for some A   € f ]. This fact yields the following proposition.

Proposition 3.5. A nonempty class f   of sub S-sets of AL  is a right quotient

filter base if and only if for each A', B' e J ' and f e Horriç(A', Al) there exists

C'  in 9'  with  C'crUß').

Note that if 9 is a right quotient filter on Als  and if Ns e J, J \ N = \N O

A: A e j\ is a right quotient filter for AL  and is also a base for J. In fact, if /

denotes one of the standard filters on AL then J \ N is the corresponding stan-

dard filter on  Ns.

Let S  be a semigroup and let J   be a right quotient filter on S^. An S-set AL

containing  S„   as a sub S-set is called a J-quotient set  over S  if m~  S = {s e

S: ms e Sie J   for each m e Al. In case  Al  is a semigroup containing S as a sub-

semigroup, Al  is called a f-quotient semigroup over S. Clearly, S is always a J -

quotient semigroup over itself. Examples of other  J-quotient sets are given in the

easily proved proposition which follows.

Proposition 3.6. If J = /(AL) denotes one of the standard filters J ., J cv,

f D, or f çD  on AL and if S,, e j(AL) then AL  is a J-quotient set over S.

In the remainder of this section we shall give sufficient conditions for ex-

tending a right quotient filter  J   on S to a right quotient filter on any  J-quotient

semigroup over S. This is given below in the special cases where j = J., JD,

or 9SD.
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Theorem 3.7. Let S C T where  T is a semigroup.

(a) // Ss e 9D(TS) then 9' = [ET1: E e 9 ,(S)\ is a base for 9^).

(b) // Ss e 9D{TS) then 5"= [ET1: E e 9D(S)\ is a base for ?D(T).

(c) // Ss e 9SD{TS) then 9' = \ETl: E e 9SD(S)\ is a base for 9SD(T).

Proof. We shall give the proof of (a). The same general techniques are applied

to prove (b) and (c). Let E £ J((S) and let 0 4 t eT. Since  Es £ 9¡(Tc) by Lemma

3.1, there exists se S1 C T1   such that 0 ¿ ts e E CET1. Thus ET1 e 9l (T) and

it follows that 9' C 9t{T). Now let E.T £ 9\{T) and let  E' = E n S. We claim that

E' e 9}{S). Let 0/seS. Since E £ 9 p-), there exists t e T1   such that 0 ^ s/ £

E. The claim is evident if : = 1. Otherwise, since Sr e J n(Ts), there exists s' £

S    such that 0 ^ s/s' and is' £ S. Hence we have 0 ¿ s(ís') £ E OS = E' where

(ts')e S1. Thus,  E' £?,($) and it follows that  E'T1 = (EnS)T1 CET1 CE.

Therefore,  f  is a base for  J AT).

We can generalize Theorem 3-7 as follows.

Theorem 3.8. Let S C T where S and T are semigroups. Lei j ' (Tr) be a

base for a right quotient filter 9(Tc) on T$. Then 9'(T) = JET1: E £ 9'(TS)\ is

a base for a right quotient filter j{T) on TT. Furthermore, 9{T) is independent

of the base j'(Ts) taken for 9{TC).

Proof. Let E J1  and E2Tl £ 9'{T) where  Ej   and E2 £ 5"(TS) and let /£

HomT (EjT1, T). Let f=f\Ex. Then /'e Hom^ (E L, T)  and since ?'(rs) is a

base for j{Tc), there exists E, £ /'(Tj) such that  E, C /' "(E). It follows that

£^rl c/'-x(E2) T1 C/-1(E2)TI C/-I(E2T1). Hence, by Proposition 3.5, ?'(T)

is a filter base on TT. Now, let f ¡(Tc) and  /2(T^) be any two bases for 9{T„)

and let  9'. (T) = IET1: E£ íP/ÍTy)},   i = 1, 2. Let  ^(T) and  9?{T) be the right

quotient  filters  on   Tj. generated by  Jj(T) and   J2(T) respectively.   If  E£

9¿T) then there exists  Ee9\{T$) such that ET1 Ç   E. Since  f'2ÍTs) is also

a base for ÍF(TS), there exists  E'£ J^Tç.) such that E'c E. Hence  E'T   £

92iT) and  E'T1 C   ET1 C   E. Therefore, Ee 92(T) and it follows that  9¿T) C

j j(T).  A symmetrical argument gives the reverse inclusion.

A right quotient filter 9 on S^  is said to be special  if it has the following

property:

"If F is a right ideal of S, Ee 9, and x~lF = is: xse F\e9 for all x£ E,

then E £ 9."

Lemma 3.9. Let  9 be a right quotient filter on Sr. Then J   is special iff J

has the following property:

"For each E e 9 and ¡or each x e E, let E    denote a member of J. Then

E'= U   fPxE   e9."
X €E X
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Proof. ( =» ) If x e E then x~ E' = \s: xs e E \ which contains E and E e

9. Hence x~lE' e 9 for each x e E and it follows that  E' e 9.

( <= ) Let E' = \JxeEx{x~lF). Then  E' e 9 by the hypothesis. However,

E'CF, Therefore, F e J  and we have that  9 is special.

Before giving some examples of special quotient filters, we shall digress

briefly and consider a semigroup S  containing right cancellable elements. Let C

be a subsemigroup of the right cancellable elements of S. The semigroup S has

the right common multiple property (R.C.M.P.) with respect to C if for each se

S and for each c e C, cS O sC ¿ a. Let Jc = {R: R is a right ideal of S and R n

C¿a\.

Proposition 3.10. 9 is a right quotient filter on Ss iff S has the R.C.M.P.

with respect to C. In this case,  J _ = j rv(S).

Proof. ( =» ) Let c e C and s e S. Define </>  : S —» S by (f> (t) = st  for each

t e S. Then <f>   e Horn,. (S, S). Since c   erfO C, we have  cS e 9 _. Hence by the

definition of an R.Q.F.  it follows that (f>~  (cS) = \t e S: st e cS\ e 9   . Let c   e

<f>~  (cS) H C. Then se   e cS and we have sC O cS ^ D. Therefore, S has the

R.C.M.P. with respect to C.

(*=■■) Now, suppose S has the R.C.M.P. with respect to C. We claim that

9 c = JCV,(S). Let  R e 9     and let  0 ¡¿ s e S. Then there exists n e R (^ C and there

exists c   e C and s  e S  such that sc   = ns . Since c   e C, sc   ^0 and it follows

that sC1 n R ¿ 0. Therefore, R e ?CV(S). Now, let R e 9 cy(S) and let ceC.

Since  R e /_   (S), there exists  c   e C    such that ce   e R. However, ce' e C  and

we have R H C ^ o. Therefore, R € /c  and the theorem follows.

Several examples of special right quotient filters can now be given as shown

in the proposition below.

Proposition 3.11. Let S  be a semigroup with zero.

(a) // S contains right cancellable elements and if S has the R.C.M.P. with

respect to a subsemigroup C of the right cancellable elements of S then Jrv/(S)

is a special R.Q.F.

(b) 9B{S)  is special iff S2 = S.

(c) // \s eS\ sS =0\ = }0¡ then 9ß{S) is special.

(d) If {seS\sS = 0\¿{0\ then 9D{S) = ?ß(S).

(e) // S  is right reductive (i.e. sS = t.S implies s = t for s, t e S) then

9  As) is special.

(f) // S  is not right reductive then 9SD(S) = 9   {S).

Proof, (a) Let E e 9CV(S) and let E   e 9      (S) for each x e E. Since  E e

9rv  and since  Scv = f r  by Proposition 3-10, there exists  c 6 CO E  and since
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E   e 9      there exists  c   e C C\ E  . Thus we have ce' e cE    CE' =   U   eE xE

and it follows that E' e 9'    = 9c   . Therefore, 9ry  is special by Lemma 3.9.

(b) Since 9B(S) - {SS, 9ß  is special iff S =0 seS sS = S2.

(c) Let D e 9D(S) and for each xe D let D%£ 9D(S). By Lemma 3.9

and Lemma 3.1, it will be sufficient to show that D' = U   .„xD   e 9„(Dc).
' w x s u      x       u     s

Let  0 ^ m, n £ D,  By the  hypothesis  there  exists  s e S  such  that ms ^ 0.

Since D     e 9„(S),  there  exists  s' e S     such  that mss'í 0 and ss' e D   .
n L>      ' n

Thus, »¡(ss') ^ 0 and n(ss') e nDn C D'. Therefore, D' e ?D(DS).

(d) Let 0 ¡¿ m e S such that mS = 0. Then for D e 9 (S) and s e S there exists

s' e S such that 0 ^ ms and ss e D. However, since mS = 0 we must have s' =

1 and it follows that D - S. Therefore, 9D(S) = \S\ = 9   (S)  in this case.

