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CROSS-SECTIONS OF SYMPLECTIC STIEFEL MANIFOLDS
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ABSTRACT   The cross-section problem for the symplectic Stiefel manifolds

is solved, using the now-proved Adams conjecture.

Introduction. Let Sp(») be the symplectic group and W . = Sp(n)/Sp(n - k)

the symplectic Stiefel manifold. For k > m one has an obvious map p: W , —»

V      , which is a fiber map with fiber W .   The purpose of this paper is

to give a complete description of the values of n, k and m fot which the map p has

a cross-section.

The corresponding problem for the orthogonal Stiefel manifolds is already

completely solved (Adams 1962, Eckmann-Whitehead 1963), as is the unitary case

(Adams-Walker 1965, Suter 1966), the most famous contribution being Adams'

solution of the vector field problem on spheres [l].   For the symplectic Stiefel

manifolds, the explicit results previously known can be stated as follows:

(i) The map p: Wn 2 —» W^ l = S "~    has a cross-section if and only if n is

a multiple of 24.   This result is due to I. M. James [lO].

(ii) For k > m > 2, the map p: W   . —» W       does not have a cross-section.
—    ■ r  r       n,k n,m

For this result see [12, p. 203].

We shall dispose of the remaining cases, i.e. the cases with m = 1, k > 2,

by the following theorem.

Theorem.  The symplectic Stiefel fibring p: W   k~*w   j has a cross-section

if and only if one of the following two equivalent conditions holds:

(I) For each integer j with 0<j<k~l the coefficient a. of z7 in

is an integer if j is even and an even integer if j is odd.   (sh~    denotes the

inverse of the hyperbolic sine.)

(II) n is a multiple of the integer c., called quatemionic James number, which

is defined by its decomposition into prime powers as follows:
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i^2(cfe) - max (2& - 1, 2s + u2(s)),       1 < s < k - 1,
s

ick) = max it + vpit)), 1 < t < RiZ-il, p odd < 24,VP

vp'ck> = °» p odd > 2£.

(TAe integer v (q) is the exponent of the prime p in the prime power decomposi-

tion of q.)

We observe in particular that c,  is divisible by all primes less than 2k.  The

number c, is equal to 24, this is James' result mentioned above.  Comparing c,

with the (known) complex James number b2,   one obtains that c.  is either equal

to b2k or to lAb2,.   A closer study of the relation between c, and b2,  shows:

for k odd, c, is always equal to Vib,,.   On the other hand if k is even, there are

cases with c, = b2,  and such with c, = lAb2k.   In approximately 63% of all cases

we have c, = lÁb2k.

The proof of the theorem is based on techniques developed by Adams and

Walker in the unitary case [3].  Denoting by  KO(X) the real K-theory of a finite

CW-complex X and by /: XO(X) —» J(X) Atiyah's /-homomorphism, we state the

following two theorems, which are the starting point of our study.

Theorem (James [9, 1.4]).  There exists a positive integer c,, such that the

Stiefel fibring p: W    , —* S    "    has a cross-section if and only if n is a multiple

°fck'

Theorem (Atiyah [4, 6.5]). Let £ 6 KO(HPk~l) be the canonical real (4-

dimensional) Hopf bundle over the (k - l)-dimensional quaternionic projective

space HPk~l.   The James number cfc is the order of ](£) in the group ](HPk~l).

We first show that condition I of our theorem expresses the fact that 72 is a

multiple of the order of /(£) in ¡(HPk~X).   This is done in §1 and §2, using the

group ]'(HP - ) [3].   (Using Quillens proof of the Adams conjecture [12] we get

an isomorphism /(HP**1) = j'(HPk~1).) In §3 we then show that condition I is

equivalent to condition II.   The final section is devoted to an investigation of the

relationship between c, and A.,.

1. Preliminaries. In this section we put together all the facts we need about

ordinary cohomology and K-theory of the ^-dimensional quaternionic right projec-

tive space HP .

