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ABSTRACT. Almost symmetric rings and pseudo symmetric rings are in-

troduced.   The classes of symmetric rings, of almost symmetric rings, and of

pseudo symmetric rings are in a strictly increasing order.   A sheaf represen-

tation is obtained for pseudo symmetric rings, similar to the cases of sym-

metric rings, semiprime rings, and strongly harmonic rings.   Minimal prime

ideals of a pseudo symmetric ring have the same characterization, due to

J. Kist, as for the commutative case.   A characterization is obtained for a

pseudo symmetric ring with a certain right quotient ring to have compact mini-

mal prime ideal space, extending a result due to Mewborn.

Introduction.  Recently Koh [9] has obtained a sheaf representation of a ring

without nilpotent elements.   While Lambek [12] has unified this and the commuta-

tive case by introducing symmetric rings, Hofmann [7, Theorems 1.17 and 1.24]

has extended the representation to semiprime rings.   Using the maximal modular

ideal space, Koh [ll] has also obtained the representation for strongly harmonic

rings.

In this paper, the result of Lambek [12] is extended to a larger class of rings—

pseudo symmetric rings (Theorem 3.5).   Example 5.1(e) is an example of a pseudo

symmetric ring whose representation does not fall under any other types mentioned

above.   (See [7, p. 311].) Almost symmetric rings are also introduced.   A sym-

metric ring is almost symmetric and an almost symmetric ring is pseudo symmetric,

but not conversely in either case.   Some properties of these rings are discussed

in the first two sections.

In pseudo symmetric rings, the minimal prime ideals have the same char-

acterization as for the commutative case.   Mewborn's characterization of a com-

mutative ring with compact minimal prime ideal space is generalized to pseudo

symmetric rings with certain right quotient ring.   For a pseudo symmetric ring, its

prime ideal space is a T.-space iff it is a completely regular T2-space iff its

usual basic open sets are closed as well.

Presented to the Society, November 24, 1972 and January 28, 1973 under the title

Prime ideal space and sheaf representation; received by the editors October 16, 1972.

AMS (MOS) subject classifications (1970). Primary 16A64, 16A66, 18F20, 16A34;
Secondary 16A48, 54D10, 54D20, 54H10.

Key words and phrases. Prime ideal, sheaf representation, pseudo symmetric ring,

minimal prime ideal space.

43
Copyright © 1974, American Mathematical Society



44 GOOYONG SHIN

Acknowledgment. This paper is based on the author's doctoral dissertation

at the North Carolina State University.   The author wishes to express his sincere

appreciation to his thesis advisor Professor Kwangil Koh; to Professor Jiang Luh

for the idea of Example 5.1; and to the referee for many helpful suggestions and

comments.   In particular, Example 5.6 belongs to the referee.

1. Almost symmetric rings and pseudo symmetric rings.  Throughout this paper

a ring is an associative ring which need not have an identity.   Lambek [12] calls

a ring R symmetric provided abc = 0 implies acb = 0 for any a, b, c e R.

Lemma 1.1 (Lambek). A ring without (nonzero) nilpotent elements is symmetric.

Proof.  If abc - 0, then c(abc)ab = 0 and cab = 0.   Then aba(cab)ac = 0,

abac = 0, bacb(abac)ba = 0, bacba = 0, ac(bacba)cb = 0, hence acb = 0.

We shall call a ring R almost symmetric ii it satisfies:

(S I) For each element a £ R,  a   is an ideal of R, where aT - \b £ R: ab = 0j; and

(S II) For any a, b, c £ R, if a(bc)n = 0 for a positive integer n, then abmcm = 0

for some positive integer zzz.

The following two lemmas are proved easily.

Lemma 1.2.  For any ring R the following are equivalent:

(a) R satisfies (S I).

(b) Any annihilator right ideal of R is an ideal of R.

(c) Any annihilator left ideal of R is an ideal of R.

(d) For any a, b £ R, ab = 0 implies aRb = 0.

Lemma 1.3.  // a ring R satisfies (S I), then it satisfies (S II) iff ¡or any a, b,

c e R, a(bc)   = 0 implies abmcm - 0 ¡or a positive integer m.

Proposition 1.4. Any symmetric ring is almost symmetric.

Proof. Clearly any symmetric ring satisfies the condition 1.2(d).   If

(ab)c(bc)= 0, then (ab)(bc)c = 0.

An almost symmetric ring need not be symmetric.   (See 5.1(a).)  The condi-

tions (S I) and (S II) are independent of each other.   (See 5.1(c) and 5.2(b).)  The

prime radical rad R of a ring R coincides with the set of all nilpotent elements of

R if R is commutative.   This is also true if R is symmetric [12, Proposition 3].

Theorem 1.5.  // a ring R satisfies (S I) then its prime radical coincides with

the set of all nilpotent elements of R.

Proof. It suffices to show that rad R contains all the nilpotent elements of R

because any element of rad R is always nilpotent. Suppose a" = 0. If a 4 P for

some prime ideal P then ax .a i P for some element x. of R.  Continuing the
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process we can find elements x. of R such that P does not contain b = ax .a • • •

x _ xa.   But, by (S I), a" = 0 implies ¿7=0, hence b £ P, a contradiction.

We shall call a ring R pseudo symmetric if it satisfies:

(PS I) The prime radical rad(R/l) is the set of all nilpotent elements of the

ring R/I, whenever / = (0) or / is the right annihilator of aR in R for some a £ R;

and

(PS II)For any a, b, c £ R, if aR(bc)n = 0 for a positive integer n, then

a(RbR)mcm = 0 for some positive integer ttz.

Proposition 1.6.  Let R be a ring with (S I).   Then

(a) R satisfies (PS I); and

(b) R satisfies (PS II) iff it satisfies (S II).

7t2 particular an almost symmetric ring is pseudo symmetric.

Proof.  Let A be any subset of R.   For each a £ A, if abc = 0 then abRc = 0.

Thus R/AT  has (S I) for any subset A of R, if R has (S I).   This proves (a) by

1.5.   For (b), suppose that R satisfies (S II).   If aR(bc)" = 0, then a(bc)"*x = 0,

abmcm = 0 by (S II), hence a(RbR)mcm = 0 by (S I).  Conversely suppose that R

has (PS II).   If a(bcf = 0, then aR(bc)n = 0 by (S I), a(RbR)mcm = 0 by (PS II)

and ab mc m = 0, completing the proof.