(e) Let D e 9SD(S) and for each x e D let D e 9 (S). As in (c), it is suf-

ficient to show that D' = U cnxD e 9 (Dc). Let m, £ m„, ne D. Since S is

right reductive there exists se S such that m s ¿ ms. Hence since D   e 9SD(S),

there exists s  eS    suchthat m.ss   ¿m.ss'  and ss'e D   .Therefore,  m,(ss')¿
1 ¿ n i

m Ass') and n(ss') e nD    CD' and we have D' £ S D(DS).

(f) Let m. ¿ m   e S  such that m .S = m^S and let D e 9     (S). Then for se

S, there exists s  e S    such that m.s   ¿ m s   and ss   e D. However, s   must be 1.

Therefore  D = S and we have  9SD(S) = \S\ = 9ß(S).

We will now return to the general problem of extending a right quotient filter

9  on  S to a right quotient filter on any  /-quotient semigroup over  S.

Theorem 3-12. Let  9 = j (S) be a base for a special right quotient filter

9 = 9(S) on Sç. If AL  is a 9-quotient set over S then 9   is a base for a right

quotient filter T(AL)  which is independent of the base taken for 9(S).

Proof. Let A, B £ 9' and let f £ Homs(A, Al). By Proposition 3.5, it is suf-

ficient to show that /"   (ß) contains an element of  /'. For each  ae A, let E    =

lf(a)]~  S. Then since  Al     is a J-quotient set over S, E    e 9. Note that for each

element s e Ea, f(as) = f(a)s £ S. Let E'= U    eAaE  . Then E' £ 9 since  9 is

special. If /' =/|E' then /' e Horn,- (E', S). Hence /' _1(S) e ?($)  and it follows

that there exists  C £ 9' such that  C C /' ~  (ß) C /"  (ß). An argument similar to

that of Theorem 3-8 shows that 9(AL) is independent of the base  9' taken for

9(s).

Theorem 3.13. Let 9=9 (S) be a base for a special right quotient filter

9(S) on Sç. Let 7 be a 9(S)-quotient semigroup over S. Then 9'(T) = {ET  :

E £ 9 \ is a base for a special right quotient filter 9(T) on TT which is inde-

pendent of the base  9' taken for 9{S).

Proof. By Theorem 3.12 and Theorem 3.8, 9' (T) is a base for a right quo-
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tient filter j(T) on Tj.  which is independent of the base 9' taken for 9{S). Hence

we need only show that J (T)  is special. Without loss of generality we may assume

that 9' = 9(S). Let D e 9{T) and let D^ e 9(T) for each x e D. There exists E e

f{S)  such that E C ET   C D  and, for each e e E, there exists E   e 9(S)  such that

E    C E  T1 C D  . Let E' = U   FP eE  . Then E' £ 9(S) and we have  E'T1 =
e —     e        —     e e ¿t.        e

(VeeEeEe)Tlt(UxeD*Dx)Tl Ç UxEDxDx. Therefore, Ux eD *Dx £ ?(T) and

the theorem follows.

The class  9{T)  will be called the special right quotient filter  induced by

9(S) on  TT.

The next lemma gives a general analogue of the transitivity property given by

Lemma 3-1.

Lemma 3.1.4. Let 9{S) be a special right quotient filter on S. Let T be a

f(S)-quotient semigroup over S and let 9{T) be the special right quotient filter

on Tr  induced by  9{S). Let  U_ be a 9(T)-quotient  T-set over T. Then  Uc  is

a j(S)-quotient S-set over S.

Proof. Let u £ U. We need to show that {u~  SL £ J (S). Since  U„  is a 9{T)-

quotient  T-set over  T, {u~  T)T £ 9{T) and, since  J (T)  is induced by J (S), there

exists E £ 9{S) such that E C ET   C (u~  T)r. For every s e E, let Es =

[(us)~  S]c. Then E   e 9(S) for all s e E, since us e T  and T is a J (S)-quotient

semigroup over S. Let  E'= U   ep SE  • Then E   £ j(S) and  E    C {u~  SL. There-

fore, (k-'s)^?^).

4. The torsion congruence induced by a right quotient filter. A generalization

of the singular congruence and the torsion relation defined by Feller and Gantos

[6] will now be given. We begin by defining the  J-torsion relation on AL  and

noting that it is an S-congruence when  J   is an R.Q.F. Several facts concerning

the  ./-torsion congruence when   "  is one of the standard filters are then given.

In general, let  J be any class of right ideals of  S and let  AL   be a right S-

set. Let  i//j,(A1s) = \(m1, m2)e M x M: m^P = m2? for some  P e 9\. Then «/>y(M^)

is called the J-torsion relation (or J-torsion congruence   if t^aíAlf.) is also an

S-congruence). When J   is an R.Q.F. on Ss this relation is indeed an S-con-

gruence as shown in the following lemma which is easily proved using the prop-

erties of a right quotient filter.

Lemma 4.1. Let  9' be any base for a right quotient filter  J   on Sr. Then

(a) ipy'{Ms) = i/jf{Mc);

(b) ift<f(Mç)  is an  S-congruence on  AI   • and

(c) if M = S then ipa{Sc)  is a 2-sided congruence on  S.
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If 9 = 9    9   , J   D, 9cv, or /„ then the corresponding /-torsion congruence

will be denoted by ip, = ipps), <//D = <AD(A1S), >PSD = <ASD(MS), \¡)cy = ipcv(Ms),

or </»„ = ifiR{MC) respectively. In case A! = S the subscript  S will be omitted. The

congruence  ip.(Mc)  is generally known as the singular congruence  on M„.

The following lemma shows that the order relation '   C " is preserved in pas-

sing from right quotient filters to  /-torsion congruences.

Lemma 4.2. Let  9    and 92  be any two right quotient filters on Sr. If 9    C

9    then  ipy    Ç 0a   • ¡n particular, we have t//    C </i^     C ift     C tp. and i>cv C (/»..

Let  S  be a semigroup with right cancellable elements and let  C be a sub-

semigroup of S  consisting entirely of right cancellable elements of S  such that

S has the right common multiple property with respect to C. In Proposition 3-10,

it was shown that  9cy = \Rr C S_: R f~\C 4 a\ = 9   . The next lemma shows that

tficv(Ms)  is the same as the torsion relation defined by Feller and Gantos in [6].

Lemma 4.3. Let  C be as above and let S have the  R.C.M.P. with respect to

C. Then  i¡Jcv(Mr) = \{m., m 2) : m .c = m c for some c e C\.

Proof   Let (m  , m J £ 0_   (AL). Then there exists  Ee9c     suchthat m.E =

m2E. Since E n C ^ D, it follows that (m  , m ) is a member of the right side. Now,

let {m., m2) be an element of the right side. Then there exists c e C  such that

m.c = m2c Let E = cS. Then since c   £ cS n C we have cS £ 9rv. Clearly,

m.E = w2E and we have (m., m ) £ 0c-,(Ai_).

The following corollary is evident from the lemma.

Corollary 4.4. Under the hypotheses of Lemma 4.3  iftrv(S) = t.

It is clear from the definitions that 9 D(AL)   is always contained in 9.(AL).

The next lemma gives a sufficient condition for equality of these two filters.

Lemma 4.5. // ipj(Ms) is 0-restricted then 9 p^) = 9   (Mc).

Proof» We need only show that 9 p ) C 9   (Ms). Let Ns £ 9p )  and let

0 ^ m, n e M. In a similar manner to the note following Lemma 3.2 we have n~  N =

\s e S: nse N\e 9p). If m{n~lN) = 0 then (w, 0) £ i/í/AI^). However, m ¿ 0 and

i/jÁMc) is 0-restricted. Therefore, m(«_  A/) ^ 0 and it follows that there exists

s £ S    such that ms ^ 0 and ws £ A/. Hence, AL e 9   (AI  ).

This lemma and the lemma which follows show that "dense" and "intersec-

tion large" are the same concepts on a regular semigroup.

Lemma 4.6. If S CT such that S e 9,{TS) and T  is a regular semigroup,

then ifiÂTç) is 0-restricted.

ProoL Let  E £ 9p)  and let  0 ¿ t £ T. Let  t' be an inverse of t  in  T. Since
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S e 9¡(Ts) we have  E £ 9.(TS). Thus there exists s £ S    such that 0 ^ t's £ E.

Hence O 4= t's = t'tt's £ E and it follows that O 4 t(t's) £ tE. Therefore,  "A/T^.)

must be  O-restricted since  E  is an arbitrary element of  9.(T„)  and contains an

element  x  such that  tx 4 0  for each 0¡¿ íe T.

In general,  J .(S)  is not a special right quotient filter. However, the next

proposition gives necessary and sufficient conditions for this to be true.

Proposition 4.7. The following are equivalent:

(a) 9 (S)  is special.

(b) i/jj(S) is  O-restricted.

(c) 9t(S) = ?D(S) and ¡s e S: sS = OS = 0.