Let CPm be the T72-dimensional complex projective space.   The classical

Hopf map S4* + 3 -» HP" factors through CP2q+l and gives rise to an S2-fiber

bundle
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(1.0) s2   -Í» CP2q+l   -t HPq.

It will turn out that g induces injections in ordinary cohomology as well as in K-

theory.  So we might regard H*(HP"; Z), H*(HP"; Q), KU(HP9) and K0(HPq) as

subrings of the corresponding rings of CP 9*  , which are well known [3].

Let b e H2(CP2q+l; Z) be the canonical generator and let a e H4(HP9; Z)

be a generator; then for R - Z ot Q

(Ll)    W*(CP2«+1 ;/?) = /?[*]    (mod ¿>2«+2),       /7*(/7P«; R) -= R[a]    (mod a«+I).

The fiber S    of (1.0) is totally nonhomologous to zero (i.e. i  is onto).   By the

usual spectral-sequence argument, it follows that  g : H (HP9; R) —»

H (CP 9*  ; R) is injective and that we can choose the generator a such that

g*(a)^b2.

We write ß fot the canonical complex line bundle over CP 9 +    and ß tot its

complex-conjugate.   The canonical quatemionic left line bundle over HP9 is

denoted by £.   (The bundle £ is the dual of the quatemionic right line hundle

associated to the principal W*-bundle (H9+l - 0) —♦ HP9; see [4, §4].)  Let a be

the 2-dimensional complex vector bundle underlying t\.   For the induced bundle

g (a) one has

(1.2) g*ia)^ß(&ß.

This fact is well known and can be proved by direct computation of the total

spaces of the bundles involved (see also [7, 9.6]).

We turn now to the computation of the complex /(-theory of HP9 and set

/i = /S-l eKUiCP2q+l),   jz«=/3-l eKUiCP29+l),   v = a- 2 e KUÍHP9).

By [l, 7.2] we have

(1.3) KUiCP29*1) = Zip.]   (mod<i2«+2).

(1.4) Proposition, (i) The ring KU(HP9) is generated by v subject to the

relation v9*1 = 0, i.e. KU(HP9) = Z[j/] (mod v9*1).

(ii) The homomorphism g!: KU(HP9) ->KU(CP2q+l) is injective and given

by g\v) = p+p.

Proof. Since HP9 is torsion free we get with [5] that KU(HP9) is a free

abelian group of the same rank as Heven(HP9; Z), which by (1.1) is a + 1.

With (1.2) we deduce g(v) = p + p = p   + higher powers ofzJtQ¡ = -/Jt+zx   -
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• ••,    see [1, 7.2]).   Looking at (1.3)we see that the elements 1, g'(^,),•••, g\v9)

generate a direct summand of rank q + 1 in the free abelian group KU(CP2q+l),

and the proposition is proved.

Next we determine the real X-theory of HPq.   We shall prove that the com-

plexification c: X0(HPq) — KU(HPq) is injective, i.e. XO(HPq) can be regarded

as subring of XU(HPq).

To begin with, note that for the element v = a - 2 £ KU(HPq) one has

(1.5) 2v, v2 £ ciKOiHP")).

This is seen as follows.   The bundle a is by definition equal to c (£), where we

write c  for the map associating to a quaternionic vector bundle its underlying

complex vector bundle.   Hence a is self-conjugate, i.e. a = 5.   Denoting by r the

realification of complex vector bundles we get c(r(a)) = a © ä= 2a and deduce

2v = c(r(v)).   The tensor product Ç ® C is a real (4-dimensional) vector bundle

and we have c(C ® Ö = c '(0 ® c '(£) = °- ® a.   This implies v2 £ c(kO(HPq)).

(A reference for the above remarks is [8, §3l.)

The following proposition contains the information we will need about the

ring KO(HPq).

(1.6) Proposition, (i) TAe complexification homomorphism c: KO(HPq) —*

KU(HPq) is injective.