A pseudo symmetric ring need not be almost symmetric. (See 5.1(c).) Hence

according to 1.4 and 1.6 the classes of symmetric rings, of almost symmetric rings,

and of pseudo symmetric rings are in a strictly increasing order.

The following proposition shows that in semiprime rings (PS I), (S I), 'almost

symmetric', 'pseudo symmetric' and 'symmetric' are equivalent concepts.

Proposition 1.7.  For any ring R the following are equivalent:

(a) R has no nilpotent elements,

(b) R is a semiprime ring with (PS I).

Proof. Clear.

For a prime ideal P of a ring R, let

0(P) = |iz £ R: aRb = 0 for some b £ r\p\,

Op = [a £ R:ab=0 for some b £ r\p\,

N(P) = |« £ R: aRb Ç rad R for some b £ r\p\,

Np = [a £ R: ab £ rad R for some b £ r\p].

It is clear that 0(P) and N(P) ate ideals of R contained in Op and Np, respec-

tively, and that 0(P) and N(P) ate subsets of P.   If R has the property (S I) then

0(P) = Op.   The proof of the following theorem is an adaptation from [9, Theorem

2.4].

Theorem 1.8.  Let R be a ring without nilpotent elements.  For each P eSpecR,



46 GOOYONG SHIN

0(P)= file e Spec R: OiP)CQ}= f\\Q e Spec R: Q C P},

where Spec R  is the set of all prime ideals o¡ R.

Proof. If Q Ç P then 0(P) CO(Q)CQ.   So we have

0(P)Ç n\Q:0(P)QQ}çf\{Q:QÇP}.

Suppose a 4 0(P).  We shall find a prime ideal Q such that a 4 Q and Q C P.   The

set S - \a, a , a , • • •} is a multiplicative system that does not contain 0 and

L = R\P is an zzz-system.   Let T be the set of all nonzero elements of R of the

'o      'l '
form a   x.a lx   •••x a ", where x. e L and t.'s ate positive integers with tQ and

t    allowed to be zero.   Let M = S U T.   Note that L CT.  We claim that xay € M

for any x, y e M.   If x, y e 5 then xay e S.   Let x e S, y e T with x = as, y =

'o      'i '
a   Xjß 'x2 • • • x^a ".   If xay ^ 0, then xay e T.   Since x. e L,w = x z   • • •

z     ,x   e L for some z. e R.  Choose zzz=l+.s +<.+•••+/ . R satisfies (S I)
n — 1   71 r Un

by 1.1.   If xay = 0 then by (S I), (aw)m = 0 and aw = 0, hence a e Op= O(P), a

contradiction.  Similarly one shows that if x, y e T then xay /=■ 0 and xay e T.

This shows Al is an zzz-system that is disjoint from (0), hence there is a prime ideal

Q that is disjoint from M.   Then a 4 Q and Q Ç P, completing the proof.

Immediately from the theorem we have the following corollary, which is a

partial answer to a question raised by Gillman [3, Theorem 2.6].

Corollary 1.9.  // rad R coincides with the set of all nilpotent elements of R,

then for each  P £ Spec R,

N(P)= Hiß eSpecR: N(P)CQ} = C\\Q £ Spec R: Q Ç P¡.

The following has been obtained by Kist [8] for commutative rings, and by

Koh [9, 2.4] for rings without nilpotent elements.   For (a) «=» flj) see also Hofmann

[7, 1.33].

Corollary 1.10.  // rad R coincides with the set of all nilpotent elements of

R, then ¡or each P £ Spec R the following are equivalent:

(a) P is a minimal prime deal.

(b) N(P) = P.

(c) For any a e P, ab is nilpotent for some b e R\P.

Proof, (a) « (b) follows from 1.9. (b)=> (c): For each a e P = N(P),

abab e aRb Ç radR fot some b e r\P, hence ab is nilpotent, (c) =»(b): Ii a e P and

ab £ taàR for some b e r\p, then aRb Ç rad R because the ring R/tadR satisfies

(S I) by 1.1.   Hence a e N(P), and N(P) = P since N(P)CP always.
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Proposition 1.11.  For any ring R, the following are equivalent:

(a) radR coincides with the set of all nilpotent elements of R.

(b) Every minimal prime ideal is completely prime.

Proof, (b) =» (a) is immediate since radR is the intersection of all minimal

prime ideals,   (a) => (b): Let P be a minimal prime ideal of R such that ab £ P.

By 1.10 abc £ rad R for some c £ r\p.   M b 4 P then bzc 4 P lot some z £ R,   By

(SI) of R/rad R, aRbzc Ç rad R and a £ N(P) = P.

Corollary 1.12.  // radR coincides with the set of all nilpotent elements of

R, then N(P) = Np for each prime ideal P of R.

Proposition 1.13.  For any ring R the following are equivalent:

(a) Every prime ideal of R is completely prime.

(b) For any ideal I of R, rad (R/I) coincides with the set of all nilpotent ele-

ments of R/l.

Proof,  (a) =» (b): If a" £ I C P then a £ P, since P is completely prime,

(b) =» (a): If P is a prime ideal of R, R/P is a prime ring, and by (b) and 1.11 the

minimal prime ideal of R/P is completely prime.   Then P must be completely prime.

Proposition 1.14. Let R be a ring with (S I).   Then R satisfies (S II), if either

(a) O(P) = 0 for every prime ideal P of R; or

(b) P H Q is a prime ideal ¡or any prime ideals P and Q of R.

Proof. Let a(bc)2 = 0.  Assume (a).   If either b £ radR or c £ radR, then

either b or c is nilpotent and abmcm = 0.   Suppose b 4 P and c 4 Q for some prime

ideals P and Q of R.   Then abcb £ 0Q = 0(Q) = 0, abc £ O(P) = 0, finally

a £ 0(P) and a = 0.   Now assume (b).   If either £> + ar  £ rad(R/V) or

c + ar £ rad(R/ar), then either zJ¿m = 0 or zzcm = 0, hence abmcm = 0 by (S IX  K there are

prime ideals P and Q oí R such that b 4 P, c 4 Q and ar C  Png, then since

PHQ is a prime ideal, d = bucvbwc 4 P F\Q.   From (S I) and a(bc)2 = 0, it

follows that ad = 0, hence   a7 t P O Q, a contradiction.