Proof, (a) -» (b). Let A = \s e S: (s, 0) e tp^S)}. We need to show that A = 0.

By Zorn's lemma there exists a maximal sub S-set L of 5 such that An/1 =0.

It easily follows that B = A U A' e £P/(5). For each   è e B, let

D* =

'{Of    if b £ A,

B if b £ A'.

Note that  b~l\0\e9j(S) for each  b £ A. Hence  D = Ufceß &Dfc e 9^) since

T.(S) is special. However, we can write

d = [u Mfc-Moolu |U
\b € A J \_b €A '

bB =   U   bBÇA'.
be A '

Thus it follows that A' e 9 (S) and since A n A' = 0 we must have A = 0.

(b) => (c). This follows immediately from Lemma 4.5.

(c) =» (a). This is essentially a restatement of Proposition 3.11(c).

Now let 9 denote one of 9 9 or 9s . If S and T are semigroups such

that S C T then T has a J(S)-torsion congruence as well as a j(T)-torsion con-

gruence. These are the same under the conditions given below.

Theorem 4.8. Let S and T be semigroups such that S e 9 ATs). Then

i/jd(Ts) = ifJD(T) and i{j{(Ts) = 0,(T). Also, if Se9SD(Ts) then 4>SD(TS) =

<ASD(r).

Proof. Let  9  denote any of J „, 9   _, or  J ,  and let  if)  denote the correspon-

ding torsion congruence. If (t., t )e ip(T) then there exists  E e 9(T) such that

t.E = t~E. By Theorem 3-7 ((a), (b), or (c) depending on the choice of 9), there

exists E' e 9(S)  such that E'C E'T   C E. Thus t.E' = 12E' and we have

(r,, t2) e ip^(Ts). On the other hand if (ij, t2) £ "AyCT^), there exists  E e 9(S)

such that  íjE = <2B. Hence ^(ET1) = /^ET1) and ET1 e 9{T) by the same
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theorem mentioned above. Therefore,  (/., /,) e \¡j(T) and the result follows.

The theorem can also be stated for any special filter and for any  J-quotient

semigroup. The proof is similar to that of the previous theorem.

Theorem 4.9. // 9 = 9(S)  is a special right quotient filter on S and T is a

9-quotient semigroup over S then ^a^-ÂTA = lA»(7-)(7*)  where 9(T)  is the right

quotient filter induced on  T  by  9,

Let J   be an R.Q.F. on S. The  S-set AL  will be called 9-torsion free  if

ip<f(Mç) = i. We have already seen that if S has a subsemigroup C of right cancel-

lable elements and has the R.C.M.P. with respect to C then S is J cv/(S)-torsion

free. We observe below that S  is  J „„-torsion free for a large class of semigroups

which includes each semigroup with identity.

Lemma 4.10. For all semigroups  S, ipSD(S) = </»„(S). Hence  (//.„(S)  is the

identity congruence iff S  is right reductive.

Proof. Clearly,  \fi„(S) = t iff S is right reductive. Suppose  (s, t) e <ArD(S)  such

that s 4 t. Then there exists D e 9SD(S)  such that sD= tD. If s' £ S such that

ss   4 ts   then there exists t  £ S    such that ss t 4 ts t and s t' £ D, which is a

contradiction. Thus  sS = tS  and it follows that  1/,B(S) = ift„n(S).

McMorris showed in [12] that 9AS) = 9     (S) when ip,(S) = ¿. A similar proof

gives this result for all  S-sets.

Lemma 4.11. // ^¡(MJ = t then 9SD(M$) = 9D(MS) = 9}(M$).

We also have the following two lemmas involving J-quotient sets.

Lemma 4.12. Let AL  be a 9-torsion free S-set such that  S_ C AL  where 9

denotes one of the filters  9     j        or 9  n. Then AL   is a  9-quotient set over S

iff S £ 9(ms).

Proof. If S e j(AL)  then  AL  is a J-quotient set over S  by Proposition 3.6.

Conversely, suppose that  Al^   is a  J-quotient set over  S. First, consider the case

where  J = 9     and let  0 4 m, n £ M. Then n~   S £ 9(S) and  m(n~  S) 4 0  since

</<   (AL) = i. Thus there exists s £ S  such that  0 4 ms  and  ns e S and it follows that

S e 9D(MS). Next, suppose that 9 = 9.. Since i/f.(AL) = l, we have j (AL) =

J,D(A1S) by Lemma 4.11 and it also follows that if/^S) = t. Thus  9{(S) = 9D(S) by

Lemma 4.11 again and the result follows from the previous case. The proof for the

case  J = 9SD  is similar to that of the first case and will be omitted.

Lemma 4.13. Let 9 be an arbitrary right quotient filter on S such that S is

9-torsion free and let M$ be any 9-quotient set over S$. Then M% is 9-torsion

free iff Ss  is large in M$.
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Proof. ( =» ) Let $ £ Horn^ (AI, K)  such that <t | S is 1-1 where  Ks  is an ar-

bitrary S-set. Let m., m2 £ Al  such that Qim^) = $(m2). Let D = m~ S r\m~  Se

9, Since <í>(m .s) = $(777 s ) for all s £ D and since $ | S is 1-1, we have m. D =

»2,0. Therefore, m. = m2 since AL  is  /-torsion free and it follows that Sr  is

large in AL.

( «= ) Since ifjy(S) = t//y(A1 ) j S = t, it follows from Lemma 1.1 that <//j>(Ms) = t.

5. Right quotient semigroups. Let  S  be a semigroup,   AL   be a right  S-set

and 9 be a right quotient filter on Af^. Let  E = Fy{Ms) = UDe ¡pHom^D, Al) and

define multiplication on  E  by fg = h where  h: D   O g~  (D ) —> AI   is given by

h(x) = f{g(x)). Then under this multiplication  E is a semigroup, called the  semi-

group of partial S-homomorphisms of AL  with respect to 9.

Lemma 5.1. Define a binary relation co = 6J<p(AL) 072 the semigroup  F  by

(/, g) £ co  iff there exists D e 9 such that f \ D = g \ D. Then co is a 2-sided con-

gruence on F.

The semigroup Q¡* = Sg>(AL) = E/co  will be called  the semigroup of right

quotients of AL with respect to  9. The elements of Q«(AL)  will be denoted by

/   where f e F. when 9 = 9¡f 9      9C[), 9cv, or 9ß  then g y will be denoted by

Qp QD< Qsd' Qcv or ^B  resPectively. As before, the subscript S in Qtp(Ms)

will be omitted when AI = S.

Note that  QAMC) = Horrid (AI, Al). More generally, the following lemma shows

that if the R.Q.F.  /  on AI     has a least element  Ds  under set inclusion then there

is a natural isomorphism between Qç(AL) and Hom„(D, D).

Lemma 5.2. Let  9  be a right quotient filter on  AL  with a least element  Dc.

Then Qy{Ms) f^ Homs(D, D) under the map f —» /   where f £ Homs(D, D) and

multiplication on  Hom„(D, D)  is composition.

Proof. The isomorphism will clearly follow once it is shown that Horn,. (D, Al) =

Homs(D, D). Let /eHoms(D, Al). Then f~l{D)£ 9 and since  D is the least ele-

ment of 9 we have  DCf '(D). Thus, D = f~1{D) and it follows that /(D) C D.

Therefore, f £ Homr(D, D). Since the reverse inclusion is obvious, we have

equality.

In this paper we are mainly concerned with the case where Al  is the semi-

group S. As noted below we see that there is a natural representation of S in

Qf(S).
Let   9 be a right quotient filter on Sc. For each  s £ S, define   (f>  : S —» S by

cf> (t) - st. Then  cß   £ Hom„(S, S). It is easily seen that the mapping  (p: S —> Q =

Q <p(S) by </>(s) = <f>    is a representation of S  in Qq(S). The image of S under cf>

will be denoted by S. Since S   is a subsemigroup of Q,  Q  may be regarded as a
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centered right  S-set Q—  in a natural way. Also,  Q  becomes a centered right  S-

set  Qs  by defining f s = ¡(f)    for each / € Q  and for each  s e S. It is easy to show

that the following lemmas involving the representation of S  in  2<p(S)  are valid.

Lemma 5.3. 0y (S) = cf>~ l ° cß.

Lemma 5.4. For each f e Fa, (S) and for each s e D ., f<f>   - <f> .  ..

When  >pa(S) = (, we shall assume that S is embedded in Q = Qa(S) under the

identification s <->0  . From Lemma 5.4 we see that f s = f(s) for each /  £ Q AS)

and for each se D. under the identification described above. Furthermore, since

D. C (/ )~  S  and D.£ 9, Q _(S)  is also a J-quotient semigroup over S. In addi-

tion, the next lemma shows that Q<.  is 9(S)-torsion free.

Lemma 5.5. Let  9 = 9(S)  be a right quotient filter on  S and let Q = QtAS).

If S  is  9-torsion free then Q„  is  9-torsion free.