(ii) TAe subring c(KO(HPq)) of KU(HPq) is generated as an abelian group by

the elements  1, 2v, v , • • •, e .v',.. •, e   vq, where the integer e. is equal to 1 if

j is even and equal to 2 if j is odd.

Proof. Working with the cofibration HPq~l -¿ HPq -£*S*q we proceed by

induction on q. For HP - S4 the proposition is a consequence of [6, (3.15)].

We then consider the exact cohomology sequence

K0-i(c4«) _ ko-HhP") -ÜO-KW-1) — l<as4'l)—'KtXHP'r)^'K(ÁHPq-1) -^ KOHs**)

« K I

0 or Z2 Z 0

and deduce first inductively, that KO~l(HPq) is finite.   This gives the short

sequence  0 -» KO(S4?) -» l(.0(HPq) -» l<0(HPq- l) — 0 and by induction on a

one proves l<.0(HPq) is torsion free.   The relation r°c = 2 [8, Proposition 3.1]

implies that c is injective.  We turn now to the proof of (ii).   The commutative

diagram
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0 — KO(S4q) — KO(HPq) -» KO(HPq~1)— 0

0 — KU(S4q)^ KU(HPq) & KU(HPq- ') — 0

has exact rows and all the groups are free abelian.   We write v   and vq~\   tot the

generator of tXu(HPq) and l(U(HPq~l) respectively (see 1.4).   One has i'(u ) =

v     ..   Let e. be equal to 1 if /' is even and equal to 2 if / is odd.   Then by (1.5)

the elements e . v1, j = 1, • • •, q, belong to c(KO(HPq)).   We have to show that
i   " *\t ...

these elements form a basis of c(KO(HP9)).   The images i'(e .vJ)= e ,v'    .,

j = 1," ••, q — 1, are a basis of c(KO(HP       )) by inductive hypothesis and it

remains to prove that e   vq = p'(c(y)) tot a generator y e KO(S q) = Z.   But

c(y)= e  yc fora suitable generator yc £ KU(S q) (see [8, (3.15)]) and since

ker i = imp   is generated by v9 the proof is complete.

2. The /-calculation. The general reference for this section is the paper of

Adams and Walker, On complex Stiefel manifolds [3].

Let ](HP       ) be the group of equivalence classes of orthogonal sphere

bundles over HP ~    with respect to stable fibre homotopy type and let

3*-^    ^ r/i7D*-li/: KO(HPk~l) —> j(HPk~l) be the canonical epimorphism [4].  According to Atiyah

V    ,
72,ft

[4, 6.5] the fibration W    ,—* S "~    has a cross-section if and only if in

/(HP*"1) one has

(2.0) « . J(ra) = 0,

where ra= r ° c (£) is the real vector bundle underlying the canonical quater-

nionic line bundle £ (see §1).   To determine the integers n which satisfy (2.0) we

use the groups j"(HPk~ l) and j'iHPk~l) defined in [3], which constitute a

"computable" upper, respectively lower, bound of J(HP       ).   (Note in particular

that we deal with the /  as defined in [3].)

(2.1) Lemma. For the space HPq one has the isomorphisms

J"(HP") ~ j(HPq)Êj'(HPq).

Proof. The first isomorphism follows from the now-proved Adams conjecture

[ll].  To show that 6'° 6" is an isomorphism we copy the proof of [3, Lemma

6.1].   For HP1 = S4, in general for S4*, we have j"(S4q) e'~9" ]'(S4t>).  (This

fact follows in exactly the same way as the corresponding statement for the space

CP297CP2"-2 (see [3, 4.10 and 5.3]).) The cofibration HP9~l ¿» HP9 -*• S49

induces a commutative diagram:
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j"(S4q)->j"(HPq)-'¡"(HP"-1)-

(fl'ofl")
HP" <*'°Ö">     lt-lHP"

^(54«) J^Pl_j'cHpa)-,j'(HPq-1)

The upper row of this diagram is exact [2, 3.12], j'(p) is a monomorphism [3,

4.9] and the verticals are epimorphisms. By induction on a and easy diagram-

chasing one shows now that (6' ° 0")     . is an isomorphism for all a and the
HPq

lemma is proved.