The following follows from 1.11.

Proposition 1.15. A ring is an integral domain iff it is a prime ring with (PS I).

Proposition 1.16.  Let R be a (von Neumann) regular ring.   Then the following

are equivalent:

(a) R satisfies (PS I),

(b) R is strongly regular,

(c) every idempotent of R is central.

Proof. A regular ring is semiprime and it is strongly regular iff it has no
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nilpotent elements.   Then (a) » (b) follows from 1.7.   Any idempotent element of

a ring without nilpotents is central, and (b) =» (c) follows,   (c) => (b) is trivial.

Theorem 1.17.  For any ring R the following are equivalent:

(a) R is a (von Neumann) regular prime ring with (PS I),

(b) R is a division ring.

Proof,  (b) =» (a) is immediate,   (a) =» (b): By 1.15, R is a regular integral

domain.   Then R has a unique nonzero idempotent, because if e   = e ¿ 0 and

f2 = / ¡¿ 0 then e(ef - /) = 0, (ef - e)f = 0, hence e = ef = f.   Then R must be a

division ring.

It is well known that there is a simple integral domain which is not a division

ring.   This shows that the regularity of R cannot be dropped from 1.17(a).

2. Transfer theorems.

Theorem 2.1.  // R is an almost symmetric ring then R/tadR, R/N(P),

R/0(P) and R/ar are almost symmetric for each P e Spec R and each a e R.

Proof, (a) If radR is the set of all nilpotents, then R/tadR and R/N(P)

have no nilpotent elements, for if a" e N(P) with anRc Ç rad i? for some c e R\P,

then aRc C rad R and a e N(P) because every minimal prime ideal of R is com-

pletely prime.

(b) Let R satisfy (S I). R/AT and R/Al satisfy (S I) for any A Ç R, as shown

in the proof of 1.6. R/0(P) satisfies (S I), for if ab e 0(P) with abRc = 0 for some

c 4P then aRbRc = 0 and aRb Ç O(P).

(c) Let R be almost symmetric. If b(cd) e O(P) with b(cd) Rf = 0 for some

{4P then b(cdf)1 = 0, bcn(df)n = 0, bcmdmfm = 0 and bcmdmRw = 0, where w =

/i/,/iz, -"v      J 4P.   It shows that R/0(P) satisfies (S II).   If ab(cd)2 = 0 then'12 772— I

aècma"" = 0, thus R/aT satisfies (S II).

There exists an integral domain whose homomorphic image fails to satisfy

(PS I).   (See 5.3.)

Proposition 2.2.  // a ring R satisfies (S I) (resp. (S II)) then so does any

subring of R.

Proof. Clear.

It is not clear whether a subring of a pseudo symmetric ring is necessarily

pseudo symmetric.

Theorem 2.3. (a) The direct product Iii?satisfies (S I) iff each ring Redoes.

(b) // the direct product URasatisfies (S II) then so does each R^.

Proof. Each ring R   may be considered as a subring of the direct product.
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(b) and one part of (a) follow from 2.2.  If each Ra satisfies (S I) then it is clear

that their direct product satisfies (S I).

Corollary 2.4.  (a) // each Ra satisfies (S I) then so does every subdirect sum

of these rings Ra.

(b) A direct sum 2  Ra is almost symmetric iff each Ra is almost symmetric.

Proof. If each Ra satisfies (S I) then any subdirect sum, being a subring of

the direct product, satisfies (S I) by 2.3(a).   In this case the direct sum, being a

subdirect sum, also satisfies (S I).   If each Ra is almost symmetric, then clearly

their direct sum satisfies (S II).  If the direct sum is almost symmetric then each Ra,

being a subring of the direct sum, is almost symmetric by 2.2.

Theorem 2.5. (a) // the direct product of rings Ra satisfies (PS I), then so

does each Ra.

(b) // the direct product of rings  Ra satisfies (PS II), then so does each Ra.

Proof. Let R be the direct product and let cbß. R —» Rß be the projection

map.   li a £ Rß and P is a prime ideal of Rß let ä £ R such that 4>Jfl) = a and

(pa(a~) = 0 for all a/= ß, and let P be the inverse image of P by <f>ß.  Then P is a

prime ideal of R.   If a is nilpotent ä~ is also nilpotent.   Then a £ P and a £ P.

Now suppose b" £ 1 C P, where / is a right annihilator of aRß in R» and a, h £ Rß.

Then b" £ I Ç P where /  is the inverse image of / by tpo.   This means b £ P

and b £ P, proving (a), (b) is clear.

Theorem 2.6.  (a) // the direct sum of rings Ra satisfies (PS I) then so does

each Ra.

(b) The direct sum of rings Ra satisfies (PS II) iff so does each Ra.

Proof, (a) is proved in a same manner as for 2.5(a). (b) is clear.

The converses of 2.3(b) and 2.5(b) are not true.   (See 5.2(b) and (c).)  If a

subdirect sum of rings Ra satisfies (S I) the rings Ra need not satisfy (S I).

(See 5.3.)  It is not clear whether the converses of 2.5(a) and 2.6(a) are true.

Lemma 2.7.  Let R be a ring with identity.   If R satisfies (S I) then every

idempotent of R is central.

Proof. If e2 = e, then e(l - e) = (1 - e)e = 0 and ea(l - e) = (1 - e)ae = 0

for each a £ R.   Then ea = eae = ae.

If R does not have an identity 2.7 need not be true.   (See 5.4(b).)  The con-

verse of 2.7 need not be true.   (See 5.5.)  Let R   be the ring obtained by adjoining

an identity to a ring R in the usual manner.   If R satisfies (S I) then R   need not

satisfy (S I).   (See 5.4(d).)
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3. Sheaf representation. For a ring R, let Spec R be the set of all prime ideals

of R, for any subset A of R let suppA be the set of all prime ideals P such that

A £ P, and let hullA be the complement of suppA in Spec R.   In case A = \a\

we shall write suppa and hulla.