Proof. Let" (/j, / 2) e i/iyigj). Then there exists  Ee9 such that / ,E = /2E.

Let  E' = E n D/ HDf   e9. Then for each s e E', we have f ¿s) = /^s = J2s =

/2(s)  and it follows that /, = f -,•

The following corollary is immediate from Lemma 4.13 and the remarks pre-

ceding the above theorem.

Corollary 5.6. Let 9  be a right quotient filter on S and let Q = Qcp(S). If S

is 9-torsion free then Sç  is large in Q~.

The next theorem shows among other things that each  J-torsion free  J-quo-

tient set (semigroup) can be embedded in Qa(S) as an  S-set (semigroup) such that

the elements of S are fixed under the identification s <-»<^>  .

Theorem 5.7. Let AL  be a 9-quotient set (semigroup) over S. Then there

exists an  S-homomorphism (homomorphism) $: AL —> Qa(S) = Qç such that

(a) <£(s) = <f>    for each s e S and

(b) O-1 otJ) = </,?(Ms).

Proof. Let  m e Al. Since  AL  is a  J-quotient set over  S, m~  Se 9. Define

6   : m~lS —>S by dm(s) = ms. Then dm e Q = Q9(S). Let $: Al — Q  by $U) =

6   . For each seS, we have Da   = s~  S = S. Thus $(s) = 6   = ó    and (a) fol-

lows. Furthermore, $(ra,) = $(«,) iff 6      =0       which is true iff there exists E e
' 1 2 m i m 2

9  such that  m.s = d     (s) = d     (s) = rans  for all  se E. Hence it follows that
1 m y mi 2

$~ L o (J) = ^(Mj). Now let me M  and s e S. Then $(??2s) = 6       and $(ot) s =

6   s = Ö   cá   = 0   <¿  .LetKDfl      HD,,   fl   É?. Then (9     (r) = (ms)t = w(sr) =
m mrs rrr s t>ms t>m Os ms

6   (st) = 0   <f> (t). Thus it follows that <$ is an S-homomorphism. Now suppose Al

is a  J-quotient semigroup over S. Let  m., m2e M. In order to show that $  is a
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semigroup homomorphism it is sufficient to show that 9 =99. Let / £
ör r m\m2 m\    m2

Da nDñ     ñ      e 9. Then 9 (t) = {m ,mj t = m Am a) = 9     9     (/). There-
timxml bm\tím2 mxm2 12 12 m\    m2

fore, 9 = 0      6     .
m \m 2 772 1      777 2

As the following corollary shows,  j2j>(S)  is the maximal /-torsion free  9-

quotient semigroup over S (up to semigroup isomorphism over S) when S  is  /-tor-

sion free.

Corollary 5.8. // S  is  9-torsion free  then  Q = Qy (S)   zs a 9-torsion free  9-

quotient semigroup over S which contains an S-isomorphic {isomorphic) copy over

S of every  9-torsion free  9-quotient set (semigroup) over S.

Proof. By Lemma 5.5 and the remarks preceding it, Q   is a  /-torsion free  9-

quotient semigroup over S. Since «/'©(S) = i, the rest follows from Theorem 5.7.

Proposition 5.9. // T  is a J -quotient semigroup over S and $  ¿s a semigroup

endomorphsim on  T such that  $ | S = i,.   then $ C ip®{Tc).

Proof. Suppose 0(/j) = tr Let D = t~lS O t'1 S e9. Then for each s £ D, we

have íjS = $(/js) = $(/^(s) = t2s. Thus, it follows that (t x, t 2) e <A<¡>(T5).

Corollary 5.10. // T  z's a 9-torsion free 9-quotient semigroup over S then

the only semigroup endomorphism on  T fixing  S  is the identity.

Let   / = 9(S)  be a special right quotient filter on S   such that S  is  /-torsion

free. Let  9(Q) be the special right quotient filter on Q = Qq{S) regarded as a Q-

set as given by Theorem 3-13. By Lemma 5.5, Qs  is  /(S)-torsion free and it fol-

lows from Theorem 4.9 that  Qn   is also  /(2)-torsion free. Thus there exists a

natural embedding of Q  in Q = Qcp,0AQ) and under this embedding Qq   is a

/(g)-quotient semigroup over Q. The next theorem shows that this embedding is

actually onto Q .

Theorem 5.11. Let 9 = 9(S) be a special right quotient filter on S such that

S is 9-torsion free and let Q = Qy{S). Then Q'= Q®,qÁQ) = Q with the identifi-

cation given above where 9(Q) is the special right quotient filter induced on Qn

by 9(S).

Proof. By Lemma 5.5 with S replaced by Q, we have Qq  is  /(2)-torsion

free. We claim that Q^   is j(S)-torsion free. Let (r1? Í-) € if) <p,S\(Qs )• Then there

exists E £ 9{S)  such that t XE = t2E. Hence t Á.EQ) = tpQ) and EQ £ 9{Q). Thus

(/., 12) £ ifj<¡>/(-))(Q¿) = l  and it follows that  Qs   is  /(S)-torsion free. Furthermore,

by Lemma 3-14, qL   is a 9(S)-quotient semigroup over S. So, by Corollary 5.8

there exists a semigroup isomorphism $  of  Q   into Q  which fixes S. Let  <$ =

<£ | Q. Then by Corollary 5.10, $ = („. Therefore, since <$: Q  — ♦ Q  is an isomor-

phism which fixes  Q  it follows that  Q   = Q.
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From Proposition 3.11 we see that 9 (S) is special whenever S is JD-tor-

sion free. Also, from Lemma 4.10 and Proposition 3.11, 9 s (S) is special when-

ever S is /„„-torsion free. Hence the corollary given below for these particular

cases follows.

Corollary 5.12. // S is 9'-torsion free then CACAS)) = QAS) and if S is

9-torsion free then Q$d(Qsd^^ = QsD^'

In [8], the author noted that  Q¡(S) is the injective hull of S^  and is self-in-

jective whenever S  is J .-torsion free. These results can also be obtained as ap-

plications of the preceding theory.

Theorem 5.13. // S  is  9.-torsion free then Q = Q,(S)  is the infective hull of

ss.

Proof. Since i/j.(S) = t, we see from Corollary 5.6 that S,. is large in g„. Let

AL be the injective hull of S^. Since S,. is large in AL, S^ e 9,(AL) as shown by

Feller and Gantos in [6] and we see that AL is a J .-quotient set over S. Also by

Lemma 4.13, AL is J.-torsion free. Thus, from Corollary 5.8 we may assume that

AL is chosen such that S„ C AL C Q_. However, since S„ is large in Or and since

Al is a maximal essential extension of S„ we must have AL = Q and the result

follows.

Theorem 5.14. // S  is 9.-torsion free then Q = Q,(S)  is self-infective.

Proof. By Lemma 5.5 we have ip¡(Qs) = i. Since  9 (S) = 9   (S) by Lemma

4.5, Se 9D(QS) by Lemma 4.12. Hence by Theorem 4.8, $¡(Q) = t. So, again by

Lemma 4.5, ?,(£>) = 9 D(Q). Therefore, since 9 AS) = iP'S)  and 9 AQ) = 9^)  it

follows from Corollary 5.12 that Q¡(Q,(S)) = Q¡(S). Thus Qq  is injective by Theo-

rem 5-13 where  S  is replaced by  Q  in the theorem.

Let  C be a subsemigroup of the 2-sided cancellative elements of S. A semi-

group Q  with identity containing S as a subsemigroup is called a classical semi-

group of right quotients of S with respect to  C if (a) each element of  C has a

2-sided inverse in 2, and (b) Q = \ab~   : a e S, b e C\.

The following theorem is a generalization of a theorem in ring theory proved

by Asano in LlJ. A classical proof of this theorem was also given by Smith in [14],

Theorem 5.15. S has a classical semigroup of right quotients with respect to

C iff S has the R.C.M.P. with respect to C.

Proof. ( =*=» ) Let  S CQ where  Q  is a classical semigroup of right quotients

over S with respect to  C. Let n £ C and s £ S. There exists se S and n   e C

such that n~  s = s xn~   . Hence sn^ = ns j  and it follows that sC O nS 4 □•

( *= ) If S  has the R.C.M.P. with respect to C  then  9cy as defined in §3
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is a special right quotient filter on  S  by Proposition 3-11. Also by Corollary 4.4,

Sç   is  9c„-torsion free. Let  Q - Q(-V\S). As before we can identify S  with the

semigroup <5(S) = S   in  Q, Hence without loss of generality S C Q  under the iden-

tification s«->c¿ . For each ne C, ó   : S —» nS  is 1-1 since n  is left cancella-rS '     r  77_    _ _ _

tive. Hence 4>~   ■ nS —> S exists and  é> ó~    = ó~  é>   = Tc. Thus each element

of C has a 2-sided inverse in Q. Now let / e Q  and let n £ D   n C, Then fn =

fin). Therefore / = f{n)n~    £ SC~     and the theorem follows.