Lemma (2.1) enables us to work with /   instead of /.   The condition (2.0) is

satisfied if and only if n • J (ra) = 0.   By definition [3, §4] we have

j'(HPk-l)= X0(HPk-l)/V(HPk~l), where V(HPk~l) is the subgroup of ele-

ments 8 £ X0(HPk~l), such that sh(o) = ch ° c(l + y) for some element

y £ 'KO(HPk-1).   (Here sh: K0(X) — 1 + S~  0 H4s(X; Q) is the characteristic
ft ft

class corresponding to the power series of (ey     - ey    )/y = (2/y) • sh(y/2),

c: X0(X) -» XU(X) is complexification and ch: XU(X)  — H*(X; Q) is the Chern

character.)    The condition 72 • j'(ra) = j'(n • ra)= 0 becomes then

sh(-72 • ra) ech oc(KO(f/P*-1)).

(We change 72 to - n tot convenience.) Since g*: H*(HPk~l; Q) -* H*(CP2k~l; Q)

is injective (see §1) we conclude

(2.2) „ . j(ra) = 0 « g* o sh (-72 • ra) e g* o ch o c(XO(HPk~ *)).

With (1.2) we compute g*(ra) = r° g*(a) = r(ß + ß) = 2 • r/3.  The naturality and

the exponential property of sh imply g  ° sh(- n • ra) = sh(- 2n • r/3) =

[sh(rß)]-2n.  But sh(r/3) = (eb/2 - e~b/2)/b = (2 • sh(A/2))/A [3, §4] and hence

(2.3) g*osh(-72 - ra) = f-1—-1 " e H*(CP2k~l; Q) = Q[b]   (mod A2*)
L2sh(A/2)J

(see 1.1).  The image of the homomorphism g*° ch o c = ch o g o c: K0(HPk~l)—*

H*(CP2k-1; Q) is generated by

e . .[2. sh(A/2)]2'    (mod A2*),
7

(2.4) n   if /even,
/=0,1,...,*-1, where e. = <Uif.od(L

This follows from (1.6), (1.4) and ch(p + p) = (eb - 1 + e'b - I) = [2 • sh(A/2)]2.
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In Qlb] (mode    ) one has a unique relation

(r ) : f—V-rtT" = ¿ 4n) -e, • \2 •sh il" (mod &2fe);
■ L2-sh(/3/2)j     ;to '      » L      2J

here q0(n) = 1, a^n), • • •, qk_ j(«) are rational numbers which depend on n.  Con-

sequently we deduce from (2.2), (2.3) and (2.4),

(2.5) Lemma.  The following two conditions are equivalent.

(1) n- J(ra)=0in](HPk-1).

(2) The coefficients qQ(n) = 1, q.(n), •••, z/._,(w) in (R ) are integers.

Substituting b = 2 • sh- (\jz/2) in (/?  ) we finally infer from (2.0) and (2.5)

the following theorem, which is the first part of our main result.

(2.6) Theorem. The quatemionic Stiefel fibring p: W    .—* S4n~ x has a

cross-section if and only if for each integer j with 0 < /' < k - 1 the coefficient

a .(«) of z1 in

is an integer if j is even and an even integer if j is odd.

3. Determination of the quatemionic James number. First let us fix some

notation.   For any rational number a /= 0 and any prime p we define the integer

vp(q) by

? = 2V2(<.).3V3(?).5V5(zf)...

i.e. vAq) is the exponent of p in the prime power decomposition of a.  We set

i/(0) = + oo for all primes p.