Lemma 3.1. For any ring R, isuppa: a e R} is a base (¡or open sets) on

Spec R.   This topology is called the hull-kernel topology.

Proof. For any P e Spec R, P ¿ R and there is a e r\p.   Thus the family

covers Spec R. Suppose P e suppa D suppb.  Then d = acb 4 P for some c e R,

and P e suppziÇ suppa n suppè.

Lemma 3.2.  // a ring R has an identity, then Spec R is a compact space.

Proof. See [2, p. 76].

Proposition 3.3. For a ring R, let &(R) = U R/0(P) be the disjoint union of

rings R/0(P) with P e Spec R.   For each r e R, let f: Spec R —♦ £(i?) be defined

as f(P)= r + 0(P).   Then £(i?) is a sheaf of rings over Spec R with the topology

on &(R) generated by a base {rXsuppa): a, r e R}; and fis a global section for

each r e R.

Proof. See [7, p. 305].   For definitions, see [14, 3.1].

Let r(SpecR, £(i?)) be the set of all global sections.   Then this becomes a

ring.   The map r —» f is a ring homomorphism, called the Gelfand homomorphism,

with its kernel flO(P).   Let R have an identity.   Recently Koh [9] has shown

that this map is an isomorphism in the case when R has no nilpotents, Lambek

[12] for symmetric rings, Koh [ll] for strongly harmonic rings, and Hofmann [7,

I.I7] for semiprime rings.

Lemma 3.4. For any ring R, the Gelfand homomorphism is a monomorphism

iff, for any O/izeK, (aRf is contained in a prime ideal of R.

Proof. Clear from the definition of O(P).

Theorem 3.5.  Let R be a pseudo symmetric ring with identity.   Then R is

isomorphic onto T(SpecR, £(i?)), with £(/?)= \JR/0(P).

Proof. If a z¿ 0, then (aR)R ¿ 0 since lei?.  Hence (aR)T is contained in a

maximal ideal.   By the lemma the Gelfand homomorphism is a monomorphism.   Let

a be a global section.  For P e Spec R, a(P) = â(P) for some a e R.  By [14, 3.2]

a and â agree on a neighborhood of P, hence on a basic open neighborhood suppè.

By compactness of Speci?, there are a., b. e R such that Spec i? = U,-_i suppiL

and o(P)= a.(P) for each P e suppè..   If ((a . - a .)R)' C P, then a.-a.4 O(P),

a.(P) /= â.(P), and P 4 supp£>; O suppè., hence ¿>.¿. e P.   This means that
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b.b. + I £ rad(R/I) where / is the right annihilator of (a{ - a.)R in R.   Then

(bAb.f £ 1 for a positive integer m, depending on (z, /), and (a{ - a )R(b.b.f =

(0).   By (PS II) there exists a positive integer ¿, depending on (z, /), such that

(a. - a])(Rb.R)kbk. = (0).   Now since  (a. - a .)(Rb.R)k+Xbkj Ç (a. - a.)(Rb.R)kbk.=

(0), we may assume that ¿ is independent of (z, /).  Since supp£> = supp RbR =

supp(R6R)\ from Spec R = \J*m i suPP&¿. we have R = I." =x(Rb.R)k.   Then

1 = e, + e. +•'•+ e   where e. £ (Rb.R) .   Put a = a,e+a.e. +• • •+ a e .   For
l ¿ ni z l    l ¿   ¿ n  n

any s £ R, e .s £ (Rb .R)k, hence (a.- a.)e.sbk = 0 and asbk = S. a .e .sbk =
' z I * t        J     t      ) J ill]

2. a.e.sbï = a.sb*, i.e., (a - a .)sbk. = 0.   Thus (a - a )Rbk = 0.   By (PS I), this

means that a - a. £ O(P) for every P £ supp b., â(P)= â.(P) = a(P).   Hence a=â.

Lambek [12] calls a ring prime-torsion free if it has a prime ideal P such

that O(P) is zero.

Theorem 3.6. // R is a ring such that C\0(P)= 0, then R satisfies (S I) iff R

is isomorphic onto a subring of the ring of global sections of a sheaf whose stalks

are rings with (S I).   In this case the stalks may be chosen to be prime-torsion

free rings.

Proof. Suppose R has (S I).   By the proof of 2.1(b) the stalks R/0(P) satisfy

(S I).   P/0(P) is a prime ideal of R/0(P).   If aRb Ç O(P) for some b 4 P, then

ab   £ O(P) and ab Re = 0 for some c 4 P.   By choosing w = bubvc 4 P, we have

aw = 0 and a £ Op = 0(P).   Thus the ring R/0(P) is prime-torsion free.  Con-

versely, suppose R is isomorphic into T(X, £) for a sheaf £ = Uxex "    over a

topological space X, where each ring R    is a ring satisfying (S I).  We may regard

R to be a subring of T(X, £).   Let a, b £ R such that ab = 0.   For each x £ X,

a(x)b(x) = Ox and a(x)Rxb(x) = 0   since R    has the property (S I).   Then for any

s £ R, a(x)s(x)b(x) = 0^, hence zzsè is the zero map, i.e., the zero element of

T(X, I).  So we have zzRè = 0.

Corollary 3.7.  // R is an almost symmetric ring with identity, then R is iso'

morphic onto T(Spec R, £(R)), where £(R) = (J R/0(P) and each stalk is an almost

symmetric, prime-torsion free ring.   Conversely, if R is a ring isomorphic into the

ring T(X, ê.) for a sheaf of almost symmetric rings R    over a compact space X,

then R is almost symmetric.

Proof. Let R be an almost symmetric ring with identity.   By 3.5, 2.1 and 3.6

the conclusions follow.   For the converse let R C Y(X, ic) where the stalks R

are almost symmetric and X is compact.   By 3.6, R satisfies (S I).  Suppose

a(bc)   = 0 for some global sections a, b, c.   For x £ X, a(x)b(x)mc(x)m = 0    for

a positive integer m.   This means the section abmcm vanishes at x, hence it

vanishes on a neighborhood of x.  Since X is compact there are finite number of
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open neighborhoods N., N2, • • •, N    and positive integers zzz., m , • •• ,m   such

that X =U"=i Ni and (abmicmi)(y) = O   for every y e N..   Let r be the largest of

m.'s.   Since each i?    satisfies (S I), (ab'c')(y) = 0   for each y £ N. and each

/ = 1, 2, • • •, zz.   Then aè c   must be the zero section.   Thus Í? has (S II).