A semigroup S (without 0) is said to be left reversible if s.S ds2S ^ □ for

every s. , s 2£ S . The following well-known theorem due to Ore (see Clifford and

Preston [4]) now follows as a corollary of Theorem 5.15.

Corollary 5.16. A cancellative semigroup S (without 0) is embeddable in a

group of right quotients of S  iff S is left reversible.

Proof. Let S = S     and let  C = S . If S is left reversible then S has the

R.C.M.P. with respect to C = S . Hence S has a semigroup of right quotients  Q

with respect to S . The properties of Q  immediately yield the fact that Q  is a

group with 0 adjoined. Let A  = Q\{0\, Then Q   is a group of right quotients of

S . The proof of the converse is easy and will be omitted.

Lemma 5.17. Let  S CT C U where  T and  U are classical semigroups of quo-

tients over S with respect to C. Then T = U.

Theorem 5.18. // S has a classical semigroup of quotients T with respect to

C then  T  is unique up to isomorphism.

Proof. Let  T  be any classical semigroup of quotients of S  with respect to

C and let Q = QCV(S) be the one obtained in Theorem 5.15. If t £ T then / =

S72~     for some s e S and some n £ C. Thus n e t~ S and it readily follows that

t~ S e 9      (S). Since each element of C has an inverse in T, it is immediate from

Lemma 4.3 that Tc  is  /cv/-torsion free. Thus T  is /cv/-torsion free and a 9c   -

quotient semigroup over S. Hence by Corollary 5.8, T can be embedded in Q

such that  S CT CQ and the result follows from Lemma 5.17.

6. Right quotient semigroups of 0-direct unions of semigroups. A right ideal

R  of a semigroup S is called a null right ideal if RS = 0. Throughout this sec-

tion we shall let  \Sa\ aeQ be a collection of 0-disjoint semigroups each having no

nonzero null right ideals. The semigroup S  will denote the 0-direct union of

\Sa\ aea (i.e., S  is the union of the  Sa's and  SaS a- 0 for  a^ ß). Note that a nat-

ural embedding of S  in II aeß Sa is given by  A: s —> s  where
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Ís    if
0    otl

56 S a,

otherwise.

When convenient, we shall identify S with its image in II aeß S a.

For each ae 0, let  J a be a right quotient filter on Sa. The next theorem

shows that the collection \9a\ ae0 induces a right quotient filter  9  on S.

Theorem 6.1. For each  ae fi, let  9a be a base for the right quotient filter

9 aon S a. Let 9 ' = \A s C S : A Ci S a£ 9 'a for each  ae Q,\. Then 9' is a base for

a right quotient filter 9  on S which is independent of the bases  9    taken for

9  , ae 0. Furthermore, if 9 a= 9 afor each  ae ii then 9  is the right quotient

filter 9.

Proof. Let A, B £ 9'. Let A a= A n Sa and let Ba= B O Sa for each ae Ü.

Let f£ Homs(A, S) and let j a= f\Aa. We claim that f a£ Homr  (A a, S). It is suf1

ficient to show that /a(A a) C Sa. Suppose fa(s) = t £ S g where ß 4 a. Then

fa(s)S = tS = 0, Since S has no nonzero null right ideals it follows that t = 0.

Since A a, B a£ 9 a and since  J a is a base for J on S a, there exists  Cae 9 a such

that CaC/;HBa). Let C = UaCa. Then C e 9' and clearly C C/" Uß). There-

fore, 9    is a base for a right quotient filter 9  on S. Now suppose that J a is also

a base for 9a, aeù and let ?" = \As C S: A O Sae ?¡for each ae fi|. We claim

that each element A  of 9' contains an element of 9 ". If A a= A n Sathen A ae

J ^ C 9aand since  J ^ is also a base for 9a there exists A'a e 9 '^ such that

A^ C A a. Let A'= Uago^ á • Then A' e 9 " and we have A' C A. A symmetrical

argument shows that each element of 9" contains an element of 9 '. Thus it fol-

lows that  9   and 9     are both bases for the same R.Q.F.   J  on S. Finally, suppose

that each  9a\s an R.Q.F. on Saand let A, B e 9 ' and / e Homr (A, S). Then

/a=/|AnSa e Homr   (An Sa, Sa)
a

and

f-l(B) = r1\\J(Bnsa)\= U[/-1(ßnSa)]=  UtZ-HBnsJle 5".

Therefore, in this case 9 ' is an R.Q.F. on S and the theorem follows.

The filter Jon S given by the above theorem will be called the right quo

tient filter induced on S by \9A aea- For the remainder of this section, 9 will

always denote this induced filter, unless a specific statement to the contrary is

made. If each 9a is a standard filter on Sa of a given type, the next result shows

that 9  is the standard filter on S of that type.
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Lemma 6.2. // 9a is 9(5a), /p J, or 9   (S) respectively for each  ae Çl

then 9  is 9 AS), 9 p), or 9 AS) in the same order.

Proof. Let A e 9p(S) and let A a= A n Sa for each ae fi. Let 0 ¿ 777, 72 £ SaC

S. Then there exists  s £ S    such that ms ^ 0 and 72s £ A. However, m £ Sa and

ms ^ 0. Hence s £ Sa and it follows that ms ¿ 0 and 72s £ A n Sa= A   . So, we have

A a£ 9D(Sa) for each a and it follows that A e 9, Now suppose that A e 9. Then

Aa=/ln Sa£ JQ= 9 D(Sa)  for each  a£ fi. Let 0 ¿ m, n e S, say  m £ S a and 77 £ S „.

If a = /3 then there exists s £ S a such that  ms /= 0 and 72s £ A aC A. Suppose  a ^

jß. Since   S  has no nonzero null right ideals there exists   s e S  such that  772s jí 0.

Thus s £ Sa and we have 72s = 0 £ A. Hence in either case there exists  s £ S    such

that ms 4 0 and 72s £ A. Therefore  A £ 9   (S) and it follows that  9 = /„(S). The

proof for the remaining cases follows in a similar way from the corresponding de-

finitions and will be omitted.

Returning now to right quotient filters in general, let us see how the /-tor-

sion congruence on S is determined entirely from the individual /^-torsion con-

gruences on the Sa's.

Proposition 6.3. 0y(S) = U J> ? pa) U \(a, b): {a, 0) e ip f p a) and (0, b) £

"Ay   {Sn) for some  a, ß e fi¡.

Proof. Let  (a, b) £ 0<p(S). Then there exists  E e 9  such that  as = bs  for all

s £ E. If a  and  b  are both in the same  S a then as = bs  for all  s £ E (~^ S a£ 9 a.

Hence (a, b) £ 41 a  (Sa). Suppose that a £ Sa and b £ S n where  a.jL ß. Then as =

es = 0 for all s £ E C\ S a and  es = as = 0  for all s £ E O S a. Therefore, in this

case (a, 0) £ iA?   (Sa)  and (0, fe) £ t/>y   (S^). Now, if (a, b) £ 0<p  (Sa) for some  a£

Í) then there exists A a£ 9a such that aA a= bA a. Let A = A aU ( U/j-¿aSa). Then

A £ 9  and  aA = M. Thus we have  (a, b) £ ipqiS)  and it follows that 0a  (Sa) C

</'<p(S). The remaining inclusion is immediate from this and the transitivity of

Corollary 6.4. S  is  9-torsion free iff each Sa is  9¿ torsion free.

The next theorem shows that the semigroup of right quotients of S with re-

spect to  /   is determined by the semigroups  \Q„  (Sa)Saeij.

Theorem 6.5. There exists an isomorphism 4> from  II a€f¡Q<p   (S a)  0727*0

öff>(S), under which S is invariant when 0y(S) = i.

Proof. Let (/a) aerj£ H aQ f (Sa) which we abbreviate as if J. Let D   =

Ua Dfa£ 9  and define  f: D   — S by fix) = f Ax) where  xe Df   . Then / £

Homs(D/; S). Define $: I^Q^S) -. Qis) by $((/"«)) = /"•   I*is   easily seen

that   $   is the desired isomorphism.
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The invariance of S  under $  when >fiAS) = '  is shown in the diagram below

for an arbitrary element s  of S.

s «-»        <ß <—> cf> —►       <f>        *-*       s

in in in in in

SaQS Q9¿sa) UQ9a(Sa) Qy(S) S
aelí

For each ae ii, let Ta be a semigroup such that SaC Ta. A semigroup T con-

taining S  as a subsemigroup is called a subdirect product of \Ta\ aep, over S  if

there exists an isomorphism  6 from   T  into IlaejjTa such that

(a) 6 | S = ír (under the identification given at the beginning of this section),

and

(b) na0(T) - Ta for each ae ÍÍ, where rra is the projection mapping of

Uaeü Corito  Ta.