According to our theorem (2.6) and the theorem of James [9] mentioned in the

introduction, the quatemionic James number c,   is the smallest integer « such

that for /' = 0, • • •, k - 1 one has

(3.0)

i; (a in)) > 0,    for p odd,Pi- r

,   / « .  f °>    if 7 even>
vAa.(n>) > <

2    '       - ll,    if ; odd.

The following lemma is an essential step towards the computation of the odd

part of ck.
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(3.1) Lemma.   Let p be an odd prime.   Then the following two conditions are

equivalent.

(i) TAe first k coefficients aQ(n), • • •, a,_An) of (S ) satisfy v (a .(72)) > 0.

(ii) TAe first 2k coefficients bQ(n), • • •, b2k_ x(n) of [x~ Xlog(l + x)]2n =

2°° „ A .(72) • x' satisfy vAb .(n)) > 0.
z=0z "pi —

Proof   Setting \[z/2 = y we see that v (a .(n)) > 0, / = 0, • • •, k - 1, ii and

only if the coefficients d .(n), z = 0, • • •, 2ze - 1, of

£,(„>. y. UjÇq\^^kifA7lJ"

satisfy v(d.(n))> 0.

The power series of y + y 1 + y is of the form 1 + g(y), where g(y) has the

inverse h(x) = x — Vi2. _2 (- l)'x'. The coefficients of A(x) and hence those of

g(y) ate rational numbers having only powers of 2 in the denominator. Substitut-

ing y = h(x) in S¿ _Qd.(n) • yI+ " = [log(l + g(y))] " we deduce therefore by ele-

mentary manipulations of power series: one has v (d^n)) > 0, i = 0, • • •, 2ze - 1,

if and only if the coefficients A.(tí), i = 0, • • •, 2k - 1, oí 2. _Qb.(n) • xl+ " =

[log(l + x)]     satisfy v (b{(n)) > 0.   This completes the proof of the lemma.

The power series of [x     log(l + x)]      has been investigated by Atiyah and

Todd [6] and the following proposition is a direct consequence of [6, Proposition

6.4] and our Lemma (3.1).

(3.2) Proposition.  Let p be an odd prime.   Then the following two conditions

are equivalent.

(i) TAe first k coefficients aQ(n), • • •, ak_x(n) of (Sn) satisfy v (a .(n)) > 0.

Ím;max(r + v (r)),       1 < r < [(2k - l)/(p - l)], p < 2k - 1,

p>2k.

Next we deal with the prime 2 and show

(3.3) Proposition.  TAe following two conditions are equivalent.

(i) TAe first k coefficients aQ(n), • • •, a¿_ x(n) of (SJ satisfy

v2(a.(n))>\°'ÍfÍ
2    '       -\l, if j

0, if j even,

odd.
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(ii) v2(n)>maxs(2k -1,2s + v2(s)), 1 <s<k-l.

We postpone the proof of (3.3) for a moment.  Referring to (3.0), (3.2) and

(3.3) we obtain the following theorem, which constitutes the second part of our

main result stated in the introduction.

(3.4) Theorem. The quatemionic James number c,   is determined by

v2ick) = max (2s- 1, 2s + v2is)),       1 <s <k- 1,
s

Vpic^ = max (r + vpir)),       1 < r < I-~ \, p odd < 2k,

v Ack) = 0,       p odd > 2k.

Now we turn to the proof of (3.3).   To begin with we provide two lemmas.

(3.5) Lemma. Suppose that vAn) > 1] — 1.   Then for the binomial coefficient

(") one has

V2 ( J) = V2{n) - V2^-

Proof. Write

'n\     n    M-l    rz-2 «-(/'-l)(n\     n    n —

2 • • • ; - 1

and note that v2((n - q)/q) = 0 for 1 < a < 22;~ .

Next we observe that the function f(z) = [(2/1/2) • sh_  (\ß/2)] n satisfies

the functional equation

/(2) = (1 + z/4)n . f(4z + z2).

This implies the following relation for the coefficients aQ(«)= 1, a,(«),•••,

a.(n),... of (S ) (see 2.6).