For base spaces other than Spec í?, we obtain the following:

Theorem 3.8.  Let R be a ring with identity such that

(i) Í? satisfies (PS II),

(ii) Maxi?CXC Speci?,

(iii) ¡or each a £ R, (~){P £ X: (ai?)rC P} = \b £ R: aRbm = 0 ¡or some m}.

Then R is isomorphic to the ring of global sections of a sheaf í over X with

stalks R/0(P).

Proof. Since 1 e i? and Max Í? Ç X, X is compact and H|0(P): P e X| = (0).

If a is a global section then there is a e R such that a(P) = a + 0(P) for each

P e X, following the proof of 3.5.

4. Prime ideal space and compact minimal prime ideal space.  Let Mini? be

the subspace of Spec R of all minimal prime ideals of Í?, and Max i? be the set of

all maximal ideals of i?.   If Max i? C Spec Í? we shall consider Max i? to be a sub-

space of Speci?.  We shall adopt the notations: s(a)= suppa n Mini?, h(a) =

huila n Min i? for any a £ R, and similarly for any A C R.   The following lemma is

easily proved.

Lemma 4.1.  For any ring i? the following are equivalent:

(a) Speci? is a T^space,

(b) Speci? = Mini?.

// Max i? Ç Spec i? and every prime ideal is contained in a maximal ideal, then

the above conditions are equivalent to

(c) Spec i? = Max R.

Theorem 4.2.  For any ring R whose prime radical is the set of all nilpotent

elements, the following are equivalent:

(a) N(P) = P for each P £ Spec Í?,

(b) suppa is closed (as well as open) in Spec i? for each a € i?,

(c) Spec Í? is a completely regular T2-space,

(d) Speci? is a T^space.

If R is almost symmetric, then these are equivalent to

(e) R/0(P) has a unique prime ideal, i.e., P/0(P), for each prime ideal P of R.

Proof, (e) =► (d) always, for if Q e fp| = hull P then P Ç Q and 0(P) C Q.

(a) =» (b): If  a 4 P and aRb Ç rad R then be P.   If a e P = N(P) then aRb Ç rad i?



PSEUDO SYMMETRIC RING 53

for some b 4 P.   Hence supp a = hull /, where / is the set of all b £ R such that

aRb Ç radR. (b) -» (c) =»(d) are clear,   (d) =» (a) follows from 1.10 and 4.1. Now

let R be almost symmetric such that Spec R is a Tj-space.   For P, Q £ Spec R

they have disjoint open neighborhoods supp a and suppr), respectively.   Then

ab e radR and ambm = 0 by (S II).   There are u 4 P, v4Q such that uv = 0 by

(S I).   Thus u £ 0(Q) and 0(Q) t P.  Similarly O(P) t Q and (c) =» (e).

Gillman  [3] has obtained (a) <=> (b) =» (c) of 4.2 in an arbitrary ring and

(b) *=> (c) in any commutative ring.   For a more general version of (a) » (b)«=»(d),

see [7, 1.29 and 1.32].  (c) «=» (d) need not hold true in general.   (See Example

5.6.)

Proposition 4.3.  // R/radR z's a strongly regular ring with identity then

Spec R is a T2'Space,

Proof. Since Spec R is homeomorphic onto Spec(R/radR), we may assume

that R is semiprime.   Let a 4 P and a £ Q, with a = a b.   Let c = 1 - ab.   Then

ac = 0, aRc = 0 since R has no nilpotents, hence supp« and suppc are disjoint

neighborhoods of P and Q, respectively.

The simple integral domain with identity, which is not a division ring, shows

that the converse of 4.3 is not true by 1.17.   If R is the direct product of finite

number of copies of this simple integral domain, then R is neither simple nor an

integral domain.   Evidently Spec R is still a T2*space but R is not regular,  The

following is well known for the commutative case.  Recall that a ring is right

(resp. left) duo if every right (resp. left) ideal is an ideal.   Note that any right

(or left) duo ring satisfies (S I).

Theorem 4.4.  For any right (or left) duo ring with identity the following are

equivalent:

(a) R/radR z's a (von Neumann) regular ring,

(b) Spec R is a T2 space,

(c) SpecR z's a T^space.

Proof. Let R be a right duo ring.  Since R satisfies (S I), R/rad R has no

nilpotents.   By 4.3 it suffices to show that (c) implies (a).  We may assume that

R is semiprime.   By 4.1 every prime ideal is a maximal ideal.   If a ¿ 0, then

a 4 M fot some M £ Spec R, M + aR = R and 1 - ay € zM for some y £ R. Ihullz:

z = 1 - ay for some y £ Ri covers supp a and by 4.2 this is an open covering for

the compact set suppa.   There are elements of the form z. = 1 - ay. such that

suppaClL   , hullz., hence azz.'"Z   £radR = 0.   But azz   •••z    is of the form
^r      — v7=l I" 1    Z 72 1    2 71

«(1 - ax) for some x £ R and then a = a x.

Compare 4.5 with [7, 1.27].
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Proposition 4.5.  // every prime ideal of a ring R is in a maximal ideal and

Max /? Ç Spec i?, then the following are equivalent:

(a) R/N(P) has a unique maximal ideal for each  P e Spec i?,

(b) R/N(M) has a unique maximal ideal for each M e Max Í?.

If, in addition, R is almost symmetric, then these conditions are equivalent to

(c) R/0(P) has a unique maximal ideal for each P e Spec i?.

Proof.  U PCM then zV(M) Ç N(P) Ç M and 0(P) Ç N(P) Ç M.   This shows (b)=»

(a) and (c) =» (a), hence it remains to show that (a) implies (c) when i? is almost

symmetric.   For this we shall show that for each P e Spec i?, M/0(P) e

Max(i?/0(P)) iff M/N(P) e Max(i?//V(P)).   If M/0(P) e Max(i?/0(P)) then M e Max i?.