We will now show that subdirect products over S  of 9 a-torsion free  9 ^quo-

tient semigroups over Sa, ae Í2, determine up to isomorphism all J-torsion free

J-quotient semigroups over S. The following lemma which can easily be shown

will be useful in the proof. It is valid for any semigroup S  with zero and any right

quotient filter J   on Sr.

Lemma 6.6. // T  is a J-quotient semigroup over S and if 6 is an isomor-

phism from  T onto a semigroup  T   containing S such that  6 \ S = tr then T is a

J-quotient semigroup over S. Furthermore, T  is 9-torsion free iff T  is  J-torsion

free.

Theorem 6.7. Let S be 9-torsion free and let T be a semigroup containing

S. Then  T  is a J -torsion free  9-quotient semigroup over S  iff there exist semi-

groups  Ta,  ae ÎÎ, such that each  Ta is a  J a-torsion free  9^quotient semigroup

over Saand T is a subdirect product over S  of ¡T' j a€¡¡.

Proof. ( =* ) By Corollary 5.8 there exists a semigroup  T   isomorphic to  T

such that  S C T C Q AS)  and S  is invariant under the given isomorphism. Let

T   - <1)_  (T ) where 0 is given in Theorem 6.5. Hence we have S C T" C

^aeüQfa^a)' For eacn a£ ^> let Ta= nJ>T"^ where na is the projection of

Naeflöya(Sa) onto öj> (Sa). Thus we have Sa<Z TaCQy (Sa) for each ae 0. Since

0y  (S   )  is a Ja-torsion free Ja-quotient semigroup over Sa, it clearly follows that

each Ta is also a Ja-torsion free Ja-quotient semigroup over S  . Furthermore, it

is straightforward to see that T is a subdirect product over S 0f the |TJ aejj.

( «= ) By Lemma 6.6, we may assume that SCTC naeßTa such that  nA,T) =

T .a

Recall that in this context we are regarding S  as a subset of II^qS^
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naet}Ta under the identification s*->s. Let t £ T be arbitrary. Since  Ta is a 9o-

quotient semigroup over Safor each  a, it follows that tia)~  Sa£ 9a. Let E =

U affliia)"^,!- Then E £ ?  and for each s £ E D S a, a£ fl, we have

(0 ifß^a,

tsiß) = ¿

(f(a)s e Sa    if /3 = a.

Hence it follows that s £ t~  S. Thus  E C t~  S  and t~  S £ 9  and we see that  T

is a /-quotient semigroup over S. In order to show that  T  is  9-torsion free, sup-

pose that t, t' e T and E £ 9  such that lE = r'E. we claim that /(a) = /'(a) for

each a £ fl. Let E a= E f~\ S ae 9 a. Then for each s £ E a, we have tia) s =

r(a)s(a) = (ts){a) = (/s) (a) = ¿'(a)s(a) = /'(a)s. Hence (/(a), t'(a)) e if,? p J =

í  and the claim follows. Therefore,  z" = /'and it follows that T  is j-torsion free.

7. Primitive dependent semigroups. Let S be a semigroup and let E = EiS)

be the set of idempotents in S. A partial ordering < , called the natural partial

ordering on E, is defined by  e < / iff e = fe = ef. An element 0 ¿ e £ E  is said to

be primitive if 0 < / < e, / £ E, implies that / = 0  or / = e. The set of primitive

idempotents of S  will be denoted by  E  = E (S). A regular semigroup S  is said to

be  primitive regular if E = E\|0S. An important subclass of the class of primitive

regular semigroups is the collection of all completely 0-simple semigroups. These

semigroups have been characterized as regular Rees matrix semigroups over groups

with 0 as shown in Chapter III of Clifford and Preston [4],

A nonzero regular semigroup  S will be called primitive dependent  if for each

0 ^ e e E = EiS) there exists  e   e E = E (S) such that  e  < e. This class of semi-

groups contains the primitive regular semigroups, all finite regular semigroups,

and, as will be shown, all completely semisimple semigroups with principal series.

In this section we shall develop several theorems involving the singular con-

gruence on a completely 0-simple semigroup. In addition, a characterization of the

completely 0-simple  /.-torsion free semigroups will be given. These facts along

with the general theorems given in ^6 will lead to a complete characterization of

all primitive dependent /.-torsion free semigroups as regular subdirect products

of column monomial matrix semigroups over groups.

We begin with a few definitions and lemmas which can be stated for S-sets

in general. A nonzero sub S-set  Ns  of an S-set AL  is said to be 0-minimal if

Nc  contains no proper nonzero sub S-sets. Such S-sets are characterized as fol-

lows.

Lemma 7.1. Let 0 ^ Ns C AL. Then AL  is 0-minimal iff for each 0 ¿ x, y £

N, there exists s £ S    such that y = xs (z'.e., iff N = xS    for each 0 ^ x £ A/).

Proof. ( => ) Suppose N  is 0-minimal. Let 0 ¿ x £ N. Then 0 Ci xS1 C N.

Hence xS1 = N  since  N  is 0-minimal.
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( «— ) Let 0 Ç. N' C N  and let  n £ N and  0 4 n'e N'. Then there exists  s e

S     such that n = n's e N'. Thus  N = N and the result follows.

The  right socle S = 2 (Al) of an S-set AI  is the union of \0\ and all 0-mini-

mal sub S-sets of Air. The left socle 2,(M)  is defined dually for left S-sets.

Lemma 7.2. 2.(Al) C N for every  N e iP^Alr).

Proof. Let 0/îbêS (AI). Then mS   n N 4 0 and since mS    is 0-minimal it

follows that  m e mS    C N. Therefore, X (Al) C N.

Lemma 7.3. M = 2.(M) iff 9¿MA = \M\.

Proof. ( =» ) This is immediate from Lemma 7.2.

( «= ) Let 0 4 m e M. We claim that mS    is 0-minimal. Let 0 4 rns  , ms. e

mS  . As in the proof of Proposition 4.7, there exists a sub S-set N  of AI  such

that ms S1 n N = 0 and ms S U N £ 9}(M ). Hence, since  j\(A1r) = ÍA1¡, we have

ms S   UN = AI. If m e N  then ms   £ ms S   n N = i0¡ which is a contradiction.

Thus,  w e ms. S    and it follows that ms7 £ ms  S  . Therefore,  mS     is 0-minimal

by Lemma 7.1 and m £ mS    C S (Al).

Note that if 2 = Sr(Al) e iP/Alr) then, by Lemma 5-2, Q,(Mr) ^ Homr(S, 2)

under the map <£(/) = /   where  /e Horrir (S, S). Hereafter, we shall regard this iso-

morphism as an identity.

The theorem which follows determines all regular semigroups  S  for which

S (S) = S. Parts (a), (b), (c), and (d)  of the theorem are taken from Theorem 6.39

of Clifford and Preston [5J. The equivalence of (c) and (e) is given by Lemma

7.3.

Theorem 7.4. The following are equivalent where  S = S     is a semigroup.

(a) S  is a 0-direct union of completely 0-simple semigroups.

(b) S  is a union of 0-minimal right ideals of the form  eS where  e    = e € S.

(c) S  is regular and S (S) = S.

(d) S  is primitive regular.

(e) S is regular and 9.(s) = |S¡.

From part (e) of the above theorem we note that the terms "right reductive"

and "j j-torsion free" are equivalent on a primitive regular semigroup. The next

theorem, which describes the socle of any regular semigroup, is essentially a re-

statement of Theorem 7.59 in Clifford and Preston [5].

Theorem 7.5. Let S be a regular semigroup with  0. Then S (S) = 'S. (S) and

the socle  X ( = S (S) = S (S)), if nonzero, is the largest primitive regular ideal of

S and it contains all the primitive idempotents of S.

Note that if E'= E'(S) 4 □ then  2(S) = SE'S = E'S = SE' for any regular semi-

group S.
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proportional to row /',  say p .   . — cp.   . for each i £ /, and a, b £ G  such that

The preceding two theorems indicate that completely 0-simple semigroups are

some of the basic "building blocks" for all regular semigroups with nonzero

socle. Furthermore, the well-known Rees theorem given on p. 94 of 14] describes

each  completely  0-simple  semigroup  as  a  regular Rees  matrix  semigroup

Si (G, I, }; P) over a group with 0. For this reason we begin out study of the singular con-

gruence and the essential semigroup of quotients on a regular semigroup by con-

sidering first the case where S is a regular Rees matrix semigroup.

Let  S = DU (G, /, /; P)  be the regular Rees matrix semigroup over the group

G  with zero, having indices /  and J  and ] x I   sandwich   matrix P. The nonzero

elements of S will be written in the form A = (fl).. where   fl £ G  is the single non-
77 6

zero entry in the  I x ]  matrix A   which appears in the z'th row and ;'th column. The

element in the (/', i) position of P  will be denoted by p ... Row  j.   of  P  is said

to be  left proportional to row  /'   of P  if there exists c £ G such that p .   . =

cp .   . for all  i £ 1. Dually, column  i.   is  right proportional to column  i?  if there

exists  c £ G  such that p ..    = p ..  c  for all  j £ /. The next theorem determines the
n\     m '    '

singular congruence on  S.