(3-6)        {") + £ iny.\42ia.(n) = 4'(1 - 4>)a.in),       /- 1, 2.

Working with the equations (3.6) we will prove

(3.7) Lemma.  // v2(n) > 2/ - 1, then
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v2(n) = 2/ + u2ij) + v2(a in)).

Proof. The proof is by induction over /'.   For /' = 1 we have ax(n) *■- n/12

and hence v2(ax(n)) = v2(n) - 2.

Now let / > 1 and assume v2(n) > 2/ - 1.  This means in particular that

v2(n) > 2i - 1, i = 1, •••,/' — 1, and one has by inductive hypothesis that

v2(a¿(n)) = v2(n) - 2i - v2(i), i = 1, •••,/'= 1.   One computes then

-C-Í)42,a (n) > 4i t- vAa in)) - i/,(«) + 2/ - vJz)
<        — 2     i 2 2

> vAn) \ I,       i = 1, •••, / - 1.

From Lemma (3.5) we get u2(") * v2(n) - z^i./) < i>2(n) + 1 and deduce with the

equation

(n) * Z (**/)4"«/^ - 4'(1 - 4ty">

that v2(«) - i/2(/) = 2; + v2(a.(n)).    Q.E.D.

Proof of Proposition (3.3).   We first show that (ii) implies (i).   If v2(n) =

max. .    , (2* - 1, 2s + i>2(s)) then one has in particular ^2(")>

max(2/ + 1, 27; + v2(j)) > 2]'• - 1, j = 1, • • •, k - 1, and with Lemma (3.7) one derives

readily

Í0,     if i even,
vAa(n))>\ ' 7=1.A-l.

2    '       - \ 1,     if 7 odd,

To prove (i) =» (ii) we proceed by induction on k.   If k = 2, then v^a^n)) =

v2(- n/12) > 1 means precisely vAn) > 3 = max (3, 2).   Now let fc > 2 and assume

/   / v,     fO, if 7 even,
via.(b)) > ■{ 7 = 0, 1, . ... jk-l, *.

2   '      - 11, if ; odd,

By inductive hypothesis we have

i>,Gz)>     max     (2* - 1, 2s + ¡v,(s)) > 2k - 1.

With Lemma (3.7) we conclude

v2in) = 2k+ v2

Í2k + v2ik),      if

2k + 1, if

k even,

k odd.



CROSS-SECTIONS OF SYMPLECTIC STIEFEL MANIFOLDS 257

Hence v2(n)> maxj <s <fc (2k + 1, 2s + v2(s)).

4. Comparison between the complex and the quaternionic case. In this section

we study the relation between c,  and the known complex James number A,,   [3,

Theorem 1.2],

(4.0) Proposition. TAe quaternionic James number c,   is either equal to the

complex James number b2, or to Vib2,.

Proof. The proposition follows at once from Theorem (3.4), [3, 1.2] and

[6, 1.7].

We give a second proof which does not depend on our calculations in §3,

using the functor /".   First we show that the element   Jçia)   £ /£. (HPk~l) has

the same order as j"(rß) £ j"(CP2k~2) (notation as in §1 and §2).   The homomor-

phism g*: KU(HPk~l) -^ KU(CP2k~2) induced by CP2k~2 — CP2k-x -£ HP*"1

is given by g*(a) = ß + ß (see 1.2) and the complexification c: XO(CP2k~2) —»

KU(CP ) is determined by c(rß) = ß + ß.  Since both g* and c are injective

(see (1.5) and [3, 2.2(iv)]) and compatible with the ^-operations one obtains,

slightly abusing notation, a tp-ring isomorphism c~   ° gx = B: KU(HP       ) =

XO(CP2k~2).0) With the induced isomorphism j"(B): j"c (HPk~l) S /"(CP2*-2)

(see [2]) we deduce : the order of j'¿(a) is equal to the order of / (rß) which is

b2k_ j [3]; by [6, p. 344] one has b2k_x = A2fe.