Suppose that a e N(P) and a 4 M. ab is nilpotent for some b 4 P, a"bn = 0 by

(S II), and zztz = 0 for some u 4 M and v 4 P by (S I).   Then u e 0(P) Ç M, a con-

tradiction.   Thus N(P) Ç M and M/N(P) £ Max(i?/zV(P)).   If M/N(P) e Max(i?/N(P))

then M/0(P) e Max(i?/0(P)) since 0(P)CN(P).   This completes the proof.

Proposition 4.6. Suppose the prime radical of a ring R is the set of all nil-

potents of R.   If Q e Min I and I is an ideal of R, then Q is also an ideal of R.

Proof. Since rad Í = / C\ rad Í?, rad / is the set of all nilpotents in /.   Let /

be the ideal of i? generated by Q.   It suffices to show that / Ç Q.   Let x e / with

x = x, +x.+•••+* , where for each fixed i, x. is of the form u + av + vb +
I Z 71' 'I

2™. a.vb- such that u, v £ Q and a, b, a., b. e R.   By 1.10, uw, vz e tad I for

some w,z e l\Q.   Then u(wz), vb(wz), av(wz), a .vb.(wz).e radi?, thus x.tzzz e

rad / and wz e i\Q.   This way we find d. e I\Q such that x .d. e tad I and let

d = d d2 • • • d .   This means that xd e rad Í and d £ I\Q.  Since x £ J C I and Q

is completely prime, we have x e Q.

For a more general version of 4.7, see [7, 1.33].

Proposition 4.7.  If the prime radical of a ring R is the set of all nilpotents

of R, then Mini? is a T2-space with a base of closed-and-open sets.

Proof. For P, Q e Min i?, if a £ P and a 4 Q, then ab e tad R for some b 4 P

by 1.10.  s(a) and s(b) ate the required disjoint open sets.  For each a e R, s(a) =

h(I), where I is the set of all b e R such that ab e tad R.  This completes the proof.

Corollary 4.8. Suppose the prime radical of a ring R is the set of all nilpotent

elements.   If Min i? is compact, then for each a e R there is a finitely generated

ideal I of R such that s(a) = h(l).

Proof.  For each a e R, h(a) is compact and open, hence i(a) = JJ?_. s(b.)=

s(I) where 7 is the ideal of i? generated by b.'s.

All the results of Henriksen and Jerison [6] on minimal prime ideals of a



PSEUDO SYMMETRIC RING 55

commutative ring are true for their counterpart in a ring whose prime radical is

the set of all nilpotents.  The following three theorems are listed here without

proofs as the proofs in [6] need only minor modifications for our case.  Since

MinR is homeomorphic onto Min(R/radR), we may assume that radR = 0, i.e.,

that R has no nilpotents, in considering the minimal prime ideal space.

Theorem 4.9. Let R be a ring without nilpotents.  Then the following are

equivalent:

(a) Min R z's compact and, for any a, b £ R, ar D bT = cT for some c £ R,

(b) MinR is compact and [h(a): a £ R\ is a base (¡or open sets) for MinR,

(c) for each a £ R, aT = (bT)T for some b £ R.

Theorem 4.10.  Let R be a ring without nilpotents.   Then the following are

equivalent'.

(a) MinR z's compact, extremally disconnected and, (or each a, b € R, a'O

br = c  ¡or some c £ R,

(b) for any subset BCR, Br = yT for some y £ R.

Theorem 4.11.  Let R be a ring without nilpotents such that MinR is com-

pact.   If, for each sequence [a.} of elements of R, Ç\. _. aT. = bT for some b £ R,

then MinR is basically disconnected.

Mewborn [13] has obtained a characterization of a commutative ring with

identity whose minimal prime ideal space is compact, generalizing the result due

to Henriksen and Jerison [6].  Our aim here is to obtain a similar characterization

for the noncommutative case.  A ring T is a right quotient ring oí a subring R

provided TR is a rational extension of RR.   If R is a subring of T, we shall use

the notation: S(a) = ¡M £ Spec T: a 4 Mi, /7(a) = Spec T\S(a) for each a £ T.

Also recall that for each a £ R, s(a) = supp a n Min R and b(a) = Min R\s(a).

Lemma 4.12.  // R is a subring of T then for each P £ Spec R there is a

M £ Spec T such that M fï R Ç P.

Proof. R\P is an Tzz-system in T, disjoint from (0).

Theorem 4.13. Suppose a ring R has a right quotient ring T which has no

nilpotents.   If Spec T z's a compact T'-space then the following are equivalent'.

(a ) Min R is compact,

(b) MinR = Y, where Y = \M O R: M £ Spec Ti,

(c) for each   a £ R, S(a) = H(I) for a finitely generated ideal I of R.

If, in addition to conditions on T, R has an identity and TR is a flat module,

then Min R is compact.

Proof. Note that Spec T = Min T by 4.1 and each M £ Spec T is completely
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prime by 1.11, thus M D i? is completely prime in i? if M Pi i? ¿ R.   By Lemma 4.12

we have Min RÇV.  (b) => (a): Since Min i? = Y the map /: Spec T —» Spec I?

defined as /(M) = M O i? is continuous and Min i? is compact as it is the image

of a compact space by a continuous map.