Theorem 7.6. For S = %°ÍG, I, ]; P), 0,(S) = {[(a)..  , (èL. ]: row ;,   is left

a-1b=c\u{(0, 0)|.

Proof. Since S is regular, 0.(5)  is 0-restricted by Lemma 4.6. Let Via) .   .  ,

ib).   . ]e 0,(5). Since  9 ,{S) = \S\, we have  (fl).   .   (*).. = (&)•   .   (x).. for each
¡2Z2       ' ' nn     *j        i2)2     «j

(x) .. £ S. Hence  (aö .   . x).   . = ibp     . x) .   .  for all (x).. £ S. Thus, it follows that
ij ri\i      i\] rJ2*      ¡22 '1

i, = z,   and  ap .   . = bp .     tor each   z £ /. Therefore,  ö .   . = a~   bp .   . = cp .   .for1 2 r;iz r727 r71 1 r22* 22!

each  z£ /, where  c= fl~   b, and we see that  [(fl).   .  , ib) .   .   ] is a member of the
' '171 mi

right side. The opposite inclusion is immediate from retracing the above steps.

Corollary 7,7. // P  consists entirely of 0's and Vs then 0,(5) = ![(x)..  ,

(x)..  ]: rou>s j.   and /'    of P  are equal] U {(0, 0)!.

Corollary 7.8. 0.(5) = t  iff no two rows of P  are left proportional.

Corollary 7.9„ // 5  is a primitive inverse semigroup then  0.(S) = t.

Proof. By Theorem 7.4,  S is a 0-direct union of \SJ aenwhere each Sais

completely 0-simple. Since  5aC 5, it follows that 5a is a Brandt semigroup for

each  ae fl. Hence by Theorem 3-9 of Clifford and Preston [4], Sa is isomorphic

to a regular Rees matrix semigroup Jli (G a, /a, /a; Aa)  over a group Ga with  0

and with the  /   x Ia identity matrix Aa as sandwich matrix. Thus, from Corollary

7.8 we see that  0,(5a) = t  for each  aefí. Therefore, the result follows by Lemma

6.2 and Corollary 6.4.
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Gordon L. Bailes [2] has defined a  right inverse semigroup as a regular semi-

group S  in which each element has a unique left unit (i.e., |xV(x) | = 1 where

V(x) is the set of inverses of x in S). A left inverse semigroup is defined dually.

Corollary 4 of [2] shows that S  is an inverse semigroup iff S  is both a left and a

right inverse semigroup.

Theorem 7.10. Let S  be a completely 0-simple semigroup. Then the following

are equivalent.

(a) S  is right inverse.

(b) S is isomorphic to a regular Rees matrix semigroup % (G, I, J; P) where

P consists entirely of 0's and Vs and each column contains exactly one nonzero

entry.

(c) iff AS) = (  and S  is orthodox.

Proof, (a) <=> (b) is essentially a restatement of Theorem 44 in [2] and (b)

«=» (c) is immediate from Corollary 7.8 and Theorem 6 of [7].

Corollary 7.11. A primitive regular semigroup is a right inverse semigroup

iff iff AS) = í and S  is orthodox.

Proof. By Theorem 7.4, S  is a 0-direct union of completely 0-simple semi-

groups \Sa\a£Q. Clearly, by the definition S is a right inverse semigroup iff each

S    is a right inverse semigroup. By the theorem this is true iff each Sa is ortho-

dox and iff AS a) = t. Finally, by Corollary 6.4, this follows iff S is orthodox and

<A,(s) = t.

Corollary 7.12. An orthodox primitive regular semigroup is inverse iff iff AS) =

i and jiff(S) = t, where   ,iff(S)  is the left-right dual of iffAS).

Let S = M (G, I, J; P) be a regular Rees matrix semigroup and let (_ (G, /)

denote the semigroup of all / x / column monomial matrices over G  . If A e

C   (G, I) then A(i, f) will denote the element in the  (i, f) position of A. Multiplica-

tion in S will be indicated by juxtaposition whereas ordinary multiplication be-

tween matrices as defined on p. 87 of Clifford and Preston [4] will be denoted by

" ° ". Hence, if A, B £ S then AB = A ° P o ß. since S = 2(S)  in this case,

9 (S) = ÍSi and we have Q.(S) = Homr(S, S) which is precisely the semigroup

A(S)  of all left translations of S. This has been characterized by Petrich [13] as

a wreath product over a group. Another characterization of A(S)  is also given in

Proposition 4.5.6 of [13] which is restated below without proof.

Theorem 7.13. Let S = M (G, I, J; P)  be a regular Rees matrix semigroup.

Then there exists an isomorphism $: Homr(5, S) > C°(G, I), say $(/) = C,,

such that f(X) = C. ° X for each f £ Homr(S, S) and for each X £ S.
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Let <p denote the representation of S in Q,(S) = Homr(S, S) given in V5. Then

4>t/> is a representation of S in C (G, I). The image of this representation is given

by the following proposition.

Proposition 7.14. Let $</> be the representation of S in C (G, ¡) given above.

For each  0 4 X = (x).. £ S let Cx  denote the element of C (G, I) given by

!0 if i 4 i'  e I, ke I,

xpjk    if i= i', ke I.

Then $<f>(X) = Cx.

Proof. Let feQ{{S) such that <£>(/) = Cx. We claim that / = <px. Let  Y =

(y)'.' be an arbitrary element of S. Then

= {xp..,y).., =xy=0x(y).

Therefore, / = 4>v  anc' t^ie proposition follows.

Note that if S = m (G, I, I; A) where A  is the / x /  identity matrix then

<t><f>(X) = X for each X e S, i.e., the representation of S  is actually the identity

map.

The above proposition leads us to the following definition.

Let  G be a group, / and /  be index sets, and let P  be a regular / x / ma-

trix over G    such that no two rows of P  ate left proportional. Let K   =

K°(G, /, /; P) denote the subset of all elements "A"in &(G, I)  such that for

some i el, je], and g e G ,

!0 if i' 4 i, k e 1,

gpjk    if /' = i, ke I.

If S is the semigroup M  (G, I, ]; P) then S is 9.-torsion free since no two rows of P

ate left proportional. Hence K    is the isomorphic image of S under the map 0c/> into the

semigroup C (G, /). Thus since (ß(S) is a left ideal of Q,(S) = Homr(S, S), we

see that M     is a left ideal of C (G, I). Furthermore, a trace of the isomorphisms

involved shows that C (G, /) is isomorphic over K    to 2f(K ). The semigroup

K    will be called an ¡(-semigroup. The next theorem follows from the discussion

above and §5.

Theorem 7.15. Let H    =H  (G, /, /; P) be an arbitrary K-semigroup. Then
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(a) A semigroup S is completely 0-simple right reductive iff 5  is isomorphic

to some K-semigroup.

(b) K°  is a left ideal of (?°(G, /).

(c) C  (G, /)  z's isomorphic over H    to Q.isi  ).

(d) C (G, /) z's the infective hull of K  .

(e) C  (G, /)  z's self-infective.

These results can also be applied to primitive regular semigroups as stated

below. The proofs are immediate from the general theory developed in §6 since

each primitive regular semigroup is a 0-direct union of completely 0-simple semi-

groups.

Theorem 7.16. Let  S be a primitive regular semigroup. Then

(a) S  z's primitive regular right reductive iff S  is isomorphic to a 0-direct

union of ¡{-semigroups.

(b) 2f(S) = Horn,. (S, 5) and is isomorphic to a direct product of column mono-

mial matrix semigroups over groups.

We shall now consider primitive dependent semigroups. Certainly any primi-

tive regular semigroup is primitive dependent, as well as any finite regular semi-

group. A more general class of primitive dependent semigroups is given in the

theorem which follows. The reader is referred to §§2.6 and 6.6 of Clifford and

Preston [4] and [5J for the definitions of the terms used.

Theorem 7.17. Let S = S    be a completely semisimple semigroup with a prin-

cipal series. Then 5  is a primitive dependent semigroup.

Proof. Let S = S. 352 3... 35   = |0| be a principal series for 5. We shall

proceed by induction on 72. If 72 = 2, then S = 5,   is completely 0-simple and the

result follows. Suppose the theorem is true for all completely semisimple semi-

groups having a principal series of length k where 2 < k < n, n > 2, and let S have

a principal series of length 72  as above. Then 52  has a principal series of length

72-1. Let 0 ¡¿ e = e   £ S = Sl. If e £ S2  then by the induction hypothesis there

exists an idempotent f   £ S2  such that /   < e  and such that /   is primitive in S?.