The homomorphism j"(r): /^(HP*_1) -» /"(HP*-1) (see [3, Appendix]) maps

Jc(a) onto j"(ra) and it follows, that the order of / (ra), i.e. the integer c,,

divides b2k.  But b2k is a factor of 2ck [10, 1.5] and (4.0) is proved.

Next we give a description of the distribution of the integers k for which

c. = Vib2,  and an approach to the evaluation of the corresponding density.   We

have c. = lAb2.   If k > 2 we get the following result:

(4.1) Theorem. Let k>2.   Then one has c, = 1Ab2k if and only if the integer

k belongs to the set

A = ¡s + 72. 22í~1| s, 72 £N\.

(By N we denote the set of integers > 1.)

Before giving the proof, let us draw some simple consequences illustrating

the result.

(a) Given an integer k, it can be decided in a finite number of steps whether

c. = Vib2k.   This is obvious from the description of A.

(') This elegant way of deriving the i/>-ring isomorphism KU(HP       ) — KO(CP    " )

was communicated to us by J. F. Adams.
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(b) If k is odd, ck - Vib2k.   Indeed, all odd integers belong to A.

(c) The first even value of k fot which c, = Vib2, is k = 10.

Proof of Theorem (4.1 ). We first recall from Theorem (3.4) that

v7icA=     max     Í2k- 1, 2t + vAt)) =      max      Í2k - 1, r + vAr) - l).
*       lszsfe-1 ¿ lsrs2fe-l l

By [3, I.2] and [6, 1.7] one has

v^2h}~       max     ir+vAr)).
l£rs2t- 1

We then show that the following four properties of an integer k > 2 ate equivalent.

(ii) v2(b2k)>2k-l.

(Hi) There exists an integer s with 0 < s < k and k a s (mod 2    ~  ).

(iv) k£A.

The equivalence (i) «=» (ii) follows immediately from the comparison of vJjcA

and vTÍb2A).   The equivalence (iii) «(ivHs trivial.

(ii) —» (iii). If v2ib2¡) > 2k - 1 there exists an even integer r with 1 < r <

2k - 1 and r + i/2(r) > 2& - 1.   Putting r = 2k - 2s we obtain the existence of s

with 0< s < k and 2/fe - 2s + vA2k - 2s) > 2k - 1.   This last condition is equiva-
2o_ 7

lent to k — s = 0 (mod 2 ).

(iii) —» (ii). Taking r = 2£ - 2s we get

v2(b2k) > (2¿ - 2s) + vp.k - 2s) > (2/4 - 2s) + 2s > 2k - 1.

This proves the theorem.

We now turn to an evaluation of the density of A ¡n zV.   We are greatly indebted

to our friend H. Carnal for the considerations below.   Any integer of A belongs to

exactly one arithmetic progression A   - \q + r • 2 q~  \ with a i A  (!).   Moreover

the set A is the disjoint union A = U?¿/t Aq and its density a is equal to

2m,M2~(2m"1)-  We then write

a=     y   2-(2m-l)=   £   2-(2m-l)_   y   2-<2»-l)     2       £      £     2-(277,-l)

m/.A meN meA *      nf.A   meAn

= 1-   Z     £    2-(27,-l)-m.22" = 2_   £    2-(2n-l)(2(22'!)_l)-l
3 7¡¿A     777=1 3 71¿A

3    2(24-l)    23(216-1)    27(2256-l)
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The convergence of the series is extraordinarily rapid.   Using the fact that A

contains sequences of consecutive integers of arbitrary length, one deduces

easily from Liouville's criterion that a is a transcendental number.

The approximate value of a is 0.63.   Hence in about 63% of all cases, the

James number c, is equal to lAb2,   ("Complex vector fields on spheres can be

chosen quaternionic".)  It remains interesting to ask what geometric (and homo-

topy-theoretic) phenomena could be related to this strange algebraic fact.
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