(a) =» (b). Suppose that MQ n R 4 Mini? for some MQ e Spec T. MQn R<£P

for each P e Min i?.  Since Min i? is compact, there are elements a. e Mq Ci R

such that Mini? = (J"_j sía¡)-   Let / be the ideal of i? generated by a¿'s.   Then

S(I) = U"= j S(a.) is closed in Spec T by 4.2.  Hence Mn e 5(a) Ç //(i) for some

a e T.   Then a /=■ 0, /a = 0 and the right annihilator of / in T is a nonzero right

ideal, therefore Ic = 0 for some 0 /= c e R since TR is an essential extension of

RR.   Hence 5(c) Ç f/(/).  Since c 4 radi? = 0, there is  P 6 s(c) and M C\ R = P

for some M e Spec T by 4.12.  Then M e 5(c) C //(/) and P e ¿(/), which is impos-

sible since s(I) = Min i?.   This shows that  Y Ç Mini?, hence  Y = Mini?,   (b) =»

(c). Let a e i?.   If H(a) = 0 let /= (0).  Let MQ e //(a).  Since Y = Mini?, M n

i? ¡É zM0 D f? for any M e 5(a).   5(a) is closed and compact, S(a)C \J\H(b):

b e r\m 0!, hence S(a) Ç (Jn= j W(*f) = H(c) with c e r\m q.  If 5(a) = 0 choose

any c e r\m „.   Then /Mn e 5(c) Ç H(a) and H(a) = (J 7= i *(c •) = si0 where * is

the ideal of i? generated by c 's. (c) =► (b). Suppose MQ D R 4 Min i? for a

zM0 e Spec T.  Either Mnni? = i? or M0ni?e Spec i?.   Note that Min i? ¡¿ 0 since

rad i? = 0.  There is Aij e Spec T such that zMj n i? ÇJ Aln n i? since Min RÇY.

Let a £ MQ Hi? and a ¿ M,.   By (c), 5(a) = H(I) for an ideal Í of R.   Then / Ç AtjH

i? ÇzM0and   M0 e H(I) = 5(a), a contradiction.   Now suppose that R has an identity

and TR is flat.   By 3.5, T M HSpec T, \J T/0(M)) and O(M) = M for each

M e Spec T by 4.2.   Let a e R.  Since 5(a) is closed and open in Spec T, we have

e e T when e: Spec T—> \J T/0(M) is defined by e(M) = 0 + M for each M 6 5(a)

and e(M) = 1 + zM for each zW e //(a).  Since ea = 0 and TR is flat, there are y. e T

and b. £ R such that e = £?_ l yb. and fe. a = 0 for each / = 1, 2, • • -, m by [l,

Exercise VI-6].   Let I be the ideal generated by ¿z.'s.   Then /7(a) = 5(e) Ç 5(í) =

(J?_j 5(z3.)Ç //(a).   This proves the theorem.

Proposition 4.14 (Koh).  If a ring R has no nilpotents then its right and left

singular ideals are zero.

Proof. See [9, 2.6].

Proposition 4.15. // i? is a symmetric ring with identity, then its right singular

ideal coincides with its left singular ideal.

Proof.  Let Z (i?) be the right singular ideal of Í? and let a e Z (/?).  Suppose

/ is a left ideal of i? such that a' C\ I = (0).   For each b £ I and for any be £ ar O

bR, abc = 0 and cba = 0 since lei?, cb £ a1 n I = (0) and be = 0.   Then ar C\ bR = 0

and b = 0, hence / = 0, showing that a e ZfR).   Similarly Zz(i?) C Zf(R).
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The singular ideals of a symmetric ring, of course, need not be zero as the

ring of integers modulo four indicates.   In an almost symmetric ring, the right and

the left singular ideals need not coincide even if it has an identity.   (See 5.1(d).)

Proposition 4.16.  Let R be a ring with identity.   If P £ Spec R awa" /„ is the

infective hull of the right R-module R/P, then 0(P) Ç f C Op, where f is the

right annihilator of I in R.   // R satisfies (S I) then 0(P) = T~.

Proof. Let a £ 0(P) with aRb = 0 for some b 4 P.  If a e 1 then aaR n R/P

is a submodule of R/P, hence is equal to J/P for a right ideal / of R.

(]/P)bC aaRb = 0, ]b Ç P and / C P, thus / = P.  This means aaR = 0 and

aa = 0.  Now suppose a 4 0p.  Then ar Ç P and (R/P)ar = 0.   For a e R/P

define fa: aR —» IR by fa(ar) = ar.   Let ga: RR —» /R be the extension of /a.

Now a = /a(a) = ga(a) = ga(l)a £ /a, showing that R/P C /a and /a /= 0.

The proof above is an adaptation from [9, 2.8l.

Proposition 4.17 (Koh). For any ring R the following are equivalent:

(a) The infective hull R of RR  is a strongly regular ring.

(b) Z (R) = 0 and m(R) = 1, where m(R) is the least upper bound of integers

n such that R contains a direct sum of n mutually isomorphic nonzero right ideals

of R.

Proof. See [10,4.37].

Remarks 4.18. Concerning the hypotheses of 4.13 we note the following:

(a) If T is a right quotient ring of a semiprime ring R, then T is also semi-

prime since R n rad T Ç rad R by 4.12.

(b) If R has no nilpotents then by 4.14 R, the injective hull of RR, is the

maximal right quotient ring of R and it is a (von Neumann) regular ring with

identity.   But R may have nilpotents [9, 2.7].

(c) If R has no nilpotents such that m(R) = 1, then by 4.17 R is strongly

regular.   Hence R has no nilpotents and Spec R is a compact T,-space by 4.3.

Therefore we may choose in this case T = R for 4.13.

(d) SpecR of 4.13 need not be a T. -space.   Let R be the ring of integers and

T the rationals.

(e) The right quotient ring T of 4.13 need not be a regular ring.   Let T = R

be the simple integral domain with identity which is not a division ring.

(f) Spec T of 4.13 need not be a finite set.   Let R = T = C(N) the ring of

real-valued continuous functions on the space of natural numbers.   The cardinality

of Spec T = Max T = ßN is 2C [A, 9.3].

5. Examples and counterexamples.

Example 5.1. For a ring S with identity, let R = la. + ax + ay + a z:a. eS\
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with indeterminates x, y and z.   By defining multiplication as

(aQ +ajX + a2y + a3z)(60 + b¡x + b2y + b^z)

= aQbQ + (aQr>, + ajè0)x + (ani>2 + a2bQ)y + iaQb} + aj>ü +alb2)z,

R becomes a ring with identity with the usual addition. [R may be described in a

different manner (see Example 5.2 also): Let T be the free module over integers

Z with bases |1, x, y, zi. Define a multiplication on T such that all products are

zero except that xy = z and that 1 acts as an identity.   Then let R = S 0Z T.]

(a) (i) S has no nilpotents iff R satisfies (S I).