Since S2   is an ideal of S, it follows that /    is also primitive in 5.. Hence the

result is true in this case. Now suppose  e £ S\S2. If e  is primitive in S, we are

through.  So, suppose e  is not primitive in S. Then there exists 0 ^ f e £(5)  such

that 0 ¿ f < e. If fe S\S2  then 0 ¿ / < e in 5/52 = SJS2  which is completely 0-

simple. But this is impossible. Hence f£S2 and by the induction hypothesis there

exists /   primitive in 52 (hence in S)  such that /' </• Therefore /' < e  and the

theorem is proved.

Let R  be a subset of a semigroup 5. The left annihilator of R  in S  is  „A =
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ix e S: xR = Oj. The right annihilator of R   is defined dually and is denoted by AR.

Several equivalences to the definition of primitive dependent can now be stated.

Theorem 7.18. Let S  be a regular semigroup and let  2  be the socle of S.

Then the following are equivalent.

(a) £A = 0.

(b)2e9I(S1).

(c)2e9I(S).

(d) Every nonzero right ideal of S contains a 0-minimal right ideal of S.

(e) S  is primitive dependent.

Proof- (a) =» (b). Let 0 4 s e S. Since   A = 0, there exists x el. such that

sx 4 0 and since S is a 2-sided ideal of S, we have that 0 4 sx e 2. Thus it fol-

lows that S e 9 (S_ ).

(b) =» (c). This is immediate from Theorem 3.7.

(c) => (d). Let R be a nonzero right ideal of S. Since  S e 9 AS), there exists

0 4 x e R nS, and since x e 'S., xS    is 0-minimal. Furthermore, xS    C R.

(d) =» (e). Let 0 4 e e E. By the hypothesis eS contains a 0-minimal right

ideal R  of S. Since S is regular, R  is of the form R = fS for some 0 ^ /e E, and

since feS,we have that /e E ..Furthermore, e/= /. Let /   = fe.  Then /    e E

since /'2 = (fe)(fe)=f(ef)e=ffe = /e = /'', and f'f = fef=ff = f¿0. Hence

f' 4 0. Furthermore, f'=feefSCS. Thus it follows that /' e E*. Finally, /'e =

fee = je = / = /e = e/e = e/ . Therefore, 0 ^ / < e and f £ E and it follows that

S is primitive dependent.

(d) => (a). Let 0 4 x £ S and let x   be an inverse of x. Then there exists f e

E such that f <x x. Hence x xf = / e E CX. Therefore, 0 4 xf e xS. and it follows

that £ A = 0.

Note that the left-right duals of (a), (b), (c) and (d)  respectively are equiva-

lent to (e) also.

The essential semigroup of quotients of a primitive dependent semigroup is

given by the following lemma.

Lemma 7.19. Let S be primitive dependent and let S  be its socle. Then

QAS)  is semigroup isomorphic to Horn   (X, S) = 0,(2).

Proof. From a note following Lemma 7.3 and from the above theorem we see

that Q,(S) fc¡ Horn,. (2, 2). Hence it is sufficient to show that every 2-homomor-

phism on 2 is an S-homomorphism. Let f e Hom_(2, 2), t e 2, and s e S. Then

for t , an inverse of /  in S,, we have f(ts) = f(tt'ts) = f(t)t'ts = f(tt't)s = f (t) s

and the result follows.

Another characterization of the singular congruence can be given for a primi-

tive dependent semigroup.
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Lemma 7.20. // S  z's primitive dependent then 0,(S) = i(x, y): xe = ye for all

eeE'l

Proof. By Lemma 7.2 and Theorem 7.18, S2i is a base for 9p). Thus by

Lemma 4.1, 0.(5) = i(x, y): xs = ys  for all s £ 2j. Since E C 2, it follows that

0.(5)  is contained in the right side above. Now, let  (x, y)  be in the right side and

let s £ 2. Then there exists 0 ¿ e = e   £ 2 such that s = es  and, since e £ 2,

e e E'. Therefore  xs = xes = yes = ys and (x, y) £ 0,(5).

Lemma 7.21. Let S CT be regular semigroups such that S  is a left {right,

2-sided) ideal of T. Then 2(5) C 2(T).

Proof. Let e £ E'(S). We claim that e £ E\t). Suppose there exists /   = f £

T such that / < e. Then / = fe = ej £ S in any case above. Hence, since e  is

primitive in 5, it follows that / = 0  or / = e. Therefore, e £ E (T) and we see that

2(5) = E'iS)S CE'{T)T = 2(T) by the note following Theorem 7.5.

The next theorem shows that certain regular  /.-quotient semigroups over a

primitive dependent semigroup are also primitive dependent.

Theorem 7.22. Let S  be a primitive dependent semigroup and let T be any

regular 9p)-quotient semigroup over S such that S  is a left {right, 2-sided)

ideal of T and 0.(T„)  is 0-restricted. Then T is primitive dependent with socle

2(T) = 2(S)T1.

Proof. By Lemma 7.21, 2(5) C 2(T). Hence 2(5) T1 Ç 2(T). We claim that

S £ 9ps). Let 0 ¡¿ t e T. Then since  T is a /,-quotient semigroup over 5,

t~   S e 9p). Furthermore, t{t~  S) ¿ 0 since 0;(TS)  is 0-restricted and the claim

follows. Thus, since 2(5) £ /,(S), we see from Lemma 4.5 and Theorem 3.7(a) that

2(5) T1 £ 9p). So, 2(T) C 2(5) T1   by Lemma 7.2 and equality follows. Further-

more, since 2(T) = 2(S) T   £ 9 (T) we see from Theorem 7.18 that T is primi-

tive dependent.

Corollary 7.23. Let S be a primitive dependent  9 -torsion free semigroup.

Then  Qp)  is primitive dependent.

Proof. Since  ¡2,(2(5)) % Qp)  by Lemma 7.19, and  2(5)  is primitive depen-

dent, we may assume without loss of generality that S = 2(5). Hence 5 is embed-

ded in Q = Qp) and g  is a /.-torsion free  /.-quotient semigroup over S. Fur-

thermore, since Q = Horn.. (5, 5) we have that fs = fis) for each /£ Q, s £ S.

Therefore, 5 is a left ideal of Q. Furthermore, by Theorem 4.2 of [8], Q  is regu-

lar. Hence the result follows from Theorem 7.22.

Our final theorem gives a complete characterization of all /.-torsion free

primitive dependent semigroups.



116 C. V. HINKLE, JR.

Theorem 7.24. Let Í2 be an  index set and for each  aeil, let K   =

M°(G , / , / ; P ) be an K-semigroup. Let  S be the 0-direct union of i-"aSa„o- Let

T   be any regular semigroup extension of Ka in Ca= C(,Ga, / ),  aefi, and let  T

be any regular subdirect product of the \Ta\aeaover S. Then T  is a primitive de-

pendent  9.-torsion free semigroup. Conversely, every primitive dependent 9.-tor-

sion free semigroup is isomorphic to a semigroup obtained in this manner.

Proof. Since Ca^ ö/Ha) over Ha for each a efi, we have that £    is a

9 (]{a)-quotient semigroup over J\a which is  J /(Ka)-torsion free. Thus  Ta is a

9j(Ha)-torsion free 9/(Ha)-quotient semigroup for each aefi. Hence by Theorem

6.7, T is a 9.(S)-torsion free  /.(S)-quotient semigroup over S and by Lemma

4.12 we see that Se 9(TS). Thus, T  is also 9;(T)-torsion free by Lemma 4.5 and

Theorem 4.8. Since Ha is a left ideal of Cafor each  aefi, we have n     is a left

ideal of Ta. Let / e T and s e KaC S. Then

(0 if/S^a,
ts(ß) = {

(í(a)seH°    ifj8 = a.

Hence is = t(a) s  and it follows that S <* S  is a left ideal of T. Therefore, the

result follows by Theorem 7.22.

Conversely, let  T be a J .-torsion free primitive dependent semigroup and

let S = 2(T). Since S e 9 A.T)  by Theorem 7.18(c), S is J j(S)-torsion free. Hence

by Theorem 7.16 we may assume that S  is a 0-direct union of K-semigroups na =

^°JGa. 7a> Ja' P<) .  aeß- By Theorem 7.18(b) and Proposition 3.6,  T  is a ?/S)-

quotient semigroup over S  which is  J .(S)-torsion free. Thus, by Theorem 6.7,

there exist semigroups  Ta,  ae Ç1, such that each  Ta is a  J.(Ka)-torsion free

9Ana)-quotient semigroup over Ka and  T  is a subdirect product of the \TjaeQ

over S. Since  C_a= C (Ga, Ia) is isomorphic over K    to  Qi(Ha), we may choose

the Ta such that naÇ TaÇ C (Ga, / )  by Corollary 5-8. Furthermore, each Ta is

regular since it is the homomorphic image under the projection map of the regular

semigroup  T. Therefore, the theorem follows.
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