(ii) If S has no nilpotents, then u(vw)   = 0 implies uv w   = 0 for any a,

v, w £ R.

(iii) R is not symmetric.

Proof. If a" = 0 for some a £ S then (an_1 + x)(a"~X - x) = 0, but

(a"~   + x)y(a"~   -x) = a"~ z.   If S has no nilpotents one can show, through

direct computation, that R satisfies (S I) and that u(vw)   = 0 implies uv w   = 0

for any u, v, w € R.  R is not symmetric since lyx = 0 and lxy = z.

(b) Spec R is homeomorphic onto Spec 5.

Proof. Note that the ideal (x, y, z)= xR + yR, which is the set of all ele-

ments of R with zero constant terms, is nilpotent with nilpotency 3. xR + yR C radR.

For P £ Spec R let d>(P) = {a £ S: a e P\.   Then d> is the required homeomorphism.

(c) Let S = Z/(A) the ring of integers modulo four.   Then

(i) R satisfies (S II) but not (S I),

(ii) R is pseudo symmetric.

Proof, (i) Spec R = (Pi by (b) where P is the set of elements whose constant

term is in (2)/(4).   Let u(vw)n = 0.   U v £ P or w e P then uv4w4 = 0 since P4 = 0.

If u 4 P and v 4 P then u £ Op since P is completely prime.   But Op = 0.  Hence

R satisfies (S II).   (ii) R satisfies (PS I) by 1.13.  (PS II) holds by the same argu-

ment as for (S II) in (i) above.

(d) Let S be the ring of integers.   Then Z(R) /= Z^R).

Proof.  By (a) R is almost symmetric,  x  = radR is the set of all elements

with zero constant terms.   If x  n / = (0) for a left ideal / and a = aQ + axx +

ay + a z £ I, then za - aQz £ x  n I and aQ = 0.   Hence a £ x   and / = (0), show-

ing that x £ Z.(R).   Now for any ya £ xr n yR, 0 = xya = za = aQz and aQ = 0.

Then ya = 0 and x 4Z(R).  Similarly y £ ZAR) and y '¿ Z^R).

In [7, p. 311] Hofmann asks whether there is a ring with identity, outside the

commutative case, outside the strongly harmonic case, and outside the semiprime

rings, which is isomorphic to the ring of global sections of a sheaf over the maxi-

mal ideal space.   The following example is such a one:
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(e) Let 5 be the ring of integers.   Then i? is not commutative.   Koh [ll] calls

a ring strongly harmonic iff for any two maximal modular ideals M /= N, there are

ideals /, / such that I <£ M, j£N, and // = 0.   Now for any P, Q £ Spec i?, if

a 4 P, b 4 Q then ab /= 0 since aQb0 /= 0.   Hence this ring R is not strongly harmonic.

i? is not semiprime since radi? = xi? + yi?.   Note that O(M) = M = (0) for each

Al e Max i?.   By 3.8 with X = Max i?, Í? is isomorphic to the ring of global sections

of a sheaf over Maxi? with stalks i?/0(Al) = í?/a1 = i?.

Example 5.2.  Let 5 be a ring without nilpotents and with an identity.   Let

S[x, y] be the free ring generated by indeterminates x and y over 5.   For each

positive integer a, let i?a = 5[x, y]/(xa+l, ya+ l, yx).   Note that the ring of

Example 5.1 is the case when a = 1, by identifying xy with z.   Let R = n~_ j Ra.

(a) By similar calculations as for 5.1 one can show that each i?a is almost

symmetric.

(b) By 2.3. (a) i? satisfies (S I).   Let a, b £ R such that a = (x, x, x, • • • ) and

b= (y, y, y,'" ).   l(ab)2 = 0 but lambm /= 0 for any positive integer zzz.   Thus R

does not satisfy (S II).

(c) By 1.6 i? satisfies (PS I) but not (PS II).

Example 5.3. This appears in another context in [5].

Let F be the field of rational functions in y over Z/(2).   Let i? be the poly-

nomial ring over F in an indeterminate x, subject to xy + yx = 1.   Then i? is an

integral domain and M = x R is a maximal two-sided ideal of i?. M is not com-

pletely prime and R/M does not satisfy (PS I).

Example 5.4. For a ring 5, let i? = [Q „].

(a) i? has (S I) iff 5 has (S I).   If 5 is symmetric then í? is almost symmetric.

i? is never symmetric.

(b) If 0/e = e2£j then [q  q] is a noncentral idempotent.   Of course i? does

not have an identity.

(c) Let 5 = Z/(2).   The only nonzero right ideals of i? are i? and [Q  Q], and

i? is right duo.   But i? is not symmetric.

(d) Let 5 = Z/(2), and let i?   be the ring obtained by adjoining an identity to

R in the usual manner.   ([n „], 1) is a noncentral idempotent of i? .   By 2.7, Í?

does not satisfy (S I).

Example 5.5. Let i? be the ring of matrices over integers of the form [" ¿]

such that a + d, b and c are even integers.   Only idempotents of i? are the zero

and the identity.   But i? does not satisfy (S I) for [2 Q] [2  Q] = [Q Q] and
r0   OirO   21 [0   0l _ rO   Ol
l2  0Jl0  0Jl2   0J " l8  0J'

Example 5.6. Let R be the ring of all sequences a = \a^ of 2 x 2 matrices

a    over a division ring D, each of the sequence a = |anl having an integer N(a)

and a diagonal matrix d(a) such that a   = d(a) fot all n > N(a).  For each n, let /
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be the ideal of all sequences with zero nth term, and let U (resp. L) be the ideal

of all sequences a such that the upper (resp. lower) diagonal entry of d(a) is

zero.   Then R/U and R/L ate isomorphic to D and each R/l   is isomorphic to
71

the simple ring of 2 x 2 matrices over D, hence the ideals U, L, and /    are maxi-

mal ideals.   Moreover these are all the nontrivial ideals of R.   By 4.1(c), Spec R

is a Tj-space.   Spec R cannot be T2 since the sequence 1/ i converges to both

U and L.   Note that R is (von Neumann) regular, hence is semiprime.   Note also

that 0(U) m N(U) = U nL¿ U.   (See Theorem 4.2.)
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